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a b s t r a c t

In the context of our ghrelin inverse agonist program, a functionalized bromoindane 3 provided a
versatile intermediate for structure–activity relationship studies. After developing operationally simple
cross-coupling reactions, a broad spectrum of chemical space was successfully explored. Optimization
of a one-pot borylation/Suzuki sequence provided the desired products in high yield with low loading
of the palladium catalyst. High yields of N-linked heterocyclic analogues were obtained through palla-
dium catalyzed C–N bond formation. In addition, carboxylation of the bromoindane provided an indane
carboxylic acid for further diversification.

� 2012 Elsevier Ltd. All rights reserved.
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Modular intermediates are key components of any drug discov-
ery program. They can provide efficient access to analogues and al-
low for rapid structure–activity relationship (SAR) exploration.
Points of diversity within an intermediate combined with a robust
synthesis allow the discovery team to make rational decisions on
the structures they wish to pursue for their program. Our team
was interested in the structural diversity of spiroazetidine–piperi-
dines 1 and 2 (Fig. 1) as ghrelin1 inverse agonists and their use as
therapeutic agents to treat type 2 diabetes.2 We recently disclosed
the SAR work around scaffold 1,3 the synthesis of the chiral spiro-
azetidine–piperidines,4 and now wish to report the synthetic
enablement of the heteroaromatic region of scaffold 2.

To access various structural analogues of 2, synthetic
enablement was required to effectively vary the heteroaryl group
off the indane ring. It was envisioned that intermediate 3 could
be a modular starting point conducive to chemical space expansion
and SAR exploration. The N-Boc protected piperidine ring would al-
low for orthogonal piperidine amide SAR development, while the
aryl halide would allow for exploration of a variety of aryl groups
at C5 (Scheme 1).
ll rights reserved.
The bromoindane 3 was prepared as described previously from
a chirally pure bromoindane amine and N-Boc-piperidine chloroal-
dehyde under reductive amination/cyclization conditions.4

Reaction of 3 with a variety of boronic acids was demonstrated;
however, the limited availability of heteroaryl boronic acid mono-
mers impacted the diversity of chemical space that could be
explored.5 In comparison, a diverse pool of heteroaryl halides are
available and we therefore reasoned that conversion of 3 to the
intermediate boronate 4 followed by Suzuki coupling with a vari-
ety of aryl halides would allow us to probe broader chemical space.
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Figure 1. Core structures of ghrelin inverse agonists for SAR exploration.
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Scheme 1. One-pot borylation/Suzuki reaction of bromoindane 3.
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The intermediate 4 was isolated in 64% yield and was subjected to
the Suzuki coupling, but the overall yield over the two-steps was
low (�50%) and 4 was not stable for storage (prone to hydrolysis
and further decomposition). Thus, the one-pot approach seemed
more appealing. Initial conditions for the one-pot two-step Suzuki
sequence involved heating 3 with 5 mol % of 1,10-bis(diphenyl-
phosphino)ferrocene)dichloro palladium (Pd(dppf)Cl2), bis(pinaco-
lato)diboron ((pinB)2) (1.1 equiv), and potassium acetate (4 equiv)
in 1,4-dioxane at 80–110 �C for 4–6 h, followed by addition of the
heteroaryl chloride such as 5e, additional 5 mol % of Pd(dppf)Cl2,
and aqueous potassium carbonate (7 equiv) and heating the mix-
ture in 1,4-dioxane at 110 �C for 18 h to give 68% yield of 6e after
silica gel chromatography. Several analogues were made following
this protocol (Table 1, conditions A) and they tended to have dark
color even after several chromatographic purifications. The
relatively large amount of palladium used over the two-steps
was considered to be the cause of the discoloration.

To avoid additional chromatography and to increase purity, the
two-step one-pot Suzuki process was optimized using 2-chloro-5-
ethylpyrimidine as the coupling partner. Each step was studied
separately by following the course of the reaction by HPLC. First,
the temperature and time of the borylation reaction were studied.
With 5 mol % of the Pd-catalyst the reaction did not proceed at all
at room temperature. Increasing the temperature to 110 �C for 1 h
with the same catalyst loading showed full conversion to the inter-
mediate boronate 4. The catalyst loading was reduced to 3 mol %
and finally to 1 mol % at 110 �C resulting in full conversion to 4 in
1 h. To this reaction mixture was added 2-chloro-5-ethylpyrimidine
(5e), potassium carbonate (7 equiv), various amounts of catalyst
(1–5 mol %) and the reactions were monitored by HPLC. After 3 h
at 110 �C, the reactions with 2–5 mol % catalyst had reached com-
pletion, whereas the reaction with just 1 mol % was 90% complete.
This reaction did not proceed further even after heating for 18 h.
However, the total catalyst loading was reduced from 10 to
3 mol % and the reaction time was reduced from 24 to 4 h. In
addition, the purity increased to 98% (HPLC) to produce 6e as an
off-white solid.6

Several other heteroaryl halides were tested in this reaction and
the results are shown in Table 1. In general, the reaction works well
with six-membered heteroaryl chlorides 5a–5i (yields between
63% and 94%, entries 1–9). When a hydrolytically labile group
(i.e., nitrile or ester) is present, the yield drops due to partial
hydrolysis of the final product under the reaction conditions (en-
tries 10–12). A similar result was observed for compound 6v which
was obtained in 24% yield from the boronic acid 5v under standard
Suzuki conditions with 5 mol % of Pd(PPh3)4 (entry 22). In contrast,
compound 6m (entry 13) and the starting material 5m seemed to
be stable toward hydrolysis and the product was isolated in
quantitative yield.
The primary amide containing halide 5n also gave the desired
product under conditions A (entry 14); however, the reaction did
not go to completion (21% conversion by HPLC), even after pro-
longed heating and isolation of 6n was unsuccessful. Compound
6w was made from the boronic acid 5w (entry 23) in quantitative
yield under direct Suzuki coupling of 3 with 5 mol % of Pd(OAc)2

and trisodium triphenylphosphine-3,30,300-trisulfonate (TPPTS)
ligand (20 mol %). Five-membered heteroaryl analogues were
obtained from the bromides 5o–5t under conditions A to give
6o–6t between 32–96% yields (entries 15–20). The yield of 6u from
2-iodooxazole7 (5u) (entry 21) was rather low due to the instability
of 2-iodooxazole under aqueous conditions.

Upon scale-up of 6f and 6g, the one-pot Suzuki procedure was
further optimized using only one portion of 2.5 mol % of Pd
(PPh3)2Cl2 to give the desired products in high purity without chro-
matographic purification. The solvent was exchanged to toluene to
avoid potential peroxide generating 1,4-dioxane on larger scale.
Using NaOH in place of K2CO3 also improved the reaction, presum-
ably by effecting a more efficient in-situ boronate ester hydrolysis
reaction. An aqueous acid–base work up followed by treatment
with Isolute� Ultra pure thiol silica gel gave >99% pure material.8

Both 6f and 6g were scaled up (>100 g) via this method in almost
quantitative yields.

In addition to one-pot borylation/Suzuki couplings and direct
Suzuki couplings, the bromoindane 3 can be subjected to
Buchwald-type couplings with NH-containing heterocycles 7a–7b
(entries 24 and 25).9 Using 4 mol % of tris(dibenzylideneace-
tone)dipalladium (Pd2(dba)3) catalyst and 8 mol % of 5-(di-tert-
butylphosphino)-103050-triphenyl-10H-[1,4]bipyrazole (BippyPhos)
ligand10 products 8a and 8b were isolated in great yields and
purity. Carboxylation of bromoindane 3 provided an additional
handle for structural diversity and was achieved with Mo(CO)6

and 5 mol % of Herrmann’s catalyst11 (trans-bis(acetate)bis[o-(di-
o-tolylphosphine)benzyl]dipalladium(II)) in the presence of aque-
ous sodium carbonate to give carboxylic acid 8c in moderate yield.
Removal of the N-Boc-group of compounds 6a–w and 8a–c using
standard acidic conditions (TFA or HCl) followed by amide coupling
with a variety of carboxylic acids provided a number of potent
ghrelin inverse agonists. A description of these compounds along
with key data will be provided in a separate communication.

In conclusion we have discovered smooth and operationally
simple methods for efficient delivery of a number of heteroaryl
analogues 2 from a key intermediate 3. These include a one-pot
two-step Suzuki protocol, a Buchwald-type coupling reaction,
and a carboxylation reaction. Optimization of the Suzuki reaction
for lower catalyst loading provided final products in high yield
and purity on small as well as on large scale. The synthetic meth-
ods identified enabled rapid SAR exploration of the indane scaffold
3 in the context of the drug discovery program.



Table 1
Examples of compounds accessible from bromoindane 3
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N
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Br
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R5a-u
One-pot borylation/
Suzuki conditions

A-C (via 4)

3
6a-w
8a-c

5v-w direct Suzuki
conditions D-E

7a-b C-N coupling
conditions F

7c carboxylation
conditions G

Entry Reactant Conditionsa Product (yield)b (%) Entry Reactant Conditionsa Product (yield)b (%)

1
N

N

Cl

5a
B 6a (99) 14 N

Cl

H2NOC5n
A 6n (21)c
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N Cl
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A 6b (63) 15
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A 6o (80)
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Me
B 6c (94) 16
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Me5p
A 6p (60)

4
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Me5d
A 6d (81) 17

S

N
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Me
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A 6q (32)
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N
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Et5e
B 6e (>99) 18
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N
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A 6r (47)
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N ClMe
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C 6f (84) 19 N

N
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A 6s (78)
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N
N
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Me
5g

C 6g (86) 20

N

S

N
Br

Me

5t

A 6t (96)

8

N
N

Cl

Et
5h

A 6h (88) 21 O

N
I

5u

A 6u (20)

9
N

N Cl

Me

Me

5i

A 6i (82) 22 N

B(OH)2

MeO2C5v

D 6v (24)

10 N Br

NC5j

A 6j (19) 23

B(OH)
2

H2NOC5w

E 6w (>99)

11
N

N

Cl

NC5k
A 6k (54) 24 N

NH
7a

F 8a (82)

12

N
N

Cl

NC
5l

A 6l (20) 25
N

NH
Me7b

F 8b (79)

13 N
Br

NC5m
B 6m (>99) 26 7c Mo(CO)6 G 8c (51)

a Conditions: (A) (i) Pd(dppf)Cl2 (5 mol %), (pinB)2 (1.1 equiv), KOAc (4 equiv), dioxane, 110 �C, 4–6 h; (ii) Ar-X (1.2 equiv), Pd(dppf)Cl2 (5 mol %), K2CO3 (7 equiv), dioxane,
110 �C, 18 h. (B) (i) Pd(dppf)Cl2 (1.6 mol %), (pinB)2 (1.1 equiv), KOAc (4 equiv), dioxane, 110 �C, 1 h; (ii) Ar-X (1.2 equiv), Pd(dppf)Cl2 (2.5 mol %), K2CO3 (7 equiv), dioxane,
110 �C, 3 h. (C) (i) Pd(PPh3)2Cl2 (2.5 mol %), (pinB)2 (1.1 equiv), KOAc (4 equiv), toluene, 100 �C, 1.5 h; (ii) Ar-X (1.2 equiv), NaOH (5 equiv), toluene, 90 �C, 5 h; (iii) HCl,
isolute� ultra pure thiol silica gel. (D) Pd(PPh3)4 (5 mol %), K2CO3 (2 equiv), dioxane, 95 �C, 18 h. (E) Pd(OAc)2 (5 mol %), TPPTS (20 mol %), iPrNH (2.4 equiv), H2O/MeCN, 90 �C,
2 h. (F) Pd2dba3 (4 mol %), BiPPyPhos (8 mol %), Cs2CO3 (1.5 equiv), dioxane, 100 �C, 18 h. (G) Herrmann’s catalyst (5 mol %), Na2CO3 (3 equiv), 155 �C, lwave, 20 min.

b Yield refers to isolated product and is reported as an average of minimum of two experiments.
c HPLC conversion, not isolated.

D. P. Fernando et al. / Tetrahedron Letters 53 (2012) 6351–6354 6353



6354 D. P. Fernando et al. / Tetrahedron Letters 53 (2012) 6351–6354
Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.tetlet.2012.09.
047. These data include MOL files and InChiKeys of the most
important compounds described in this article.
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