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One-step access to (1-iodovinyl) arenes from trimethylsilyl ethynylarenes is described. The method is
superior to a conventional multi-step approach, and is enhanced by the Sonogashira reaction that pro-
vides ready access to a variety of trimethylsilyl ethynylarenes.
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Vinyl halides are important building blocks in organic synthe-
sis.1 They are readily converted into various functional groups by
halogen–metal exchange and are significant for carbon–carbon
bond forming reactions by way of transition-metal catalyzed
cross-coupling reactions.2–4 a-Vinyl iodides are especially impor-
tant5; the sterically unhindered terminal-olefin and weakly
bonded iodine are highly reactive and incredibly useful toward
the synthesized complex molecules.6 Despite the utility of a-vinyl
iodides, their synthetic availability still remains a challenge, be-
cause of the inherent difficulty in hydroiodation.7 The stoichiome-
tric addition of hydrogen iodide (HI) to terminal alkynes is one way
to prepare a-vinyl iodides; however, the generation and transfer of
hygroscopic and gaseous HI are inconvenient and difficult to per-
form.8–10 As an alternative hydrometalation exists, although it re-
quires several reaction steps.11

The pioneering work for synthesis of a-vinyl iodides from al-
kynes via addition of HI was reported by Ishii and co-workers: HI
was generated in situ from mixing of chlorotrimethylsilane, so-
dium iodide, and water in acetonitrile.12 And continuous efforts
have aimed to refine this initial method.13 More recently, Ogawa
and co-workers developed a novel hydroiodation of alkynes using
an iodine/hydrophosphine binary system.14 However, there is still
room for improvement, especially in terms of its scale;15 the sys-
tem worked using 0.2 mmol of starting alkynes.

Recently we have developed the synthesis of unsymmetrically
functionalized pyrene derivatives.16 In the course of our study,
ll rights reserved.
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asawa).
we encountered the unforeseen reaction (Eq. 1). Although we in-
tended the demethylation of the ethereal methyl group, instead
a-vinyl iodide was isolated in high yield. We immediately began
exploring the scope and utility of this transformation. Herein we
report a simple synthesis of (1-iodovinyl)arenes from both ethy-
nylarenes as well as trimethylsilyl ethynylarenes (Scheme 1). Com-
mercially available TMSI was useful for the direct transformation
of both of these functional groups into styrene-type a-vinyl iodide
units in high yield and in one step. Our synthetic protocol does not
require operations for desilylation, which is superior to the con-
ventional step-by-step approach.6,11,14 To the best of our knowl-
edge, so far such a direct synthesis has not been reported. In
addition, the protocol is enhanced by Sonogashira reaction that
readily makes trimethylsilyl ethynylarenes from aryl halides.17

Thus, it provides a rapid access to (1-iodovinyl) arenes.

ð1Þ

The hydroiodation of 1-ethynyl-4-methylbenzene (1) is exam-
ined in Table 1.18,19 TMSI was employed as a 1 M CH2Cl2 solution,
utilization of neat TMSI was not successful.20 To the mixture of the
alkyne (1 mmol) and TMSI (1.2 equiv) was added H2O (20 equiv) at
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Table 2
Evaluation of the reactivity of 2 via Scheme 1a

Entry Solvent (CH3)3SiI (equiv) Temp. (�C) Yield (%)

1 CH2Cl2 1.0 �78 58
2b CH2Cl2 1.2 �78 88
3 CH2Cl2 1.5 �78 88
4 CH2Cl2 2.0 �78 64
5 CH2Cl2 4.0 �78 60
6 CH2Cl2 1.5 �45 66
7 CH2Cl2 1.5 �20 63
8 CH2Cl2 1.5 0 58
9 Toluene 1.5 �78 74
10 Hexane 1.5 �78 70
11 CH3CN 1.5 �20 30

a Reaction conditions: alkyne 2 (1 mmol), solvent (8 mL), 1 M (CH3)3SiI in CH2Cl2,
H2O (20 mmol).

b The starting alkyne was recovered in 3%.

Table 3
Effect of the trialkylsilyl groups on the hydroiodation of 2a

Entry R Yield (%) Recovered alkyne (%)

Scheme 1. Synthesis of (1-iodovinyl)arenes from 1 and 2.
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low temperature, the reaction was allowed to warm to 0 �C.21 Entry
1 illustrates a high yielding transformation when the reaction was
carried out at �78 �C. The resulting 1-(1-iodovinyl)-4-methylben-
zene was isolated in 88% yield and the Markovnikov addition prod-
uct’s structure was confirmed by 1H NMR. Over the course of the
reaction the starting alkyne completely disappeared in TLC moni-
toring, additionally the corresponding isomer of b-vinyl iodide
was not observed. For entries 2–4, the reaction at �45 �C gave a
comparable 87% yield, but decreased at �20 �C and 0 �C.22 The con-
centration of the reaction was increased in entries 5 (3.3 mL
CH2Cl2) and 6 (1 mL) and gave comparable yields to entry 1
(8 mL). For entry 7, use of CH3OH instead of H2O resulted in only
20% yield. For entry 8, addition of H2O (20 equiv) to the solvent
in advance gave 70% yield. Other solvents were explored in entries
9–13, the hydroiodation in toluene and hexane properly occurred
with 81% and 71% yields, respectively. On the other hand, metha-
nol, acetonitrile, and THF were not successful giving multi-spots
on TLC monitoring. In marked contrast to the pioneering work,12,23

it is presumed that the non-polar and non-coordinated solvents are
best for this transformation.

Next, we examined the reaction of ((4-tert-butylphenyl)ethy-
nyl)trimethylsilane (2) with TMSI to give a-vinyl iodides (Table
2). Alkyne 2 was prepared via Sonogashira reaction. For entries
1–5, the equivalent of TMSI was varied, 1.5 equiv proved appropri-
ate to consume all of 2 and to achieve a high yielding transforma-
tion (entry 3). For entry 2, unreacted alkyne was recovered in 3%
when 1.2 equiv TMSI was used. For entries 6–8, the elevated tem-
peratures to �45, �20, and 0 �C were not successful. Other solvents
were explored in entries 9–11, toluene, hexane, and acetonitrile
gave 74%, 70%, and 30%, respectively. Thus, the optimum condi-
tions in Table 2 are close to those in Table 1.

Table 3 illustrates different trialkylsilyl patterns tested. Like tri-
methylsilyl ethynylarene, triethyl-, and triisopropylsilyl substrates
Table 1
Evaluation of the reactivity of 1 conducted via Scheme 1a

Entry Solvent Temp. (�C) Yieldb (%)

1 CH2Cl2 �78 88
2 CH2Cl2 �45 87
3 CH2Cl2 �20 74
4 CH2Cl2 0 49
5c CH2Cl2 �78 82
6d CH2Cl2 �78 74
7e CH2Cl2 �78 20
8 CH2Cl2/H2O (4% v/v) �78 70
9 Toluene �78 81
10 Hexane �78 71
11 CH3CN �20 24
12 CH3OH �78 0
13 THF �78 0

a Reaction conditions: alkyne 1 (1 mmol), solvent (8 mL), 1 M (CH3)3SiI in CH2Cl2

(1.2 mmol), H2O (20 mmol). All reactions were performed in accordance with the
representative procedure in Ref.21, unless otherwise stated.

b Purified yields after silica gel column chromatography (hexane containing
5% v/v triethylamine).

c 3.3 mL of CH2Cl2 as a solvent was used.
d 1.0 mL of CH2Cl2 as a solvent was used.
e CH3OH was added instead of H2O.
underwent a-vinyl iodation, yet the yields decreased in 80% and
54% (entries 2 and 3); presumably due to the sterically hindered al-
kyl groups for desilylation process. For entries 2 and 3, unreacted
alkynes were recovered in 13% and 45%, and the prolonged reac-
tion time did not increase the yields.

Preliminary mechanistic investigations were performed through
deuteration experiments. Deuterioiodation of 1 was carried out
with D2O, and the deuterium was incorporated under several con-
ditions (Table 4). In each case the major product was (E)-adduct5b

(entries 1–3). For entry 4, when D2O was added in advance, a similar
selectivity to entry 1 was observed. As a matter of form, deuterium
and iodine add to the alkyne with anti-selectivity. Interestingly, this
result is the opposite selectivity to Ishii’s pioneering work which re-
ported that DI adds to alkynes with complete syn-selectivity.12 Sub-
1 CH3 88 0
2 CH2CH3 80 13
3b CH(CH3)2 54 45

a Reaction conditions: alkyne (1 mmol), CH2Cl2 (8 mL), 1 M (CH3)3SiI in CH2Cl2

(1.5 mmol), H2O (20 mmol).
b Prolonged reaction time did not increase the yield.

Table 4
Deuterioiodation of 1a

Entry Solvent Yieldb (%) % Db

(E)-3 (Z)-3

1 CH2Cl2 59 23 87
2 Toluene 62 16 80
3 Hexane 71 2 89
4 CH2Cl2/H2O (4% v/v) 53 12 86

a Reaction conditions: alkyne 1 (1 mmol), CH2Cl2 as a solvent (8 mL), 1 M
(CH3)3SiI in CH2Cl2 (1.2 mmol), D2O (20 mmol).

b Determined by 1H NMR in Ref.12,5b



Table 5
Deuteration experiments of 2a

Entry Solvent Yieldb (%)

4 (E)-5 (Z)-5

1 CH2Cl2 83 2 2
2 Toluene 71 3 3
3 Hexane 61 3 3

a Reaction conditions: alkyne 2 (1 mmol), CH2Cl2 as a solvent (8 mL), 1 M (CH3)3SiI in CH2Cl2 (1.5 mmol), D2O (20 mmol). The deuterium was incorporated better than 95%.
b Determined by 1H NMR in Ref..12,5b

Scheme 3. a-Vinyl iodation of 2 with a mixture of D2O (10 equiv) and H2O
(10 equiv).

Table 6
Evaluation of the reactivity of several alkynes for the a-vinyl iodationa

Entry Alkyne Product Yieldb (%)

1 8 (1-Iodovinyl)benzene 78
2 9 1-(1-iodovinyl)-4-pentylbenzene 72
3 10 1-(1-Iodovinyl)-2-methoxybenzene 71
4 11 1-(1-Iodovinyl)-3-methoxybenzene 60
5 12 1-(1-Iodovinyl)-4-methoxybenzene 78
6 13 1,4-Bis(1-iodovinyl)benzene 45
7c, d 14 1,4-Bis(1-iodovinyl)benzene 92
8c, d 15 1,3-Bis(1-iodovinyl)benzene 93
9 16 1-(1-Iodovinyl)-3-methoxybenzene 71
10e 16 1-(1-Iodovinyl)-3-methoxybenzene 68
11f 17 18 82
12d, g 19 20 70
13h 21 2-(1-Iodovinyl)biphenyl 57i

14j 22 3-(1-Iodovinyl)benzenamine 0
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sequently, deuteration experiments of 2 were carried out, and the
results are summarized in Table 5. For entries 1–3, 4 was formed
along with the same and small amounts of (E)-5 and (Z)-5. The pro-
portions of (E) to (Z) between Tables 4 and 5 make a sharp contrast:
thus a-vinyl iodations of 1 and 2 were treated with the blends of
D2O and H2O (each 10 equiv) (Schemes 2 and 3). There is clearly a
difference between 1 and 2: the (E) isomer was preferred to (Z) in
1,24 while an equal mixture of (E) and (Z) was observed in 2. In addi-
tion, protonation preferentially occurred in 1, while deuteration in
2. Although it is difficult to give the details of the mechanism in 2 at
the present moment, these outcomes indicate that 2 considerably
differs from 1 in the reaction pathway to a-vinyl iodation. As for
the plausible pathway in Scheme 3, initial addition of HI to 2 would
give hydroiodinated iodotrimethylsilylalkene with 1:1 (E)/(Z) ratio.
This intermediate could then undergo desilylation reaction with
another HI, finally giving the desired compound.25–27

Table 6 represents outcomes of this method for several alkynes
listed in Figure 1. For entries 1–6, the commercially available ethy-
nylarenes were employed,14,28 and converted into the correspond-
ing a-vinyl iodides in moderate to good yields. Generally, a-vinyl
iodides are not stable;5a,11a 1-(1-iodovinyl)-4-methoxybenzene in
entry 5 immediately decomposed at ambient temperature in ca.
15 min.14 We made attempts to evaluate this method for other
alkynes, however, unfortunately, other alkynes gave unstable prod-
ucts (these are described in Supplementary data). 29 For entries 6
and 7, different starting alkynes gave the identical products, and
interestingly the former resulted in 45% yield and the latter in 92
%. These would reflect the individual mechanism of a-vinyl iodation
which was implied in deuterium experiments in Schemes 2 and 3,
and it is a great advantage to approach a-vinyl iodides from another
synthetic route. For entry 8, 15 was successfully prepared in 93%
yield. For entry 9, the reaction at 1 mmol scale gave the product
in 71% isolated yield, and entry 10 was conducted at 5 mmol scale
(1.02 g) of alkyne 16 giving 68% yield: this is a valuable process be-
cause the product of 1-(1-iodovinyl)-3-methoxybenzene cannot be
prepared through hydroiodation.5a,10e,11a,12 For entry 11, pyrene 17
leads to 18 in 82% yield, in which TMSI easily cleaved trimethylsilyl
group at R1 substituent. For entry 12, pyrene 19 bearing trimethyl-
silyl ethynyl groups at 3,8-positions gave the corresponding vinyl
Scheme 2. a-Vinyl iodation of 1 with a mixture of D2O (10 equiv) and H2O
(10 equiv).
20 in 70% yield. Both vinyl compounds 18 and 20 are solid materi-
als, and likely to be more stable than liquids. For entry 13, the de-
sired 2-(1-iodovinyl)biphenyl was observed in 57% yield, however
the corresponding isomers that are 3-(1-iodovinyl)biphenyl and
4-(1-iodovinyl)biphenyl were too unstable to isolate. For entry
14, the reaction did not proceed29 and the starting 22 was recovered
in >90%. The influence of representative functional groups was also
checked, however, 1-ethynyl-4-(trifluoromethyl)benzene, 1-
chloro-4-ethynylbenzene, 1-bromo-4-ethynylbenzene, and 2,5-
bis((trimethylsilyl)ethynyl)pyridine were not successful for the
a Reaction conditions: alkyne 1 (1 mmol), CH2Cl2 (8 mL), 1 M (CH3)3SiI in CH2Cl2

(1.5 mL), H2O (20 mmol).
b Isolated yields, unless otherwise noted.
c The reactions were conducted at �20 �C.
d 3 mL of 1 M (CH3)3SiI in CH2Cl2 was used.
e 5 mmol (1.02 g) of the starting alkyne was used.
f The reactions were conducted at 0 �C.
g The reactions were conducted at room temperature.
h The starting alkyne was recovered in 39%.
i Determined by 1H NMR.
j The starting alkyne was recovered in >90%.



Figure 1. Compounds 8–22.
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hydroiodination. In addition, unfortunately, several attempts to
transform alkyl-substituted terminal and internal alkynes did not
give the corresponding a-vinyl iodides.30

In summary, commercially available TMSI was found to convert
trimethylsilyl ethynylarenes into (1-iodovinyl)arenes in one-step.
Under the optimized reaction conditions, the reaction occurred
quickly under routine conditions, and was readily amenable to
scale up. Deuteration experiments suggest that the reaction path-
way of a-vinyl iodation is different between 1 and 2. This approach
afforded a wide variety of new and potentially useful (1-iodovi-
nyl)arenes. The synthetic utility of (1-iodovinyl)arenes is clear
and we hope that our straightforward and versatile methodology
finds widespread use in organic synthesis. Application and com-
plete mechanistic elucidation are ongoing for further development
of this reaction and will be reported in due course.
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