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Jean-Daniel Brion
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Abstract—The synthesis and the anticancer activity of a new kind of enynes 2 and 3 and enediynes 4, analogues of Combretastatin
A-4 1 are reported and discussed.
� 2005 Elsevier Ltd. All rights reserved.
Combretastatin A-4 (CA-4) 1, a natural stilbene, has
been extracted from the South African willow Combre-
tum caffrum in 19871 and its synthesis has been pub-
lished in 1995.2 This substance, likeness to colchicine,
has been found to be a cytotoxic agent which strongly
inhibits the tubulin polymerization by binding to the
colchicine site2,3 and a pro-drug of CA-4, the water-solu-
ble phosphate derivative CA-4P is now in phase II clin-
ical trials. The structural simplicity of CA-4 combined
with excellent antitumoural and antineoangiogenic
activities encouraged the scientific community to synthe-
size numerous analogues. Among various studies on the
structure activity relationship of CA-4, most of them
concern the modification in aromatic rings and in linker
alkene.4 To our knowledge, very few studies concerning
the elongation of the linker between the two aryl groups
have been already published.

Hamel and co-workers5 prepared a series of CA-4 ana-
logues which differed only in the number of methylene
units (ranging from none to four) separating the aryl
moieties. With the exception of the biphenyl compound,
all the synthetic combretastatin analogues had activity
as inhibitors of tubulin polymerization and for example,
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the four bridge analogue was four times less effective
than CA-4. Since it has been also well established that
the cis-orientation of the two aryl rings in CA-4 is
important for biological activity,6 we were interested
to investigate the structural changes of the linker having
four or six carbon units in which the spacer constrains
the two aryl rings in quasi �cis� orientation that appears
to be necessary.

In order to preserve the (Z) stereochemistry of the stil-
bene double bond and to maintain the p-conjugated sys-
tem, we have prepared a series of CA-4 analogues
incorporating between the double bond and the aro-
matic rings one or two triple bonds. These structural
changes of the linker length would contribute to better
understanding the structure–activity relationships asso-
ciated with the presence of triple bonds in derivatives
2–4. In this letter, we report the stereocontrolled synthe-
sis of previously unknown trimethoxy substituted stil-
bene enyne 2 and 3 as well as enediyne 4 (Scheme 1)
CA-4 analogues and comment on their biological activ-
ity to act as potential antimitotic agents and their ability
to inhibit cancer cellular growth.

A straightforward approach to enynes and enediynes
2–4 could be the palladium-mediated coupling reactions
from readily available Z-chloroenynes, an interesting
class of compounds,7 which are not photosensitive and
more stable than the corresponding iodide and bromide
derivatives. Previously,8 we showed that the carbon–
chlorine in these compounds is not inert to further cou-
pling reactions and under appropriate transition metal
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Table 1. Coupling reaction of Z-chloroenyne 6 and 8 with Grignard reagen

Entry Chloroenyne Grignard reagent

1 6

OMe

MgBr

2 6

Me

MgBr

3 6

MgBr

4 8a

OMe

MgBr

OMeMeO

5 8b

OMe

MgBr

OMeMeO

6 8c

OMe

MgBr

OMeMeO

a All reactions were performed with 2 equiv of ArMgBr, 5 mol % of PdCl2(P
b Isolated yields.
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catalysis, isomerically pure chloroenynes react rapidly
and cleanly with organometallic reagents to afford the
corresponding coupling products. Thus, in the presence
of Et3N and a catalytic amount of PdCl2(PPh3)2, iso-
merically pure conjugated enynes were obtained from
Grignard reagents. Moreover, under weakly ligated
palladium complexes PdCl2(PhCN)2 and CuI, they
OMe

MeO

MeO Cl

MeO

OMe

MeO

X

Cl

R1

R2

XR1

R2

7a X = CH,  R1 = OMe, R2 = H
7b  X = CH, R1- R2 = (-CH-)4
7c  X = N,    R1- R2 = (-CH-)4

8a  72%
8b  51%
8c     73%

(i)

5 6

(i)

7 8

77%

Scheme 2. Reagents and conditions: (i) 5 mol % PdCl2(PPh3)2,
10 mol % CuI, 2 equiv (Z)-1,2-dichloroethylene, 2 equiv n-BuNH2,
Et2O, 20 �C.
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Scheme 3. Reagents and conditions: (i) CuI 10 mol %, PdCl2(PPh3)2
5 mol %, trimethylsilylacetylene 2 equiv, piperidine, THF, 12 h; (ii)
NaOH, MeOH, 20 �C; (iii) K2CO3, MeOH, 0 �C.
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undergo rapid coupling with terminal alkynes to afford
enediynes derivatives in high yields.9 Therefore, the
scope of these methods has been explored towards the
synthesis of target enynes and enediynes 2–4 in the con-
text of a brief structure–activity relationship study of
analogues of CA-4 1.

The key precursors pure Z-chloroenynes 6 and 8 were
obtained in good yields (51–77%) as already reported
by Sonogashira–Linstrumelle (S–L)10 coupling reactions
between (Z)-1,2-dichloroethylenes with terminal alkynes
511 and 7 in the presence of bis(triphenylphosphine)-pal-
ladium chloride, copper iodide and n-butylamine in
diethylether (Scheme 2).

The target enyne derivatives were then obtained by fur-
ther coupling of the remaining carbon–chlorine bond
according to our previous synthetic strategy. Thus,
reactions of Z-chloroenyne 6 with various aryl Grignard
reagents12 under a catalytic amount of PdCl2(PPh3)2,
in THF at room temperature furnished the expected
biaryl-enyne adducts 2 in moderate to good yields and
with retention of the configuration of the Z-double bond
(Table 1). Under similar conditions, aryl-enynes 3 have
been successfully prepared by the coupling of chloroen-
ynes 8a–c with 3,4,5-trimethoxyarylmagnesium bromide.
Although the synthetic strategy to enyne 3 was less con-
Table 2. Coupling reaction between (Z)-chloroenyne and 1-alkyne: synthesi

Entry Chloroenyne Alkyne

1 8a 5

2 6 7b

3 6 7c

4 6 7d

5 6 7e

a Isolated yields.
vergent than the route leading to enynes 2, it was never-
theless efficient. It should be noted that Z-enyne
derivatives 2 and 3 were stable and no isomerization of
the Z-double bond has been noticed after a prolonged
exposure at room temperature.

Next, unsymmetrical (Z)-enediynes 4 (opening form of
biologically active triphenylene analogues)13 have been
investigated. For their preparation, we planned to intro-
duce alkynyl moieties by means of the palladium-medi-
ated S–L coupling reaction starting from key
precursors pure Z-chloroenynes 6 and 8. To this end,
we showed previously that the use of PdCl2(PhCN)2 as
catalyst associated with piperidine or pyrrolidine
improved the reactivity of terminal alkynes with vinyl
s of enediyne 4a–e

Enediyne 415 Yielda (%)
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MeO

OMe OMe
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4bMeO

MeO
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MeO
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4dMeO
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MeO

OMe OMe

NH2
61



8550 O. Provot et al. / Tetrahedron Letters 46 (2005) 8547–8550
chlorides since large rate enhancements were observed
reducing the reaction time to 0.5–2 h at room tempera-
ture compared to 5–12 h when using palladium catalyst
ligated with triphenylphosphine.9 Consequently, we
undertook to use these conditions in our synthesis of
CA-4 analogues.

The desired Z-enediynes 4a–e were prepared from pure
trimethoxyphenylchloroenyne 6. The synthesis of func-
tionalized 1-alkynes 7d and 7e as second partners for these
coupling reactions were obtained from functionalized aryl
iodides 9 and 10 using the two steps sequence S–L-cou-
pling with trimethylsilylacetylene14 followed by desilyl-
ation under alkaline conditions as outlined in Scheme 3.

When Z-trimethoxychloroenyne 6 was treated under the
reaction conditions previously reported (5 mol %
PdCl2(PhCN)2, 10 mol % CuI, piperidine), we were
pleased to observe that the expected cross-coupled
enediynes 4 were obtained in reasonable to good yields
(38–73% unoptimized). In order to check the versatility
of this coupling methodology, we have prepared ene-
diyne 4a this time, from trimethoxyaryl alkyne 5 and
the Z-chloroenyne 8a in an excellent overall yield
(86%, Table 2, entry 1).

Compounds 2, 3 and 4 were tested for their ability to
interact with tubulin (polymerization and depolymeriza-
tion) and for cytotoxicity against KB, MCF7 and
MCF7R cell lines.

However, most compounds did not inhibit the tubulin
polymerization and depolymerization. Only enyne 2b
and enediyne 4e were found to be active (e.g.,
6.5 · 10�5 and 6.8 · 10�5 M, respectively), but 50-fold
less active than CA-4. Moreover, if the cytotoxicity of
compounds 2–4 against KB, MCF7 and MCF7R cell
lines was comparable to other previously described ana-
logues, it was clearly less cytotoxic than combretastatin.

In summary, the purpose of this study was to investigate
and develop methods for the preparation of original
enynes and enediynes as analogues of Combretastatin
A-4. We have presented here, the synthesis and the eval-
uation of new enynes 2 and 3 as well as enediynes 4. We
have developed an efficient route to the preparation of
eleven new compounds via palladium cross-coupling
reactions. Enyne 2b and enediyne 4e inhibited tubulin
polymerization with an IC50 60–70 lM while the other
compounds did not reveal any significant activity. At a
concentration of 10�5 M, these two compounds showed
a marginal activity towards KB, MCF7 and MCF7R
cells. In this series of enynes and enediynes-types ana-
logues, examination of the anticancer results revealed
that, in these analogues, the incorporation of one or
two triple bonds does not play a role for maximal anti-
cancer activity.
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