## Organic & Biomolecular Chemistry





View Article Online View Journal | View Issue



**Cite this:** Org. Biomol. Chem., 2014, **12**, 6076

Received 21st April 2014, Accepted 26th June 2014 DOI: 10.1039/c4ob00816b

www.rsc.org/obc

## Iron-catalyzed tetrasubstituted alkene formation from alkynes and sodium sulfinates<sup>†</sup>

Saiwen Liu,<sup>a</sup> Lichang Tang,<sup>a</sup> Hui Chen,<sup>a</sup> Feng Zhao<sup>a</sup> and Guo-Jun Deng\*<sup>a,b</sup>

An iron-catalyzed sulfenylation and arylation of alkynes with aryl sulfinic acid sodium salts is described. Various aromatic sodium sulfinates acted both as aryl and sulfenylation reagents, affording tetrasubstituted alkenes in one pot with good yields.

Alkenes are ubiquitous in natural products and biologically active compounds. Many alkenes are also versatile starting materials in the synthesis of functional materials.<sup>1</sup> Various methods have been developed to prepare alkenes, such as the Aldol-type condensation, the Wittig-Horner reaction, olefin metathesis and cross-coupling reactions.<sup>2</sup> Tetrasubstituted alkenes are frequently found in drugs, such as Tamoxifen and Vioxx,<sup>3</sup> and natural products such as Stemona alkaloids and Nileprost analogues.<sup>4</sup> Importantly, tetrasubstituted alkenes also contribute extensively to materials sciences and building blocks for synthetic chemistry.<sup>5</sup> However, the congested nature of the double bond makes it difficult to access these important chemicals efficiently and stereoselectively.<sup>6</sup> Although the McMurry reaction,<sup>7</sup> Wittig olefination or Julia-Kocienski olefination<sup>8</sup> and metathesis<sup>9</sup> can provide different routes for tetrasubstituted alkenes, the efficiency, regio- and stereoselectivity are major problems. The transition-metal-catalyzed cross-coupling reaction of internal alkynes with two different coupling reagents such as aryl halides and aryl boronic acids can provide an alternative synthetic route to tetrasubstituted alkenes.<sup>10</sup> In recent years, the most reliable method to form these compounds is alkyne carbometalation,<sup>11</sup> although there are few other catalytic methods available.<sup>12</sup> Using copper as the catalyst, Gaunt and co-workers successfully employed diaryliodonium triflates as coupling agents to selectively afford all-carbon tetrasubstituted alkenes.<sup>13</sup> Similarly, highly

functionalized alkenyl triflates were synthesized  $\mathit{via}$  electrophilic carbofunctionalization.  $^{14}$ 

As an important class of substituted alkenes, vinyl sulfides are ubiquitous in biologically active compounds and natural products.15 They can also be used as starting materials to prepare other substituted alkenes via C-S bond cleavage.<sup>16</sup> Among the various methods developed, the addition of thiols to alkynes is the most convenient approach to synthesize vinyl sulfides.<sup>17</sup> Transition metals such as rhodium, palladium, actinides and lanthanides and nickel were proved to be efficient catalysts for this kind of reaction. This transformation has also been achieved under transition-metal-free conditions.<sup>18</sup> However, to the best of our knowledge, there were only a few methods developed to synthesize multi-substituted arylvinyl sulfides, especially to triarylvinyl sulfides.<sup>19</sup> Recently, we and others developed various methods for C-C bond formation using stable aromatic sodium sulfinates as any sources via extrusion of SO2.20 This strategy was successfully employed for trisubstituted alkene preparation using palladium as the catalyst.<sup>21</sup> We also developed the iodine-catalyzed regioselective sulfenylation or sulfonylation of indoles using sodium sulfinates as the sulfenylation or sulfonylation reagents.<sup>22</sup> In these reactions, aromatic sodium sulfinates can act as aryl sources and sulfonylation or sulfenylation reagents depending on the reaction conditions. Based on these observations, we envision that it might be possible to synthesize triarylvinyl sulfides in one pot using aromatic sodium sulfinates both as aryl sources and sulfenylation reagents. Herein, we describe an ironcatalyzed tetrasubstituted alkene formation from internal alkynes and two aromatic sodium sulfinates, affording various highly functionalized tetrasubstituted alkenyl sulfides in one pot (Scheme 1).



Scheme 1 Iron-catalyzed arylation and sulfenylation of alkynes.

<sup>&</sup>lt;sup>a</sup>Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China. E-mail: gjdeng@xtu.edu.cn; Fax: (+86)0731-5829-2251; Tel: (+86)0731-5829-8601 <sup>b</sup>Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China

<sup>†</sup>Electronic supplementary information (ESI) available. CCDC 988537 and 988538. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c4ob00816b

|       |                                      | $Ph-SO_2Na + Ph$ $\longrightarrow$ $Ph$ $\xrightarrow{Catalyst}$ $Ph-S$ $\xrightarrow{Ph}$ |          |                                     |                                |
|-------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------|--------------------------------|
|       |                                      | 1a 2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | 3a                                  |                                |
| Entry | Catalyst                             | Ligand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Additive | Solvent                             | $\operatorname{Yield}^{b}(\%)$ |
| 1     |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TFA-MsOH | 1,4-Dioxane–H <sub>2</sub> O        | 52                             |
| 2     | FeCl <sub>3</sub> ·3H <sub>2</sub> O | 1,8-naph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TFA-MsOH | 1,4-Dioxane–H <sub>2</sub> O        | 77                             |
| 3     | $Fe_2O_3$                            | 1,8-naph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TFA-MsOH | 1,4-Dioxane–H <sub>2</sub> O        | 63                             |
| 4     | $Fe(NO_3)_3$                         | 1,8-naph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TFA-MsOH | 1,4-Dioxane–H <sub>2</sub> O        | 69                             |
| 5     | $Fe_2(SO_4)_3$                       | 1,8-naph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TFA-MsOH | 1,4-Dioxane–H <sub>2</sub> O        | 73                             |
| 6     | FeCl <sub>2</sub>                    | 1,8-naph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TFA-MsOH | 1,4-Dioxane–H <sub>2</sub> O        | 65                             |
| 7     | $Fe(acac)_3$                         | 1,8-naph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TFA-MsOH | 1,4-Dioxane–H <sub>2</sub> O        | 80                             |
| 8     | FeSO <sub>4</sub> ·7H <sub>2</sub> O | 1,8-naph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TFA-MsOH | 1,4-Dioxane–H <sub>2</sub> O        | 90                             |
| 9     | FeSO <sub>4</sub> ·7H <sub>2</sub> O | DMAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TFA-MsOH | 1,4-Dioxane–H <sub>2</sub> O        | 59                             |
| 10    | FeSO <sub>4</sub> ·7H <sub>2</sub> O | Bipyridine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TFA-MsOH | 1,4-Dioxane–H <sub>2</sub> O        | 54                             |
| 11    | FeSO <sub>4</sub> ·7H <sub>2</sub> O | DABCO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TFA-MsOH | 1,4-Dioxane–H <sub>2</sub> O        | 68                             |
| 12    | FeSO <sub>4</sub> ·7H <sub>2</sub> O | 1,8-naph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TFA-MsOH | CH <sub>3</sub> CN-H <sub>2</sub> O | 73                             |
| 13    | FeSO <sub>4</sub> ·7H <sub>2</sub> O | 1,8-naph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TFA-MsOH | Anisole–H <sub>2</sub> O            | 55                             |
| 14    | FeSO <sub>4</sub> ·7H <sub>2</sub> O | 1,8-naph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TFA-MsOH | Diglyme $-H_2O$                     | 51                             |
| 15    | FeSO <sub>4</sub> ·7H <sub>2</sub> O | 1,8-naph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TFA-MsOH | DCE-H <sub>2</sub> O                | 74                             |
| 16    | FeSO <sub>4</sub> ·7H <sub>2</sub> O | 1,8-naph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TFA-MsOH | H <sub>2</sub> O                    | 61                             |
| 17    | FeSO <sub>4</sub> ·7H <sub>2</sub> O | 1,8-naph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 1,4-Dioxane–H <sub>2</sub> O        | Trace                          |

<sup>*a*</sup> Conditions: **1a** (0.8 mmol), **2a** (0.2 mmol), catalyst (1 mol%), ligand (2 mol%), TFA (0.2 mmol), MsOH (0.2 mmol), solvent (0.3 mL), H<sub>2</sub>O (0.1 mL), 120 °C, 24 h under argon unless otherwise noted, 1,8-naph = 1,8-naphthalenediamine. <sup>*b*</sup> GC yield based on **2a**.

In the first experiment we examined the reaction between sodium benzenesulfinate (1a) and diphenylethyne (2a) in 1,4dioxane-water (3:1) using trifluoroacetic acid and methanesulfonic acid as additives (Table 1). We were pleased to observe the desired product 3a in 52% yield without any metal-catalyst under argon at 120 °C (entry 1). Using FeCl<sub>3</sub>·3H<sub>2</sub>O/1,8naphthalenediamine (1,8-naph) as the catalyst, the yield of 3a could increase to 77% (entry 2). Furthermore, other iron salts were also investigated for this reaction under similar reaction conditions (entries 3-7). The best result was obtained using FeSO<sub>4</sub>·7H<sub>2</sub>O as the catalyst (entry 8). Replacing 1,8-naphthalenediamine with other nitrogen-containing ligands led to lower vields (entries 9-11). Solvents screening revealed that dioxanewater (3:1) was the most efficient reaction medium (entries 12-15). Notably, the desired product 3a could be obtained in 61% yield using water as the sole solvent (entry 16). The use of acidic additives is necessary for this kind of transformation, and only trace 3a was detected in their absence (entry 17). To get satisfactory reaction yield, four equivalents (0.8 mmol) of 1a were necessary.

With the optimized reaction conditions established, we explored the scope and generality of this transformation in the presence of various substituents in aromatic ring. Firstly, we investigated the reaction between aromatic alkynes and aryl-sulfinic acid sodium salts with the same substituents (Table 2). A slightly lower yield was obtained when a methyl group was presented at the *para* position, and the corresponding product **3b** was obtained in 72% yield (entry 2). Stronger electron-donating groups such as the methoxy group affected the reaction yield significantly (entry 4). Halogen functional groups such as fluoro and chloro were well tolerated under the

Table 2 Vinyl thioether formation from sodium sulfinates and alkynes with the same substituents  $^{\rm a}$ 

| A                                                 | rSO <sub>2</sub> Na +<br>1                                | Ar — — Ar<br>2                   | FeSO <sub>4</sub> / 1,8-<br>TFA / MsOF<br>dioxane / H <sub>2</sub><br>120 °C, 24 h, | nap Ar—s<br>1<br>20 Ai<br>Ar     | Ar<br>Ar<br>Ar                   |
|---------------------------------------------------|-----------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------|----------------------------------|----------------------------------|
| Entry                                             | Ar                                                        | Sodium sulf                      | inate Alkyr                                                                         | e Product                        | $\operatorname{Yield}^{b}(\%)$   |
| $     1^{c}     2^{c}     3     4     5     6   $ | Ph<br>4-Me–Ph<br>4-Et–Ph<br>4-MeO–Ph<br>4-F–Ph<br>4-Cl–Ph | 1a<br>1b<br>1c<br>1d<br>1e<br>1f | 2a<br>2b<br>2c<br>2d<br>2e<br>2f                                                    | 3a<br>3b<br>3c<br>3d<br>3e<br>3f | 78<br>72<br>50<br>48<br>70<br>60 |

<sup>*a*</sup> Conditions: 1 (0.8 mmol), 2 (0.2 mmol), FeSO<sub>4</sub>·7H<sub>2</sub>O (5 mol%), 1,8-naph (10 mol%), TFA (0.2 mmol), MsOH (0.2 mmol), 1,4-dioxane (0.3 mL), H<sub>2</sub>O (0.1 mL), 120 °C, 24 h under argon unless otherwise noted. <sup>*b*</sup> Isolated yield based on 2. <sup>*c*</sup> FeSO<sub>4</sub>·7H<sub>2</sub>O (1 mol%), 1,8-naph (2 mol%).

optimal reaction conditions, and the desired products **3e** and **3f** were obtained in 70% and 60% yield, respectively (entries 5 and 6).

Next, the formation of triarylvinyl sulfides with various substituents in sodium sulfinates and internal alkynes was explored in this reaction and the results are summarized in Table 3. The reactions with sulfinic acid sodium salts bearing electron-donating (entries 1–3) and electron-withdrawing substituents (entries 4 and 6) at the aromatic ring proceeded smoothly to give the desired products in moderate to good yields. Common functional groups, including fluoro

 Table 3
 Vinyl thioether formation from sodium sulfinates and alkynes<sup>a</sup>

| ArSO<br>1      | <sub>2</sub> Na + R — R         | FeSO <sub>4</sub> / 1,8-nap<br>TFA / MsOH<br>dioxane / H <sub>2</sub> O<br>120 °C, 24 h, Ar | Ar S Ar +                   | $ \begin{array}{c} Ar \\ S \\ R \\ Ar \\ Ar \\ 4 \end{array} $ |
|----------------|---------------------------------|---------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------|
| Entry          | Sodium sulfinate 1              | Alkyne 2                                                                                    | Product                     | Yield <sup>b</sup> (%)                                         |
|                | Ar =                            | R =                                                                                         |                             |                                                                |
| $1^c$          | 4-Me–Ph 1b                      | Ph <b>2a</b>                                                                                | 3g + 4g                     | 74(1.2:1)                                                      |
| 2              | 4-Isopropyl-Ph 1g               | Ph <b>2a</b>                                                                                | 3h + 4h                     | 50(1.2:1)                                                      |
| 3              | 4-MeO-Ph 1d                     | Ph <b>2a</b>                                                                                | 3i + 4i                     | 67 (1:1)                                                       |
| $4^c$          | 4-CF <sub>3</sub> -Ph <b>1h</b> | 4-Me-Ph 2b                                                                                  | 3j + 4j                     | 62(1:1)                                                        |
| 5              | 4-OCF <sub>3</sub> -Ph 1i       | 4-Me-Ph 2b                                                                                  | 3k + 4k                     | 70 (1:1)                                                       |
| 6              | 4-F-Ph 1e                       | 4-Me-Ph 2b                                                                                  | 3l + 4l                     | 68(1:1)                                                        |
| 7 <sup>c</sup> | 4-Cl-Ph 1f                      | 4-Me-Ph 2b                                                                                  | 3m + 4m                     | 70 (1:1)                                                       |
| 8 <sup>c</sup> | 4-Br–Ph <b>1j</b>               | 4-Me-Ph 2b                                                                                  | 3n + 4n                     | 72(1:1)                                                        |
| 9              | 4-CN-Ph 1k                      | Ph <b>2a</b>                                                                                | <b>30 + 40</b>              | 65(1:1)                                                        |
| 10             | Ph <b>1a</b>                    | 4-Me-Ph 2b                                                                                  | 3p + 4p                     | 71 (1:1)                                                       |
| 11             | Ph <b>1a</b>                    | 4-Ethyl-Ph 20                                                                               | $3\mathbf{q} + 4\mathbf{q}$ | 73 (1:1.1)                                                     |
| 12             | Ph <b>1a</b>                    | 4-MeO-Ph 2                                                                                  | d $3r + 4r$                 | 68(1:1)                                                        |
| 13             | 4-Me–Ph 1b                      | 4-F–Ph 2e                                                                                   | 3s + 4s                     | 72(1:1)                                                        |
| 14             | 4-Me–Ph 1b                      | 4-Cl–Ph 2f                                                                                  | 3t + 4t                     | 78(1:1)                                                        |
| 15             | 4-Me–Ph 1b                      | 2-Thienyl 2g                                                                                | 3u + 4u                     | 51 (1:1.5)                                                     |
| 16             | Ph <b>1a</b>                    | <i>n</i> -Propyl <b>2h</b>                                                                  | $3\mathbf{v} + 4\mathbf{v}$ | 20(1:1)                                                        |
|                |                                 |                                                                                             |                             |                                                                |

<sup>*a*</sup> Conditions: 1 (0.8 mmol), 2 (0.2 mmol),  $FeSO_4 \cdot 7H_2O$  (5 mol%), 1,8-naph (10 mol%), TFA (0.2 mmol), MsOH (0.2 mmol), 1,4-dioxane (0.3 mL), H<sub>2</sub>O (0.1 mL), 120 °C, 24 h under argon unless otherwise noted. <sup>*b*</sup> Isolated yield based on 2, ratios were determined by NMR. <sup>*c*</sup> FeSO<sub>4</sub> \cdot 7H<sub>2</sub>O (1 mol%), 1,8-naph (2 mol%).

(entries 4–6, 13), chloro (entries 7 and 14) and bromo (entry 8) were all compatible with this catalytic reaction. Sodium sulfinates with strong electron-withdrawing groups such as cyano also smoothly coupled with 2a, and gave 3o and 4o in 65% yield (entry 9). It is noteworthy that hetero 1,2-di(thiophen-2-yl)ethyne (2g) also participated in the reaction to afford the corresponding products 3u and 4u in 51% total yield (entry 15). In addition, the reaction of 1a with aliphatic alkyne oct-4-yne 2h afforded the desired product in 20% yield (entry 16). In most cases, a mixture of two isomers (near 1:1 ratio) was obtained which is difficult to separate. Isomer 3r was successfully separated from 4r, and the structure of 3r is confirmed by X-ray crystallography (Fig. 1). The exact reaction mechanism is not clear at this stage since it is hard to trap some key intermediates during the reaction process.<sup>23</sup>

Independently, Takei and co-workers showed that alkenyl and aryl sulfides can be coupled with Grignard reagents in the



Fig. 1 X-ray structure of 3r.



presence of  $[NiCl_2(PPh_3)_2]$  catalyst (3 mol%).<sup>24</sup> When phenyl-(1,2,2-triphenylvinyl)sulfane **3a** was treated with phenylmagnesium bromide, the desired product was obtained in 65% isolated yield (Scheme 2).

In summary, we have developed an iron-catalyzed addition of aromatic sodium sulfinates to internal alkynes. Aromatic sodium sulfinates acted both as aryl sources and sulfenylation reagents. The C–C and C–S bond forming reactions were realized in one pot using iron as an environmentally benign catalyst. Acid was found to be crucial for the formation of tetrasubstituted alkenes. Although the stereoselectivity is not satisfactory at this stage, this novel process can provide an efficient approach to triarylvinyl sulfides. The mechanism, selectivity and synthetic application of this transformation are under investigation.

## Acknowledgements

This work was supported by the National Natural Science Foundation of China (21172185, 21372187), the Hunan Provincial Natural Science Foundation of China (11JJ1003, 12JJ7002), the New Century Excellent Talents in University from Ministry of Education of China (NCET-11-0974), and the Hunan Provincial Innovative Foundation for Postgraduate (CX2013B269).

## Notes and references

- (a) G. Likhtenshtein, Stilbenes: Applications in Chemistry, Life Sciences and Materials Science, Wiley-VCH, Weinheim, 2010; (b) H. G. Richey, in The Chemistry of Alkenes, ed. J. Zabichy, Wiley, NY, 1970, vol. 2, pp. 39–114.
- 2 For reviews, see: (a) S. E. Kelly, Alkene Synthesis, in Comprehensive Organic Synthesis, ed. B. M. Trost and I. Fleming, Pergamon Press, Oxford, 1991, vol. 1, pp. 729-817;
  (b) J. M. J. Williams, Preparation of Alkenes: A Practical Approach, Oxford University Press, Oxford, UK, 1996, pp. 19–93;
  (c) Topic in Current Chemistry: Stereoselective Alkene Synthesis, ed. J. B. Wang, Springer, Heidelberg, 2012.
- 3 (a) A. S. Levenson and V. C. Jordan, *Eur. J. Cancer*, 1999, 35, 1628; (b) N. F. McKinley and D. F. O'Shea, *J. Org. Chem.*, 2006, 71, 9552; (c) M. Wadman, *Nature*, 2006, 440, 277.
- 4 (a) M. R. Elliott, A. L. Dhimane and M. Malacria, *J. Am. Chem. Soc.*, 1997, **119**, 3427; (b) G. A. Molander and D. J. Jean Jr., *J. Org. Chem.*, 2002, **67**, 3861; (c) R. B. Williams, A. Norris, C. Slebodnick, J. Merola, J. S. Miller, R. Andriantsiferana, V. E. Rasamison and D. G. Kingston, *J. Nat. Prod.*, 2005, **68**, 1371.

- 5 (a) W. Tang, S. Wu and X. Zhang, J. Am. Chem. Soc., 2003, 125, 9570; (b) C. Dobler, G. M. Mehltretter, U. Sundermeier and M. Beller, J. Am. Chem. Soc., 2000, 122, 10289; (c) J. Waser, B. Gaspar, H. Nambu and E. M. Carreira, J. Am. Chem. Soc., 2006, 128, 11693.
- 6 (a) A. B. Flynn and W. W. Ogilvie, *Chem. Rev.*, 2007, 107, 4698; (b) M. Mori, *Eur. J. Org. Chem.*, 2007, 4981.
- 7 (a) M. Ephritikhine, *Chem. Commun.*, 1998, 2549;
  (b) A. Detsi, M. Koufaki and T. Calogeropoulou, *J. Org. Chem.*, 2002, 67, 4608; (c) S. Sabelle, J. Hydrio, E. Leclerc, C. Mioslowshi and P. Y. Renard, *Tetrahedron Lett.*, 2002, 43, 3645.
- 8 For a representative review for Wittig olefination, see:
  (a) B. E. Maryanoff and A. B. Reitz, *Chem. Rev.*, 1989, 89, 863. For a recent example, see: (b) S. Ou, C. Cao, M. Jiang and J. T. Liu, *Eur. J. Org. Chem.*, 2013, 6510.
- 9 (a) R. H. Grubbs, *Handbook of Metathesis*, Wiley-VCH, Weinheim, 2003; (b) S. M. Paek, *Molecules*, 2012, 17, 3348.
- 10 (a) C. Zhou, D. Emrich and R. C. Larock, Org. Lett., 2003, 5, 1579; (b) C. X. Zhou and R. C. Larock, J. Org. Chem., 2005, 70, 3765; (c) D. Tsvelikhovsky and J. Blum, Eur. J. Org. Chem., 2008, 2417; (d) K. Sajna, V. Srinivas and K. Swarny, Adv. Synth. Catal., 2010, 352, 3069.
- 11 For selected examples, see: (a) H. Tsuji, Y. Ueda, L. Llies and E. Nakamura, *J. Am. Chem. Soc.*, 2010, 132, 11854;
  (b) A. Unsinn, C. Dunst and P. Knochel, *Beilstein J. Org. Chem.*, 2012, 8, 2202;
  (c) L. Tietze, T. Hungerland, A. Düfert, I. Objartd and D. Stalke, *Chem. Eur. J.*, 2012, 18, 3286.
- 12 For selected examples, see: (a) E. Negishi, Y. Zhang, F. E. Cederbaum and M. B. Webb, J. Org. Chem., 1986, 51, 4080; (b) M. Hojo, Y. Murakami, H. Aihara, R. Sakuragi, Y. Baba and A. Hosomi, Angew. Chem., Int. Ed., 2001, 40, 621; (c) K. Itami, T. Kamei and J. I. Yoshida, J. Am. Chem. Soc., 2003, 125, 14670; (d) T. Nishikawa, H. Yorimitsu and K. Oshima, Synlett, 2004, 1573; (e) R. Alfaro, A. Parra, J. Alemán, J. L. García Ruano and M. Tortosa, J. Am. Chem. Soc., 2012, 134, 15165; (f) W. You, Y. Li and M. K. Brown, Org. Lett., 2013, 15, 1610.
- 13 A. J. Walkinshaw, W. Xu, M. G. Suero and M. J. Gaunt, J. Am. Chem. Soc., 2013, 135, 12532.
- 14 M. G. Suero, E. D. Bayle, B. S. L. Collins and M. J. Gaunt, J. Am. Chem. Soc., 2013, 135, 5332.
- (a) P. Page, Organosulfur Chemistry: Synthetic and Stereochemical Aspects, Academic Press, Inc., San Diego, 1998;
  (b) P. Johannesson, G. Lindeberg, A. Johansson, G. V. Nikiforovich, A. Gogoll, B. Synnergren, M. LeGrèves, F. Nyberg, A. Karlén and A. Hallberg, J. Med. Chem., 2002, 45, 1767; (c) S. R. Dubbaka and P. Vogel, Angew. Chem., Int. Ed., 2005, 44, 7674.
- 16 For reviews on C–S bond cleavage and transformation, see:
  (a) L. Wang, W. He and Z. K. Yu, *Chem. Soc. Rev.*, 2013, 42, 599;
  (b) S. G. Modha, V. P. Mehta and E. V. Van der Eycken, *Chem. Soc. Rev.*, 2013, 42, 5042.
- 17 For selected examples, see: (a) C. Cao, L. R. Fraser and J. A. Love, J. Am. Chem. Soc., 2005, 127, 17614;

(b) A. D. Giuseppe, R. Castarlenas, J. J. Pérez-Torrente,
M. Crucianelli, V. Polo, R. Sancho, F. J. Lahoz and
L. A. Oro, *J. Am. Chem. Soc.*, 2012, 134, 8171; (c) A. Ogawa,
T. Ikeda, K. Kimura and T. Hirao, *J. Am. Chem. Soc.*, 1999,
121, 5108; (d) C. J. Weiss, S. D. Wobser and T. J. Marks, *J. Am. Chem. Soc.*, 2009, 131, 2062; (e) C. J. Weiss,
S. D. Wobser and T. J. Marks, *Organometallics*, 2010, 29, 6308.

- 18 For selected examples, see: (a) W. E. Truce, J. A. Simms and M. M. Boudakian, J. Am. Chem. Soc., 1956, 78, 695; (b) A. Kondoh, K. Takami, H. Yorimitsu and K. Oshima, J. Org. Chem., 2005, 70, 6468; (c) V. X. Truong and A. P. Dove, Angew. Chem., Int. Ed., 2013, 52, 4132; (d) Y. Liao, S. Chen, P. Jiang, H. Qi and G. J. Deng, Eur. J. Org. Chem., 2013, 6878.
- 19 (a) K. Fugami, M. Kosugi, M. Morishita, H. Oda and H. Sano, *Chem. Lett.*, 1996, 9, 811; (b) A. Annunziata, C. Galli, P. Gentili, A. Guarnieri, M. BeitYannai and Z. Rappoport, *Eur. J. Org. Chem.*, 2002, 2136; (c) L. Carpino and H. W. Chen, *J. Am. Chem. Soc.*, 1979, 101, 390.
- 20 For recent selected examples, see: (a) X. Zhou, J. Luo, J. Liu, S. Peng and G. J. Deng, Org. Lett., 2011, 13, 1432; (b) G. Wang and T. Miao, Chem. - Eur. J., 2011, 17, 5787; (c) J. Liu, X. Zhou, H. Rao, F. Xiao, C. J. Li and G. J. Deng, Chem. - Eur. J., 2011, 17, 7996; (d) T. Miao and G. Wang, Chem. Commun., 2011, 47, 9501; (e) M. Behrends, J. Sävmarker, P. Sjöberg and M. Larhed, ACS Catal., 2011, 1, 1455; (f) H. Yao, L. Yang, Q. Shuai and C. J. Li, Adv. Synth. Catal., 2011, 353, 1701; (g) H. Wang, Y. Li, R. Zhang, K. Jin, D. Zhao and C. Y. Duan, J. Org. Chem., 2012, 77, 4849; (h) M. Wu, J. Luo, F. Xiao, S. Zhang, G. J. Deng and H. A. Luo, Adv. Synth. Catal., 2012, 354, 335; (i) B. Liu, Q. Guo, Y. Cheng, J. Lan and J. S. You, Chem. - Eur. J., 2011, 17, 13415; (j) F. Zhao, Q. Tan, F. H. Xiao, S. F. Zhang and G. J. Deng, Org. Lett., 2013, 15, 1520; (k) C. M. R. Volla and P. Vogel, Angew. Chem., Int. Ed., 2008, 47, 1305; (l) C. M. R. Volla, D. Marković, S. R. Dubbaka and P. Vogel, Eur. J. Org. Chem., 2009, 6281.
- 21 S. Liu, Y. Bai, X. Cao, F. Xiao and G. J. Deng, *Chem. Commun.*, 2013, **49**, 7501.
- 22 (a) F. Xiao, H. Chen, H. Xie, S. Chen, L. Yang and G. J. Deng, *Org. Lett.*, 2014, 16, 50; (b) F. Xiao, H. Xie, S. Liu and G. J. Deng, *Adv. Synth. Catal.*, 2014, 356, 364.
- 23 Treatment of (1,2-diphenylvinyl)(phenyl)sulfane or ethene-1,1,2-triyltribenzene which is thought to be the possible intermediate with the standard reaction conditions did not lead to the final desired product **3a**. Addition of 1.5 equiv. of TEMPO (2,2,6,6-tetramethylpiperidinooxy) completely inhibited the reaction. Based on these observations, we guess it might be a concerted radical reaction, and the arylation and sulfenylation reaction occur at the same time.
- 24 (a) S. R. Dubbaka and P. Vogel, Angew. Chem., Int. Ed., 2005, 44, 7674; (b) H. Okamura, Y. Mitsuhira, M. Miura and H. Takei, Chem. Lett., 1978, 517; (c) H. Okamura, Y. Mitsuhira, M. Miura and H. Takei, Tetrahedron Lett., 1979, 20, 43.