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ABSTRACT: A concise asymmetric synthesis of an 11β-HSD-1 inhibitor has been achieved using inexpensive starting materials 
with excellent step-economy at low catalyst loadings. The catalytic enantioselective total synthesis of 1 was accomplished in 7 steps 
and 38% overall yield aided by the development of an innovative, sequential strategy involving Pd-catalyzed pyridinium C-H aryla-
tion and Ir-catalyzed asymmetric hydrogenation of the resulting fused tricyclic indenopyridinium salt highlighted by the use of a 
unique P,N-ligand (MeO-BoQPhos) with 1000 ppm of [Ir(COD)Cl]2. 

INTRODUCTION 

Type 2 diabetes is a metabolic disorder characterized by hy-
perglycemia, insulin resistance, and relative insulin deficien-
cy.1  The global prevalence of diabetes was estimated to be 9% 
in 2014 among adults and is projected to increase annually.2  
In the search for an effective therapeutic agent to curb this 
global epidemic, inhibition of the sodium-dependent glucose 
co-transporter enzyme, 11β-hydroxysteroid dehydrogenase 
type 1 (11β-HSD-1), has been investigated as a clinically rele-
vant tactic for reduction of cortisol production in various tis-
sues believed to be responsible for obesity and insulin re-
sistance in children and adults. To this end, compound 1 
emerged from our discovery program as a potent, metabolical-
ly stable 11β-HSD-1 inhibitor3 and has quickly advanced in 
clinical trials.   

Compound 1 contains an intriguing tricyclic chiral in-
denopiperidine core that has also been observed in several 
other biologically active molecules and alkaloid natural prod-
ucts.4 Despite its relatively small molecular size and the de-
ceptively simple structure, the architecturally unusual tricyclic 
indenopiperidine nucleus containing two embedded contigu-
ous stereogenic centers presented a formidable synthetic chal-
lenge. Indeed, the first generation route towards 1 required 
twelve linear steps to construct the tricyclic core 2 starting 

from 2,3-dichloropyridine.3 The lengthy, racemic synthesis 
relies on a Pd-catalyzed cyanation with Zn(CN)2 and a late-
stage resolution to supply drug candidate for early toxicologi-
cal studies. The overall yield for the synthesis of 1 was less 
than 3% over a total of 15 steps with poor atom efficiency. In 
order to provide large quantities of compound for accelerated 
clinical studies (>3 tons for Phase III), a more efficient and 
economical synthesis was urgently required.  

Herein, we describe our design and development of a con-
cise asymmetric route to 11β-HSD-1 inhibitor 1 based on the 
successful, sequential implementation of an intramolecular C-
H pyridinium arylation and enantioselective hydrogenation of 
the resulting fused indenopyridinium salt enabled by 
Boehringer Ingelheim’s P,N-ligand BoQPhos.5,6 

RESULTS AND DISCUSSION 

Retrosynthetic Analysis Chiral piperidines are common 
structural motifs exhibited in natural products and highly pur-
sued in drug discovery; in this vein, numerous synthetic meth-
odologies have been reported.7 In designing an ideal synthesis8 
for compound 1, a synthetic strategy was crafted in order to 
provide the shortest possible synthetic route to the target mol-
ecule by taking full advantage of catalytic technologies to 
drive down cost and effectively increase throughput of the 
synthesis. 
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Scheme 1. Fifteen-Step Discovery Approach and New Streamlined Retrosynthesis towards 1 

 

Tactically, synthetic approaches to piperidines utilizing pyr-
idines as starting materials became attractive due to their high 
abundance and low cost. We envisioned that the two stereo-
genic centers at the piperidine ring juncture could be intro-
duced via a catalytic asymmetric hydrogenation of a tetra-
substituted double bond as part of a piperidine or pyridine ring 
(Scheme 1, Synthon A). Fully aware of the challenges associ-
ated with the asymmetric hydrogenation of tetra-substituted 
olefins,9 we aspired to engineer a new catalytic system for this 
important transformation by leveraging our recently developed 
dihydrobenzooxaphosphole (BOP)-based ligand series (vide 
infra).10.11 To access the requisite hydrogenation precursor A, 
a conceptually concise sequence was devised involving an 
SNAr coupling of fragments 4 and 5 followed by an intramo-
lecular C-H arylation. At the outset, the proposed cyclization 
to the C-3 position of pyridine was expected to be challenging, 
with few related examples found in the literature.12,13 Howev-
er, if successful, an expedient route to the key intermediate 2 
could be developed from the simple and inexpensive starting 
materials. 

Synthesis of Pyridine Precursors for Cyclization 2-
Benzyl-substituted pyridines are highly valuable compounds 
in organic synthesis. Existing synthetic approaches employ 
elaborate starting materials and require either high reaction 
temperatures or the use of Pd catalysts at high loadings,14 both 
of which negatively impact development of a cost-effective 
process. The SNAr coupling reaction between 3-iodo-4-
methylbenzonitrile 4a and 2-fluoropyridine 5a was first exam-
ined in order to prepare the requisite benzyl pyridine precursor 
3 for cyclization; however, 30% yield was observed with sig-
nificant amount of self-condensation side products. Switching 
to 2-chloropyridine 5b provided again trace product formation 
(Scheme 2).  

Scheme 2. SNAr Reaction of Nitrile 4 with 2-Substituted 
Pyridine Electrophiles 

 

Prior experience from our laboratories15 has shown that the 
reaction between a carbanion and a sulfonyl pyridine is an 
efficient method for construction of pyridine derivatives; this 

guided our investigations towards the coupling of 4a with 5c. 
To our delight, the reaction occurred smoothly in the presence 
of NaHMDS at room temperature in high yield after 2 h, al-
lowing facile access to the key intermediates 3a-b in a 
straightforward and economical fashion.  

Pd-Catalyzed C-H Arylative Cyclization With compound 
3 in hand, the key intramolecular cyclization was investigated 
next. Direct intramolecular C-H arylation of heteroarenes has 
become an increasingly popular approach for the construction 
of fused aromatic structures due to the inherent cost ad-
vantages.12,13 However, C-H arylation of pyridines has re-
mained an outstanding challenge, especially in an intramolecu-
lar fashion. To the best of our knowledge, literature precedent 
for this type of cyclization to forge the indenopyridine scaffold 
is non-existent. Indeed, initial attempts to achieve this cycliza-
tion employing 3a as substrate using Pd or Cu catalysts failed 
to deliver the desired indenopyridine product; undesired C-N 
bond formation generated 6 as the sole product (Scheme 3).  

Scheme 3. Pd-Catalyzed C-H Arylative Cyclization 

 

To circumvent this undesired pathway, pyridine N-
alkylation and acylation were pursued as a means to block C-
N bond formation and potentially facilitate formation of ben-
zylpyridinylidene benzonitrile 8 via deprotonation, which, in 
turn, allows access to a cyclization via a Heck type manifold. 
N-Acylation of pyridine 3 with phenyl chloroformate, howev-
er, was unsuccessful due to non-regioselective C-acylation at 
the benzylic position. Fortunately, crystalline pyridinium salts 
7a and 7b could be directly isolated after benzylation with 
BnBr at 75 °C in high yields, providing a convenient means 
for purification following the SNAr coupling. An overall yield 
of >80% was readily achieved on metric ton scale by perform-
ing the SNAr coupling and benzylation in a single batch to 
obtain pyridinium salts 7a and 7b as white crystalline solids 
with >99% purity. 
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The pyridinium salts 7a-b were then subjected to cyclization 
with Pd catalysts. In the presence of Pd(OAc)2, weaker organic 
bases (Et3N or i-Pr2NEt) afforded low conversion even under 
forcing conditions. On the other hand, stronger base DBU 
provided the desired tricyclic structure 9 with complete con-
sumption of 7a-b. The highly conjugated neutral species 816 
was observed as an intensely red-colored compound upon 
treatment of 7a-b with DBU. A detailed screening of Pd cata-
lysts and reaction conditions for the economically preferred 
aryl bromide 7b identified Pd(dppf)Cl2 as the best catalyst 
system. With 1.25 mol% of Pd(dppf)Cl2 and 3 equiv of DBU 
in DMF at 110 °C for 2-5 h, the highly conjugated indeno-
pyridine 9 was obtained as a deep-red crystalline solid in 93% 
yield and >99% purity after direct crystallization from the 
crude reaction mixture. This novel and direct C-H arylation 
enabled the construction of the requisite tricyclic indeno-
pyridine structure in a concise and highly efficient manner, 
and was successfully implemented for production of com-
pound 9 in >1 metric ton quantities. Moreover, this work fur-
ther serves as the basis for development of a nickel catalyzed 
intramolecular arylation as a general method for the synthesis 
of 1-azafluorenes.17,18 

Mechanistically, the intramolecular cyclization can occur 
through either the neutral intermediate 8 or the cationic pyri-
dinium salt 7b (Scheme 4). To fully understand the mecha-
nism while optimizing for process robustness, DFT calcula-
tions were performed with Gaussian 0919 at the B3LYP/6-
31G(d)-LANL2DZ(for Pd) level in the gas phase.20 With 
DBU, the free base form 8/DBU•H+ was computed to be 4.8 
kcal/mol lower in energy than 7b/DBU, consistent with 8 be-
ing the major species in solution (see below, benzyl replaced 
with methyl for all intermediates).  Notably, computations (see 
the Supporting Information) revealed that this situation is de-
pendent on both the nitrile substitution acidifying the pyridini-
um and the use of a stronger amine base DBU in accord with 
experimental findings.   

Scheme 4. Equilibria and Key Reaction Barriers for Pd-
catalyzed Cyclization (computed using the basis set M06/6-
311+G(d,p)-LANL2DZ(Pd)-SMD-nitromethane//B3LYP/6-
31G(d)/LANL2DZ(Pd)-gas, values in kcal/mol) 

 

Both 7b and 8 were found to undergo facile oxidative addi-
tion to the corresponding aryl palladium species, in contrast to 
the related nickel system where oxidative addition to the pyri-
dinium species is markedly lower in energy.17 Although signif-
icant amounts of both aryl palladium species are expected 

based on the computed equilibrium for the acid-base inter-
change, the subsequent migratory insertion onto a double bond 
of the charged species is untenable (48.1 kcal/mol) due to the 
aromatic stabilization of the pyridinium. On the other hand, 
the energetic barrier (29.6 kcal/mol) for migratory insertion of 
the neutral species is readily accessible under the reaction 
conditions of this process.  

The set of equilibria prior to migratory insertion is con-
sistent with the reaction kinetics, and the reaction is expected 
to be first order in Pd catalyst and zeroth order in substrate 
(see the Supporting Information). Moreover, since the depro-
tonation equilibria control the concentration of the pre-
insertion intermediates, a fractional order in base is expected. 
The catalytic cycle proposed based on the reaction kinetics 
and computational results is shown in Scheme 5. Base-
mediated deprotonation sets up an equilibrium favoring the 
neutral species 7’, which undergoes oxidative addition of the 
catalyst. Alternately, oxidative addition to the pyridinium form 
8’ followed by base mediated-deprotonation generates the 
same neutral precursor required for the migratory insertion to 
occur. Isomerization to a syn configuration then facilitates β-
hydride elimination to yield the cyclization product and gener-
ate a PdII species that reforms the Pd0 catalyst closing the cata-
lytic cycle.  Although a lower energy pathway is calculated for 
the free base 8, we speculate that the higher yields obtained 
from pyridinium salt 7b are due to its greater stability, mitigat-
ing byproduct formation.16 

Scheme 5. Proposed Catalytic Cycle for Pd-Catalyzed Cy-
clization 

 

Non-enantioselective Hydrogenation and Chiral Resolu-
tion With a concise approach to the highly conjugated tricy-
clic indenopyridine 9 in hand, we next focused our attention 
on the desired ring reduction (Scheme 6). Unfortunately, ex-
tensive evaluation of the reduction of 9 in the presence of a 
range of heterogeneous catalysts (Pd/C, Pt/C, Raney Ni, Rh/C 
and Ru/C) clearly indicated that the cyano moiety is incompat-
ible under these conditions. A complex reaction mixture was 
always obtained as a combination of partial ring reduction, de-
benzylation, and nitrile reduction. 

Scheme 6. Challenging Hydrogenation of Indenopyridine 9 
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maining atoms.33 An outer-sphere dissociated mechanism34 
similar to the DFT-computed Ir-catalyzed hydrogenation 
mechanism of imines35 and quinolines31 was used as the basis 
for the computational studies of the asymmetric Ir-(S,S-L5)-
catalyzed hydrogenation of the enamine intermediate 15. An 
iodo-Ir(III) complex B was found to be a viable catalyst for 
the sequential protonation and hydride delivery pathway for 
enamine reduction. Although the rate limiting step is hydride 
delivery (TS-2), the initial hydrogen transfer (protonation) 
dictates the stereochemical outcome of the transformation 
(TS-1) as the diastereoselective iridium-hydride delivery 
would preferentially occur from the less sterically demanding 
convex face (syn) directed by the stereocenter of the iminium 
intermediate 18. This result is consistent with the experimental 
observation that the addition of the two hydrogens across the 
double bond in enamine 15 occurs in an exclusively cis-
fashion, with no trans-isomer detected in the reaction mix-
ture.21 
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Figure 7. a) Proposed asymmetric outer-sphere dissociative cata-
lytic cycle of the Ir-Hydrogenation enamine intermediate 15. DFT 
calculations: B3LYP/LANL2DZ, CPCM solvation model with 
THF. Thermal corrections at: 323.15 K at 1 atm. b) 3D-Model of 
TS-1 and stereochemical model via syn-Ir-hydride reduction of 
iminium intermediate 18. 

Completion of the Synthesis With enantioenriched in-
denopiperidine 14.HBr in hand, selective debenzylation was 
pursued en route to the final API (Scheme 8). As previously 
described, incompatibility of the nitrile to hydrogenolysis con-
ditions thwarted our initial efforts. Fortunately, α-chloroethyl 
chloroformate has been shown to cleave N-alkyl bonds under 
mild conditions while tolerating a variety of sensitive func-
tionalities.36 Following in situ salt break and extraction, appli-
cation of this method effects debenzylation to afford the amine 
19 as its hydrochloride salt. Without isolation, chirality up-
grade of the amine with D-DBTA furnished salt 2 in 
>99.75:0.25 er and 67% overall isolated yield for the telescop-
ic process starting from pyridinium salt 13. Propane phos-
phonic acid anhydride (T3P)-mediated amide coupling with 

benzimidazole acid followed by the subsequent hydrochloride 
salt formation yielded the target compound 1 in 76% yield 
over two steps. 

Scheme 8. Completion of the Synthesis 
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CONCLUSION  

In summary, an efficient enantioselective synthesis of 11ß-
HSD1 inhibitor 1 was developed starting from inexpensive 
starting materials utilizing low catalyst loadings and excellent 
step-economy. The total synthesis of the target molecule was 
achieved in 7 steps with 38% overall yield starting from 3-
bromo-4-methylbenzonitrile (4b). The key feature of the syn-
thesis is a sequential intramolecular direct C-H arylation to 
construct the tricyclic indenopyridine and subsequent asym-
metric hydrogenation of the resulting fused indenopyridinium 
salt. The key asymmetric hydrogenation process was achieved 
by designing a unique, rigid P,N-ligand MeO-BoQPhos. With 
a low catalyst loading of 1000 ppm [Ir(COD)Cl]2, the enantio-, 
diastero-, and chemoselective reduction of three contiguous 
double bonds of compound 13, including a most challenging 
tetra-substituted alkene intermediate, was accomplished. This 
concise and innovative synthetic approach avoided functional 
group manipulation of the labile nitrile moiety and accelerated 
the production of 1 on multi-kilogram scale for clinical studies 
of this diabetes drug candidate. 
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