A new *nido*-5-vertex cluster, phosphacarba-*nido*-pentaborane, 2-^tBu-1,2-PCB₃H₅[†]

Peter N. Condick,^a Mark A. Fox,^b Robert Greatrex,^{*a} Cameron Jones^c and Daniel L. Ormsby^a

^a Department of Chemistry, University of Leeds, Leeds, UK LS2 9JT. E-mail: R.Greatrex@chem.leeds.ac.uk ^b Chemistry Department, Durham University Science Laboratories, South Road, Durham, UK DH1 3LE ^c Chemistry Department, Cardiff University, P.O. Box 912, Cardiff, UK CF10 3TB

Received (in Cambridge, UK) 7th May 2002, Accepted 5th June 2002 First published as an Advance Article on the web 14th June 2002

The gas-phase reaction of the phosphaalkyne $P=C^tBu$ with tetraborane(10), B_4H_{10} , yields the *nido* five-vertex phosphacarbaborane cluster compound 2-tBu-1,2-PCB₃H₅ 2 with an unusual ³¹P NMR peak shift of -500.5 ppm.

Syntheses of main-group heteroboranes¹ have been dominated by carbaboranes² for decades but recently there has been intense research on heteroboranes with phosphorus,³ nitrogen⁴ and silicon⁵ cluster atoms. A naked P vertex is isolobal with a CH vertex so phosphaboranes and phosphacarbaboranes are structural analogues of the corresponding carbaboranes. A classic route into carbaborane chemistry involves the insertion of the two unsaturated carbon atoms of an alkyne into a boron cluster. For example tetraborane, B_4H_{10} , reacts with ethyne to yield 1,2-C₂B₃H₇,⁶ the only heteroborane with a *nido*-5-vertex geometry reported prior to the work reported here.⁷

$$B_4H_{10} + HC \equiv CH \rightarrow 1, 2 - C_2B_3H_7 \mathbf{1}$$
 (1)

Phosphaalkynes, such as $P=C^{t}Bu$, show similar chemical behaviour to alkynes in a wide variety of their reactions.⁸ Here we report the reaction of $P=C^{t}Bu$ with $B_{4}H_{10}$ to form the novel phosphacarbaborane 2-tBu-1,2-PCB₃H₅ **2**, the second known heteroborane with a *nido*-5-vertex geometry.

$$B_4H_{10} + P \equiv C^tBu \rightarrow 2^{-t}Bu^{-1}, 2^{-P}CB_3H_5 \mathbf{2}$$
(2)

In a typical experiment, a mixture of B_4H_{10} (0.37 mmol) and $P \equiv C^tBu$ (0.37 mmol) was expanded into a 1 L bulb held at 70 °C, and the gaseous reaction mixture monitored continuously by mass spectrometric techniques described earlier.⁹ After *ca.* 18 min, when all the phosphaalkyne (*m*/*z* 100) had reacted, the contents of the bulb were condensed into a U-trap at -196 °C. The contents of the trap were then warmed slowly, and separated on a cold column. The fractions were monitored by mass spectrometry, and the fraction leaving the column over the temperature range -57 to -35 °C with a cut-off at *m*/*z* 138 consisted of a pure sample of 2-tBu-1,2-PCB₃H₅ **2** (0.06 mmol, 15%).

[†] Electronic supplementary information (ESI) available: rotatable 3-D molecular structure diagrams of MP2-optimised geometries for 2-^tBu-1,2-PCB₃H₅ **2**, 1-^tBu-2,1-PCB₃H₅ and P₄ in CHIME format. See http:// www.rsc.org/suppdata/cc/b2/b204409a/

Compound 2 decomposes on exposure to air and at room temperature in the liquid phase but is stable in the gas phase and in solution. The accurate ion mass spectrum of 2 is consistent with a formulation of PB₃C₅H₁₄ (observed 138.1103, calculated for $PB_3C_5H_{14}$ 138.1112). The ¹H NMR spectrum of **2** has a single peak corresponding to the tert-butyl group. The borondecoupled ¹H spectrum showed three additional peaks assigned to hydrogens attached to boron. Line-narrowed boron NMR spectra for 2 are shown in Fig. 1; the proton-decoupled ¹¹B spectrum comprises two doublets of intensity ratio 2:1. The splittings are attributed to coupling to phosphorus, and their magnitudes indicate that all borons are directly bonded to the phosphorus atom. The only nido-geometry that fits these NMR observations is 2-tBu-1,2-PCB₃H₅. The un-decoupled ¹¹B spectrum (Fig. 1) shows the peak patterns expected from couplings of the boron atoms with the phosphorus atom and their exo- and bridging hydrogens.

Of the NMR data obtained for **2**, the most interesting observation is the very high field ³¹P NMR shift, -501 ppm. White phosphorus P₄ is usually taken to be the high field limit in ³¹P NMR spectroscopy (-488 ppm in CS₂ solution).¹⁰ As far as we are aware the shift observed for **2** is the most negative value found in solution-state ³¹P NMR spectroscopy. Shifts corresponding to the apical atom in the related *nido*-compounds **1** ($\delta_{\rm C}$ -21.5 ppm), the borane B₅H₉ **3** ($\delta_{\rm B}$ -52.6 ppm), the carbocations Me₂C₅H₃⁺ **4** ($\delta_{\rm C}$ -23.0 ppm)¹¹ and Me₃C₅H₂⁺ **5** ($\delta_{\rm C}$ -20.9 ppm)¹² are typically to high field. The high value observed for 2-tBu-1,2-PCB₃H₅ is therefore not unexpected.

Excellent agreements have been demonstrated between experimental and theoretical geometries for $1,2-C_2B_3H_7$ and

Fig. 1 Line-narrowed ¹¹B and ¹¹B{¹H} NMR spectra of 2-¹Bu-1,2-PCB₃H₅ **2**, ¹¹B NMR data for **2**: -8.1 (ddd, J_{BH_1} 167, $J_{BH_{\mu}}$ *ca*. 44, J_{BP} 24 Hz), -19.4 (dtd, J_{BH_1} 162, $J_{BH_{\mu}}$ *ca*. 48, J_{BP} 35 Hz).

10.1039/b204409a

ЫÖ

Fig. 2 MP2/6-31G* optimised geometry of 2-'Bu-1,2-PCB₃H₅ **2**. Selected bond lengths (Å), P1–C2 2.04, P1–B3/5 1.99, P1–B4 1.93, C2–B3 1.54, B3–B4 1.87.

 $B_5H_9.^{9,13,14}$ Fig. 2 shows the MP2/6-31G* (Gaussian98¹⁵) optimised geometry of 2-^tBu-1,2-PCB₃H₅ with the expected square pyramidal *nido*-cluster; selected bond lengths are given. The structural dimensions and bond angles associated with the open face are virtually identical to those obtained for 1,2-C₂B₃H₇, both computationally (optimisations at the MP2/6-31G* level of theory) and from gas-phase electron diffraction studies.⁹ The alternative isomer, 1-^tBu-2,1-PCB₃H₅, is computed to be only *ca* 2.3 kcal mol⁻¹ higher in energy compared to **2**. It is therefore possible that this species is formed in the reaction reported here, but is not isolated experimentally.

Calculated shifts for MP2- (or DFT-) optimised geometries of the four known *nido*-5-vertex compounds $(1, 3-5)^{16}$ and larger phosphacarbaboranes^{3,17} have so far resulted in good agreement with their observed NMR shifts. Comparison between experimental and theoretical¹⁵ (GIAO-B3LYP/6-311G*//MP2/ 6-31G*) ¹¹B, ¹H and ³¹P NMR chemical shifts listed in Table 1 for 2-¹Bu-1,2-PCB₃H₅ **2** show excellent agreement. At the same levels of theory, P₄ has a calculated peak shift of -539 ppm, which differs from the calculated ³¹P shift for **2** by only 17 ppm.

Table 1 Observed and calculated $^{11}B,\,^{1}H$ and ^{31}P NMR chemical shifts for 2-tBu-1,2-PCB_3H_5

	Observed	Calculated
¹¹ B		
B3,5	-8.1	-11.6
B4	-19.4	-22.0
$^{1}\mathrm{H}$		
B(3,5)H	2.89	3.03
B(4)H	2.28	2.72
Me	1.00	1.11
μ-Η	-2.88	-2.83
³¹ P		
P1	-501	-522

The phosphaalkyne reaction described here is the only known direct route to a phosphacarbaborane from a borane cluster. The reaction of PCl₃ with a *nido-* or *arachno*-carbaborane cluster usually generates a phosphacarbaborane with a naked vertex whereas, with RPCl₂, a phosphacarbaborane with an RP vertex is produced.^{3,18} As reactions of boranes and carbaboranes with alkynes often produce carbaboranes,² the parallel reactions of these boranes and carbaboranes. Interestingly, however, the reactions between the borane adducts B₁₀H₁₂L₂ (L = SMe₂, NCMe) and P=C^tBu do not yield phosphacarbaboranes.¹⁹

We thank the EPSRC for providing an Advanced Research Fellowship to M. A. F., and Quota Awards to P. N. C. and D. L. O.

Notes and references

1 For references and reviews of main group heteroboranes, see: L. J. Todd in *Comprehensive Organometallic Chemistry*, ed., G. Wilkinson, F. G. A. Stone and E. Abel, Pergamon, New York, 1982, vol. 1, pp. 543–553; *Comprehensive Organometallic Chemistry II*, ed. E. W. Abel, F. G. A. Stone and G. Wilkinson, Pergamon, New York, 1995, vol. 1, pp. 257–273; A. K. Saxena, J. A. Maguire and N. S. Hosmane, *Chem. Rev.*, 1997, **97**, 2421.

- 2 For references and reviews of carbaboranes, see: R. N. Grimes, *Carboranes*, Academic Press, New York, 1970; *Gmelin Handbook of Inorganic Chemistry*, Springer-Verlag, Berlin, FRG, 1974, Borverbindungen 2, pp. 1–288; 1975, Borverbindungen 6, pp. 69–127; 1977, Borverbindungen 11; 1977, Borverbindungen 12; T. Onak, Boron *Compounds*, 1980, 1st suppl. vol. 3, pp. 206–247; T. Onak, Boron *Compounds*, 1982, 2nd suppl. vol. 2, pp. 277–324; T. Onak, Boron *Compounds*, 1988, 3rd suppl. vol. 4, pp. 153–254; T. Onak, Boron *Compounds*, 1993, 4th suppl. vol. 4, pp. 178–321; T. Onak, Boron *Comprehensive Organometallic Chemistry*, ed. G. Wilkinson, F. G. A. Stone and E. W. Abel, Pergamon, New York, 1982, vol. 1, pp. 411–457; *Comprehensive Organometallic Chemistry II*, ed. E. W. Abel, F. G. A. Stone and G. Wilkinson, Pergamon, New York, 1995, vol. 1, pp. 217–255; B. Štíbr, *Chem. Rev.*, 1992, **92**, 225.
- 3 T. Jelínek, D. Hynk, J. Holub and B. Štíbr, *Inorg. Chem.*, 2001, 40, 4512; J. Holub, T. Jelínek, D. Hynk, Z. Plzák, I. Císarová, M. Bakardjiev and B. Štíbr, *Chem. Eur. J.*, 2001, 7, 1546; J. Holub, D. L. Ormsby, J. D. Kennedy, R. Greatrex and B. Štíbr, *Inorg. Chem. Commun.*, 2000, 3, 178; D. Hong, S. E. Rathmill, D. E. Kadlecek and L. G. Sneddon, *Inorg. Chem.*, 2000, 39, 4996; A. M. Shedlow and L. G. Sneddon, *Inorg. Chem.*, 1998, 37, 5269; W. Keller, B. A. Barnum, J. W. Bausch and L. G. Sneddon, *Inorg. Chem.*, 1998, 37, 5269; M. Keller, State and L. G. Sneddon, *Inorg. Chem.*, 1998, 37, 5058.
- 4 P. Paetzold, U. Englert, H. P. Hansen, F. Meyer and E. Leuschner, Z. Anorg. Allg. Chem., 2001, 627, 498; P. Paetzold, Eur. J. Inorg. Chem., 1998, 2, 143; U. Dörfler, D. L. Ormsby, R. Greatrex and J. D. Kennedy, Inorg. Chim. Acta., 2000, 304, 268.
- 5 L. Wesemann, M. Trinkaus, Y. Ramjoie, B. Ganter, U. Englert and J. Müller, Eur. J. Inorg. Chem., 2000, 4, 735.
- 6 D. A. Franz and R. N. Grimes, J. Am. Chem. Soc., 1970, 92, 1438; D. A. Franz, V. R. Miller and R. N. Grimes, J. Am. Chem. Soc., 1972, 94, 412.
- 7 R. E. Williams, *Inorg. Chem.*, 1971, 10, 210; R. E. Williams, *Adv. Inorg. Chem. Radiochem.*, 1976, 18, 66; K. Wade, *Chem. Commun.*, 1971, 792; K. Wade, *Adv. Inorg. Chem. Radiochem.*, 1976, 18, 1.
- 8 M. Regitz and P. Binger, Angew. Chem., Int. Ed. Engl., 1988, 27, 1484.
- 9 M. A. Fox, R. Greatrex, A. Nikrahi, P. T. Brain, M. J. Picton, D. W. H. Rankin, H. E. Robertson, M. Buhl, L. Li and R. A. Beaudet, *Inorg. Chem.*, 1998, **37**, 2166.
- 10 M. Kaupp, C. Aubauer, G. Engelhardt, T. M. Klapotke and O. L. Malkina, J. Chem. Phys., 1999, 110, 3897.
- 11 S. Masamune, M. Sakai, H. Ona and A. V. Kemp-Jones, J. Am. Chem. Soc., 1972, 94, 8956.
- 12 V. I. Minkin, N. S. Zefirov, M. S. Korobov, N. V. Averina, A. M. Boganov and L. E. Nivorozhkin, *Zh. Org. Khim.*, 1981, **17**, 2616.
- 13 P. v. R. Schleyer, J. Gauss, M. Bühl, R. Greatrex and M. A. Fox, J. Chem. Soc., Chem. Commun., 1993, 1766.
- 14 R. Greatrex, N. N. Greenwood, D. W. H. Rankin and H. E. Robertson, *Polyhedron*, 1987, **6**, 1849; M. Bühl and P. v. R. Schleyer, *J. Am. Chem. Soc.*, 1992, **114**, 477.
- 15 Gaussian 98, Revision A.9, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1998.
- 16 G. K. S. Prakash, G. Rasul and G. A. Olah, J. Phys. Chem. A, 1998, 102, 2579.
- 17 D. L. Ormsby, J. D. Kennedy, R. Greatrex and B. Štíbr, J. Organomet. Chem., 2000, 614–615, 61.
- J. L. Little, J. T. Moran and L. J. Todd, J. Am. Chem. Soc., 1967, 89, 5495; L. J. Todd, J. L. Little and H. T. Silverstein, *Inorg. Chem.*, 1969, 8, 1698; N. S. Hosmane, K. J. Lu, A. H. Cowley and M. A. Mordones, *Inorg. Chem.*, 1991, 30, 1325.
- 19 F. Meyer, P. Paetzold and U. Englert, *Chem. Ber.*, 1994, **127**, 93; R. W. Miller and J. T. Spencer, *Polyhedron*, 1996, **15**, 3151; R. W. Miller and J. T. Spencer, *Organometallics*, 1996, **15**, 4293.