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a b s t r a c t

We have previously reported that optimization of a series of phenylacetic acid derivatives led to the dis-
covery of CRTH2 and DP dual antagonists, such as AMG 009 and AMG 853. During the optimization pro-
cess, we discovered that minor structural modifications also afforded potent and selective CRTH2 or DP
antagonists. Here we report the structure–activity relationship that led to the discovery of selective
CRTH2 antagonists such as 2 and 17, and selective DP antagonists, such as 4 and 5.

� 2011 Elsevier Ltd. All rights reserved.
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CRTH2 (chemoattractant receptor-homologous molecule ex-
pressed on Th2 cells, also known as DP2) and DP (prostanoid D
receptor, also known as DP1) are both G-protein coupled receptors.
Their endogenous ligand is prostaglandin D2 (PGD2), which plays a
key role in mediating allergic reactions seen in allergic diseases.1,2

Stimulation of these two GPCRs promotes a number of biological
effects associated with the development and maintenance of aller-
gic responses. Numerous studies using DP and CRTH2 antagonists,
combined with genetic analysis, support the view that these recep-
tors play a pivotal role in mediating allergic diseases.3–5 Therefore,
there has been great interest in the discovery and development of
DP and CRTH2 antagonists, especially for CRTH2 antagonists for
the treatment of asthma and other allergic diseases.6–21

We have previously reported the optimization of phenylacetic
acid derivatives that led to the discovery of AMG 009 and AMG
853 (Fig. 1), two potent CRTH2 and DP dual antagonists.22,23 Here
we report that the same optimization also identified potent selec-
tive antagonists of CRTH2 and DP.

The synthesis of compounds in this publication is shown in
Schemes 1–3. Compounds 1–4 and 8–11 were prepared using the
same route as previously reported (Scheme 1).22,23
ll rights reserved.
Compound 5 was prepared in a similar manner to the one in
Scheme 1 with an additional fluorination step (Scheme 2). Difluo-
rination of the a-oxophenylacetate to form the a,a-difluoropheny-
lacetate was achieved using DAST (step iii of b, Scheme 2).24

Compounds 6 and 7 were synthesized from AMG 009 using re-
ported procedures.25,26

Compounds 14–19 were synthesized in five steps (Scheme 3).
2-Fluoro-5-nitrobenzoic acid was treated with 3-hydroxy-4-
methoxyphenylacetic acid ethyl ester in the presence of potassium
carbonate to give the bisaryl ether, whose nitro group was reduced
using hydrogenation. The aniline was then converted into the cor-
responding propionyl amide. The benzoic acid was also converted
into various amides through reaction with amines in step d. The
ethyl ester was finally hydrolyzed to afford the phenylacetic acids.
O
AMG 009

O
AMG 853

F

Figure 1.
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Table 1
CRTH2 selective antagonists

NH
O

S

EtHN
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Cl

Cl

R

Compd R CRTH2 IC50
a

in buffer (lM)
DP IC50

a

in buffer (lM)

1
OH

O
0.016 >10

2

OMe

OH

O

MeO

0.002 16.0

a Displacement of 3H-PGD2 from the CRTH2 or DP receptors expressed on 293
cells. Assay run in buffer containing 0.5% BSA. See Ref. 27 for assay protocol. Values
are means of three experiments, standard deviation is ± 30%.

Table 2
Modification of the acetic acid moiety
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O
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O

O

n-Bu R

OMe

O
Cl

Cl

Compd R CRTH2 IC50
a

in buffer (lM)
DP IC50

a

in buffer (lM)

AMG 009
OH

O
0.003 0.012

3 OH

O
>10 0.91

4 OH

O

>10 0.013

5 OH

O

F F
0.42 0.003

6 N
H

N
NN

0.35 0.007

7 N
H

O
S
OO

0.33 0.006

a Displacement of 3H-PGD2 from the CRTH2 or DP receptors expressed on 293
cells. Assay run in buffer containing 0.5% BSA. See Ref. 27 for assay protocol. Values
are means of three experiments, standard deviation is ± 30%.
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Scheme 2. Reagents and conditions: (a) Cs2CO3, DMSO, 60 �C, 3 days, 68%; (b) (i)
TMSCHN2, MeOH/benzene, 23 �C, 0.5 h; (ii) Dess–Martin periodinane, DCM, 23 �C,
14 h; (iii) DAST, DCE, 90 �C, 4 h, 55%, three steps (Ref.23); (c) H2, Pd/C, EtOH/EtOAc,
23 �C, 48 h, 88%; (d) 2,4-dichlorobenzenesulfonyl chloride, 2,6-lutidine, 40 �C, 20 h,
67%; (e) LiOH, MeOH/THF/H2O, 23 �C, 2 h, 47%.
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Scheme 1. Reagents and conditions: (a) Ethylamine or n-butylamine, triethyl-
amine, DCM, rt, 4 h, �90%; (b) phenylacetic acids methyl ester, cesium carbonate,
DMSO, 70 �C, 6 h, �85%; (c) H2, Pd/C, EtOH, rt, 1 h, 100% or SnCl2, EtOAc, 60 �C, 4 h,
80%; (d) For sulfonamides 1–4 and 8, sulfonyl chlorides, pyridine, rt, 24 h, 70%; for
amines 9 and 10, aldehydes, NaBH(OAc)3, DCE, rt, 3 h, 80%; for urea 11, isocyanate,
triethylamine, EtOAc, rt, 12 h, 80%; (e) LiOH, MeOH/THF/H2O, 23 �C, 2 h, �80%.
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Scheme 3. Reagents and conditions: (a) 3-Hydroxy-4-methoxyphenylacetic acid
ethyl ester, K2CO3, DMSO, 80 �C, 8 h, 70%; (b) H2, Pd/C, EtOH, rt, 1 h, 100%; (c)
propionyl chloride, triethylamine, DCM, rt, 3 h, 90%; (d) Amines, EDC, HOBt,
triethylamine, DCM, rt, 1 day, 80%; (e) LiOH, MeOH/THF/H2O, 23 �C, 2 h, �80%.
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Modification of the phenylacetic acid moiety affected the selec-
tivity toward CRTH2 and DP. As previously reported, meta-phenyl-
acetic acid derivatives, such as 1, are CRTH2 selective (Table 1) and
the para-phenylacetic acid derivatives can either be CRTH2 and DP
dual antagonist (AMG 009) or CRTH2 selective antagonist (2),
depending on the substitutions on the phenyl ring of the phenyla-
cetic acid.22

DP selective antagonists were generated through modifying the
acetic acid moiety (Table 2). Dialkylation at the a-position of the
acetic acid moiety provided molecules, exemplified by 3 and 4,
with increased selectivity for DP over CRTH2. The a,a-difluoroph-
enylacetate (5) has improved affinity for DP and significantly re-
duced activity on CRTH2 compared to AMG 009. Bioisosteric
replacements of the carboxylic acid also afforded DP selective
antagonists. The tetrazole (6) and acyl sulfonamide (7) maintained
similar activity on the DP receptor as compared to the correspond-
ing carboxylic acid (AMG 009). However, their affinity for the
CRTH2 receptor was greatly reduced.

CRTH2 selective antagonists were also obtained by modifying
the sulfonamide moiety. Several replacements of the sulfonamide
moiety were evaluated and a few representative compounds are
listed in Tables 3 and 4. The data in these tables indicates that
replacement of the sulfonamide moiety leads to loss of DP activity.
With the exception of sulfone 12, none of the compounds in Table 3



Table 5
DP selective and CRTH2 selective antagonists
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Compd CRTH2 IC50
a in

buffer (lM)
CRTH2 IC50

a in
plasma (lM)

DP IC50
a in

buffer (lM)
DP IC50

a in
plamsa (lM)

AMG
009

0.003 0.021 0.012 0.28

4 >10 ND 0.012 0.46
5 0.42 ND 0.003 0.21
2 0.002 0.016 16.0 ND
17 0.001 0.006 >10 ND

a Displacement of 3H-PGD2 from the CRTH2 or DP receptor expressed on 293
cells. Assay run in buffer containing 0.5% BSA or in 50% human plasma. See Ref. 27
for assay protocol. Values are means of three experiments, standard deviation is ±
30%.

Table 3
Sulfonamide modifications

R
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H
N

O
n-Bu

OMe

OH
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Compd R CRTH2 IC50
a

in buffer (lM)
DP IC50

a

in buffer (lM)

AMG 009
NHS
OO

Cl

Cl 0.003 0.012

8 NHS
OO

Cl 0.004 0.013

9 NHCl 0.23 >10

10 NH 0.11 >10

11b
NHN

H

O
Cl 0.20 >10

12c
S

OO
Cl

Cl 0.005 0.57

13 SO2

H
NCl 0.076 >10

a Displacement of 3H-PGD2 from the CRTH2 or DP receptors expressed on 293
cells. Assay run in buffer containing 0.5% BSA. See Ref. 27 for assay protocol. Values
are means of three experiments, standard deviation is ± 30%.

b The compound has an ethyl amide, instead of a n-butyl amide.
c The compound has a cyclobutyl amide, instead of a n-butyl amide.

Table 4
CRTH2 selective antagonists

O
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OMeR O
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Compd R CRTH2 IC50
a in

buffer (lM)
CRTH2 IC50

a in
plasma (lM)

14 H
N

Cl
0.007 0.065

15
H
N

Cl
0.014 0.26

16
H
N

Cl
0.002 0.015

17
H
N 0.001 0.006

18

H
N

F
0.002 0.013

19

H
N

F
0.002 0.015

a Displacement of 3H-PGD2 from the CRTH2 receptors expressed on 293 cells.
Assay run in buffer containing 0.5% BSA. See Ref. 27 for assay protocol. Values are
means of three experiments, standard deviation is ± 30%.
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had IC50 less than 10 lM in the DP binding assay. Compound 12 is a
noticeable molecule, because it was able to maintain activity on
the CRTH2 receptor, comparable to AMG 009. Also noticeable is re-
versed sulfonamide 13, which displayed good CRTH2 activity, but
was weaker than the corresponding sulfonamide (8).

In order to obtain compounds with increased activity on CRTH2
and selectivity over DP, we decided to combine the features that
favor affinity to the CRTH2 receptor. Therefore, we combined mod-
ifications to the sulfonamide moiety with the meta-phenylacetic
acid group which, as shown in Table 1, confers selectivity for
CRTH2. We previously reported that a reverse amide, such as the
propionamide group in 14–19 (Table 4), afforded compounds with
similar or improved CRTH2 activity when compared to those with
the corresponding butyl amide.22 As shown in Table 4, the amide
replacements of the sulfonamide moiety afforded potent CRTH2
selective antagonists, such as compounds 16–19. All of the com-
pounds in Table 4 had IC50 greater than 10 lM in the DP binding
assay.

Two CRTH2 selective antagonists (2 and 17) and two DP selec-
tive antagonists (4 and 5) listed in Table 5 were also potent in the
presence of plasma, as indicated by their activity in the plasma
binding assays.27

The functional activity of DP selective antagonist 4 and 5 was
evaluated in a cAMP assay using human whole blood. Compounds
4 and 5 inhibited PGD2 induced cAMP response mediated by DP in
platelets in 80% human whole blood with a Kb of 160 nM and
38 nM, respectively, which compares favorably to AMG 009
(AMG 009 Kb = 170 nM).28 Functional activity for the CRTH2 selec-
tive antagonists 2 and 17 was evaluated using an eosinophil shape
change assay. Compounds 2 and 17 inhibited human eosinophil
shape change mediated by PGD2 through the CRTH2 receptors with
Kb of 0.26 and 0.13 nM, respectively.29 AMG 009 had a Kb of
0.09 nM in the same assay.

In summary, we found that modifications to the phenylacetic
acid moiety affected the selectivity toward CRTH2 and DP. Meta-
phenylacetic acid derivatives, such as 1, are CRTH2 selective, while
para-phenylacetic acid derivatives can either display selectivity for
CRTH2 (2) or afford dual CRTH2 and DP antagonists (AMG 009),
depending on the substitutions on the phenyl ring of the phenyla-
cetic acid. Also, it was found that modifications to the carboxylic
acid or in its vicinity favored the DP receptor over CRTH2, such
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as in 3, 4, 6 and 7. On the other hand, replacing the sulfonamide
moiety with an amide group, such as in compounds 16–19, affor-
ded potent CRTH2 selective antagonists. In short, these phenylace-
tic acid derivatives are flexible enough to provide CRTH2 and DP
dual antagonists and selective antagonists of CRTH2 and DP.
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