INTRAMOLEKULARE [2+2]-CYCLOADDITIONEN VON γ-OXOKETENEN¹⁾ Joachim Hegmann und Manfred Christl*

Institut für Organische Chemie der Universität, Am Hubland, D-8700 Würzburg
Karl Peters, Eva-Maria Peters und Hans Georg von Schnering
Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, D-7000 Stuttgart
BR Deutschland

Summary: The γ -oxoketenes, which are accessible from methyl 1,3,4-oxadiazin-6-one-2-carboxy-Tate 1 and cycloalkenes, are shown to undergo an intramolecular [2+2] cycloaddition either on heating or on photolysis to give different stereoisomers of β -lactones of the 3-oxo-2-oxabicyclo[2.2.0]hexane-type.

Bereits 1908 beobachtete Staudinger den ersten Fall der Bildung eines ß-Lactons aus einem Keten und einer Carbonylverbindung²⁾. Über erste intramolekulare [2+2]-Cycloadditionen dieses Typs berichteten kürzlich Brady und Giang³⁾, die von o-Acylphenoxyessigsäuren abgeleitete 6-Oxoketene freisetzten und Benzofurane isolierten, welche durch Eliminierung von Kohlendioxid aus den intermediären ß-Lactonen hervorgehen. Wie wir ab 1981 fanden, entstehen γ -Oxoketene aus 1,3,4-Oxadiazin-6-onen und Olefinen⁴⁾. Die aus dem 5-Phenyloxadiazinoncarbonsäureester 1 resultierenden γ -Oxoketene bezeichneten wir als haltbar^{4d},e). Es stellte sich jetzt heraus, daß diese Verbindungen 3 beim Rückflußkochen in Tetrachlormethan (durch basisches $\mathrm{Al}_2\mathrm{O}_3$, Akt.-Stufe I, filtriert) in einer intramolekularen [2+2]-Cycloaddition in die ß-Lactone 4a-f umgewandelt werden. Schema 1 und Tabelle 1 informieren über Reaktionsbedingungen, Ausbeuten und Schmelzpunkte.

Schema 1

Ph Cycloolefin
$$CC1_4$$
, 80 °C $CC1_4$, 80 °C $CC1_$

Tabelle 1. Reaktionszeiten der Umsetzungen des Oxadiazinons 1 mit Cycloolefinen sowie Ausbeuten und Schmelzpunkte der B-Lactone 4a-f (vgl. Schema 1)

Cycloolefin	t ₁ (h)	t ₂ (h)	ß-Lacton ⁵⁾	Ausb.(%)	Schmp.(°C)
Cycloocten	6	120	4 a	61	86- 87
Cyclopentadien	0.7	168	4b	34	Öl
Furan	3	36	4 c	18	108-109
Norbornen ^{a)}	2	432	4d b)	21	89- 90
Norbornadien ^{a)}	2	408	4e b)	24	128-129
Bicyclo[4.2.0] octa-2,4-dien ^C		120	4f	60	112-113

a) Das $_{\gamma}$ -Oxoketen wurde in Form von Kristallen isoliert, Schmp. 103-105 °C (**3d**), 85-87 °C (**3e**). b) Neben dem ß-Lacton wurde ein Ringerweiterungsprodukt isoliert, vgl. nachfolgende Arbeit. c) Gemisch mit 1,3,5-Cyclooctatrien.

Der Fortgang aller Reaktionen wurde mit Hilfe der IR-Spektroskopie überwacht. Bei den Umsetzungen von 1 mit Cycloolefinen zeigte sich, daß gleichzeitig mit der Abnahme der Intensität der Banden von 1 jeweils die der γ -Oxoketene 3 <u>und</u> die der β -Lactone 4a-f auftauchten. Nach vollständigem Verbrauch von 1, was bei 80 °C mit Ausnahme der Reaktion von Furan höchstens einige <u>Stunden</u> dauerte, lag ein Gemisch aus 3 und 4a-f vor (Verhältnis im Falle von Norbornen 10:1), und es bedurfte dann einer Reihe von <u>Tagen</u> (siehe Tabelle 1), bis jeweils alles 3 in 4a-f übergegangen war. Cyclopentadien, Norbornen und Norbornadien addierten 1 schon bei 20 °C, und wir beobachteten auch hier unmittelbar die Bildung kleiner Mengen an 4b,d bzw. e neben 3b,d bzw. e.

Weil also die ersten Portionen von 4a-f schneller entstehen als sich die γ -Oxoketene 3 in 4a-f umwandeln, muß es einen Weg zu 4a-f geben, der nicht über 3 führt. In Übereinstimmung mit unserer früheren Hypothese $^{4c-e)}$ nehmen wir an, daß nach der Diels-Alder-Reaktion von 1 und der Eliminierung von Stickstoff aus dem Primäraddukt das Dihydropyryliumolat 2 vorliegt. Dieses schnürt entweder die Vierringe zu 4a-f ab (Nebenreaktion) oder öffnet den Heterocyclus zu 3 (Hauptreaktion). Der letztere Schritt sollte mit sehr langsamer Rückreaktion reversibel sein, was den Übergang von 3 in 4a-f erklärte; die einstufige Umwandlung 3-4a-f ist aber nicht ausgeschlossen.

Die Schlüsselstellung von 2 stützt eine Umsetzung, bei der ein γ -Oxoketen nicht nachgewiesen und trotzdem ein β -Lacton isoliert wurde. Dies ist die Addition von 1 an Cyclopropen, die 4i neben dem schon früher isolierten siebengliedrigen α,β -ungesättigten Enollacton $5^{4e)}$ lieferte. Zur Deutung der Bildung von 5 ist das γ -Oxoketen nicht erforderlich, wenn auch nicht ausgeschlossen 4b,c,e).

Neben der Thermolyse haben wir zwei andere Möglichkeiten gefunden, γ -Oxoketene in β -Lactone überzuführen. So ergab die Behandlung von **3b** mit Bortrifluorid-Ether (CH_2Cl_2 , 20 °C, 30 min) auch **4b** (30%) und die Photolyse von **3d,e** (Hanovia 450 W, C_6H_6 , Pyrex) die Stereoisomeren **4g,h** von **4d,e**. Im Gegensatz zu **4d,e** zerfallen **4g,h** schon bei 20 °C langsam (3 d) unter Rückbildung von **3d,e**.

Die Frage nach der Anellierungsrichtung der 3-0xo-2-oxabicyclo[2.2.0]hexan-Systeme an die unsymmetrischen Ringe bei **4b,c** und **f** betrifft die Orientierung bei der Addition der Dienophile an **1.** Im Falle von Cyclopentadien ist diese bekannt^{4e)}, und bei Furan sowie Bicyclo[4.2.0]octa-2,4-dien erscheint die angegebene plausibel. Die stereochemische Zuordnung der ß-Lactone **4** beruht auf der Kristallstrukturanalyse von **4g** (Abbildung 1). Damit ist auch die Konfiguration von **4d** bekannt und jene der anderen ß-Lactone wahrscheinlich.

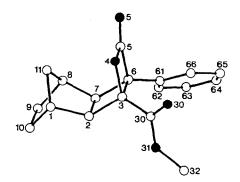


Abbildung 1. Struktur von **4g** ohne Wasserstoff und mit der kristallographischen Benennung der Atome. Die Verbindung kristallisiert orthorhombisch: $P2_12_12_1$, a = 1159.5(4), b = 1514.1(5), c = 855.2(3) pm; Z = 4, $\rho_{ber} = 1.319$ g·cm⁻³, 1730 hkl mit $F > 3\sigma(F)$, R = 0.0426.

Wir danken der <u>Deutschen Forschungsgemeinschaft</u> und dem <u>Fonds der Chemischen Industrie</u> für die Förderung.

Tabelle 2. IR- (KBr, cm^{-1}) und NMR-Daten (CDCl₃, δ -Werte, Kopplungskonstanten in Hz) der β -Lactone **4d**, **4g** und **4i**.

4d: IR: 1830, 1742. - 1 H-NMR: 1.12-1.25 (m; 9-H_{endo}, 10-H_{endo}), 1.18 und 1.77 (jeweils br.d, $\underline{J}_{11,11}$ =11.1; 11-H₂), 1.48-1.66 (m; 9-H_{exo}, 10-H_{exo}), 2.17 und 2.70 (jeweils br.s; 1-H, 8-H). 2.84 und 2.94 (jeweils br.d, $\underline{J}_{2,7}$ =5.2; 2-H, 7-H), 3.91 (s; 0CH₃), 7.17 (o-H), 7.28-7.42 (m-H, p-H). - 13 C-NMR: 27.59 und 27.86 (jeweils t; C-9, C-10), 33.60 (t; C-11), 36.47 und 36.87

81.71 (s; C-3), 126.35 (o-C), 127.77 (p-C), 128.63 (m-C), 130.35 (ipso-C), 166.16 (s; C-5), 169.95 (s; $\underline{\text{CO}}_2\text{CH}_3$). **4g**: IR: 1825, 1742. - $^1\text{H-NMR}$: 1.08 und 1.22 (jeweils m; 9-H_{endo}, 10-H_{endo}), 1.30 (d, $\underline{\text{J}}_{11,11}$ = 12.2; 11-H_{anti}), 1.50-1.70 (m; 9-H_{exo}, 10-H_{exo}), 2.45 (br.d; 11-H_{syn}), 2.59 (br.s; 1-H, 8-H), 2.75 und 3.30 (jeweils d, $\underline{\text{J}}_{2,7}$ =8.8 Hz; 2-H, 7-H), 3.66 (s; 0CH₃), 7.36 (m; C₆H₅). - $^{13}\text{C-NMR}$: 28.96 und 29.71 (jeweils t; C-9, C-10), 34.75 (t; C-11), 36.00 und 37.54 (jeweils d; C-1, C-8), 43.55 und 48.06 (jeweils d; C-2, C-7), 52.67 (q; 0CH₃), 73.37 (s; C-6), 82.44 (s; C-3). 125.68 (o-C), 128.42 (p-C), 128.84 (m-C), 133.05 (ipso-C), 166.86 (s; C-5),169.29 (s; $\underline{\text{CO}}_2\text{CH}_3$).

(jeweils d; C-1, C-8), 47.79 und 51.82 (jeweils d; C-2, C-7), 52.61 (q; OCH_3), 72.50 (s; C-6),

4i: IR: 1820, 1742. - 1 H-NMR: 1.51 (dt, $\underline{J}_{3,3}$ =6.2, $\underline{J}_{2,3}$ exo= \underline{J}_{3} exo,4=1.5; 3- \underline{H}_{exo}), 1.69 (\approx q, $\underline{J}_{2,3}$ endo= \underline{J}_{3} endo,4=5.8; 3- \underline{H}_{endo}), 2.66 und 2.68 (m, $\underline{J}_{2,4}$ =3.8; 2-H, 4-H), 3.71 (s; 0CH₃), 7.26-7.44 (m; \underline{C}_{6} H₅). - 13 C-NMR: 18.63 und 23.29 (jeweils d; C-2, C-4), 18.77 (t; C-3), 52.68 (q; 0CH₃), 76.81 (s; C-1), 83.32 (s; C-5), 127.63 und 128.93 (\underline{o} -C, \underline{m} -C), 129.07 (\underline{p} -C), 129.59 (\underline{ipso} -C), 165.14 (s; C-7), 169.65 (s; \underline{CO}_{2} CH₃).

Fußnoten und Literatur

- 1) Cycloadditionen von 1,3,4-0xadiazin-6-onen (4,5-Diaza- α -pyronen), 6. Mitteilung. 5. Mitteilung $^{4e)}$.
- 2) D. Borrmann in Houben-Weyl-Müller (Hrsg.): Methoden der organischen Chemie, 4. Aufl., Bd. 7/4, Thieme, Stuttgart 1968, S. 53. W.T. Brady in S. Patai (Hrsg.): The chemistry of ketenes, allenes, and related compounds, Wiley, Chichester 1980, S. 279.
- 3) W.T. Brady, Y.F. Giang, J. Org. Chem. 51 (1986) 2145.
- 4) a) M. Christl, U. Lanzendörfer, S. Freund, Angew. Chem. 93 (1981) 686; Angew. Chem., Int. Ed. Engl. 20 (1981) 674. b) M. Christl, U. Lanzendörfer, K. Peters, E.-M. Peters, H.G. von Schnering, Tetrahedron Lett. 24 (1983) 353. c) M. Christl, U. Lanzendörfer, J. Hegmann, K. Peters, E.-M. Peters, H.G. von Schnering, Chem. Ber. 118 (1985) 2940. d) M. Christl, U. Lanzendörfer, M.M. Grötsch, J. Hegmann, Angew. Chem. 97 (1985) 888; Angew. Chem., Int. Ed. Engl. 24 (1985) 886. e) M. Christl, Gazz. Chim. Ital. 116 (1986) 1.
- 5) Alle β-Lactone wurden mit Hilfe der Chromatographie (SiO₂, Petroleumbenzin/Ethylacetat) in reiner Form isoliert. Die Strukturen stützen sich auf Elementaranalysen, Massen-, IR- und NMR-Spektren. Ausgewählte Daten enthält Tabelle 2.
- 6) Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie, Physik, Mathematik, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-52554, der Autoren und des Zeitschriftenzitates angefordert werden.

(Received in Germany 24 September 1987)