Tungsten-Catalyzed Allylic Substitution with a Heteroatom Nucleophile: Reaction Development and Synthetic Applications

Yaoyao Xu,[†] Muhammad Salman,[†] Shahid Khan, Junjie Zhang, and Ajmal Khan*

Cite This: https://dx.doi.org/10.1021/acs.joc.0c01632

sulfinate as the heteroatom nucleophile was developed. The reaction utilizes inexpensive and readily available $(CH_3CN)_3W$ - $(CO)_3$ as a precatalyst and proceeds at 60 °C temperature in the presence of 2,2'-bipyridine and its derivatives as ligand. The synthetic utility of allylic sulfones as electrophile was further

demonstrated through Suzuki-Miyaura cross-coupling as showcased by the formal synthesis of (\pm) -hinokiresinol.

INTRODUCTION

Transition-metal-catalyzed allylic substitution reactions have enjoyed widespread applications in organic synthesis over the past 50 years. While palladium catalysis has always been a choice in the vast majority of these reactions,¹ other metal catalysis has found application in selected cases. Catalysts derived from other transition metals² were relatively less studied, but showed high regioselectivity, with iridium catalysis being the most effective.³ The Trost group^{4,5} in 1983 discovered that (group 6 metals) molybdenum (Mo) and tungsten (W) provided regiochemistry, which was complementary to palladium catalysis, with Mo and W affording a branched product compared to that derived from Pd catalysis. Further significant contributions to this area have been reported by the groups of Moberg,⁶ Hughes,⁷ Pfaltz,⁸ and others,⁹ realizing transformations with only carbon-based nucleophiles. In addition, very recently, we have disclosed the first general example of Mo-catalyzed allylic substitution to form a tetrasubstituted C-S bond, demonstrating the prospects of group 6 metal catalysis in the context of carbon-heteroatom bond formation chemistry.¹⁰ On the other hand, since its discovery, studies into the corresponding catalysis with tungsten (W) have remained underdeveloped for decades. In contrast to the potential advantages of W catalysis, which include inherent similarity to the versatile Mo (and Pd) catalysts, literature reports on W-catalyzed allylic substitution revealed only a few examples with carbon nucleophiles (Figure 1A, left),¹¹ with the allylic substitution of heteroatom nucleophiles remaining unknown (Figure 1A, right).¹² Therefore, given the utility of the branched, α -substituted vinylated heteroatom compounds and the difficulty of accessing them by conventional methods, development of such reactions would be highly important.

Considering these circumstances, our interest in group 6 metal catalysis^{10,13} arose from a need to find a novel W-catalyzed allylic substitution reaction to form carbon-heteroatom bond with characteristic synthetic utility. This

study will provide a direct approach to the regioselective formation of branched allylic sulfones since they serve as building blocks in various organic transformation and pharmaceutical industry (Figure 1B).^{14,15} Herein, we report our investigation from this study. The salient features of this methodology are the cost-efficient and simple procedures, high regioselectivity, and excellent functional-group tolerance for both allylic electrophiles and sodium sulfinate. Furthermore, the high reactivity of allylic sulfones as a new class of electrophile¹⁶ to form biologically important compounds through cross-coupling reactions is the special characteristic of this catalytic system.

RESULTS AND DISCUSSION

To develop a catalytic reaction, we used allyl acetate (1a) and 2a as the test reaction in tetrahydrofuran (THF) at 60 °C. We found that W(CO)₆ failed to catalyze the reaction (Table 1, entry 1). Similarly, (CH₃CN)₃W(CO)₃ led to a slow reaction (entry 2). Based on literature reports and our recent work,¹⁰ the use of a stronger σ -donor-type ligand such as bipyridine¹⁷ is to facilitate opening a coordination site on the tungsten, which leads to a significant improvement (entry 3). A more general reaction resulted when allylic carbonate (1b), a slightly better leaving group, was replaced for 1a (entry 4). To further investigate the role of leaving group on allylic electropile, substrate 1c was able to provide the desired branched product in a comparatively high yield (entry 5). By changing the reaction medium from THF to EtOH, the reaction efficiency was remarkably improved and the expected branched product

Received: July 9, 2020 **Published:** August 17, 2020

pubs.acs.org/joc

(A) Tungsten-catalyzed allylic alkylation

$$\begin{array}{c|c} Nu & \text{Nu} = \text{Carbon} \\ \hline \text{few reports} \end{array} \end{array} \begin{array}{c|c} [W/L_n] \\ \hline \hline \text{few reports} \end{array} \end{array} \begin{array}{c|c} Nu = \text{heteroatoms} \\ \hline \text{zero reports} \end{array} \begin{array}{c|c} Nu \\ \hline \text{zero reports} \end{array} \end{array}$$

(B) This work

$$R^{1} \xrightarrow{\text{CLG}} LG$$
or
$$LG$$

$$R^{1} \xrightarrow{\text{CLG}} + R^{2}SO_{2}Na \xrightarrow{\text{W/L}_{n}} \begin{bmatrix} W/L_{n} \end{bmatrix} \xrightarrow{\text{SO}_{2}R^{2}} R^{1} \xrightarrow{\text{R}_{1}} \xrightarrow{\text{SO}_{2}R^{2}} R^{1}$$
allylic sulfones

R¹ = alkyl, aryl, carbocyclic

R² = alkyl, aryl, heteroaryl, carbocyclic

Figure 1. Limitations in W-catalyzed allylic alkylation (A), current work (B).

Table 1. Optimization of the Reaction Parameters^a

	Ph 1a OBoc Ph 1c Conditions 60 °C, 24 h PhSO ₂ Na (2a)	$\rightarrow \qquad \qquad$	ear ner
R ² R ¹	$R^{2} R^{1} = H, R^{2} = H, L1$ $R^{1} = Me, R^{2} = H, L2$ $R^{1} = H, R^{2} = tBu, L3$ $R^{1} R^{2} = CO_{2}Me, R^{1} = H, L4$ $L5$		N
entry	conditions	b/l ^b	yield (%) ^c
1	1a, $W(CO)_6/THF$		
2	1a, (CH ₃ CN) ₃ W(CO) ₃ /THF		<5 ^d
3	1a, (CH ₃ CN) ₃ W(CO) ₃ /L1/THF	10:1	15
4	1b , (CH ₃ CN) ₃ W(CO) ₃ / L1 /THF	10:1	22
5	1c, $(CH_3CN)_3W(CO)_3/L1/THF$	10:1	32
6	1c, $(CH_3CN)_3W(CO)_3/L1/EtOH$	>20:1	91
7	1c, $(CH_3CN)_3W(CO)_3/L1/^iPrOH$	>19:1	45
8	1c, $(CH_3CN)_3W(CO)_3/L1/toluene$		<10 ^d
9	1c, $(CH_3CN)_3W(CO)_3/L1/CH_2Cl_2$		<10 ^d
10	1c, $(CH_3CN)_3W(CO)_3/L2/EtOH$	>20:1	87
11	1c, $(CH_3CN)_3W(CO)_3/L3/EtOH$	>20:1	95
12	1c, $(CH_3CN)_3W(CO)_3/L4/EtOH$	>20:1	65
13	1c, $(CH_3CN)_3W(CO)_3/L5/EtOH$	15:1	20
14	1c, (CH ₃ CN) ₃ W(CO) ₃ /L6/EtOH		<10 ^d
15	1c, (CH ₃ CN) ₃ W(CO) ₃ /L7/EtOH		<10 ^d
16^d	1c, (CH ₃ CN) ₃ W(CO) ₃ /L1/EtOH	>20:1	36
17	1c, without W or ligand		

^{*a*}Reaction conditions: W catalyst (10 mol %), ligand (15 mol %), 1a-c (0.2 mmol), PhSO₂Na 2a (0.30 mmol), solvent (1.0 mL, 0.2 M), 60 °C, 24 h. ^{*b*}Branched-to-linear ratio was determined by ¹H NMR of crude reaction mixture. ^{*c*}Isolated yields. ^{*d*}The reaction was performed at room temperature (25 °C).

3ca was obtained in 91% isolated yield with excellent branched regioselectiviy (entry 6). Subtle changes on the solvent, however, had a negative effect on the reaction to occur, consistently providing lower yields if any (entries 7–9). A further evaluation of ligands revealed that 6,6'-dimethyl-2,2'-bipyridine (L2) decreases the efficiency, while 4,4'-di-tert-butyl-2,2'-bipyridine (L3) demonstrated superior performance to all of the ligands utilized (entries 10-15). The reaction was also performed at room temperature, providing excellent regioselectivity albeit with a reasonable decrease in performance.

ance (entry 16). As expected, control experiments supported that all of the catalyst components (W and ligand) were necessary for the reaction to proceed (entry 17).

The substrate scope of the W-catalyzed allylic sulfonylation with respect to allylic electrophile is summarized in Table 2. Branched allyl carbonates with alkyl substituents (entries, 1–6) afforded branched products in excellent yield and regioselectivity, irrespective of the size of the alkyl group (1c-h). Allylic electrophiles with unsubstituted or substituted group on the phenyl ring were successfully employed in the

pubs.acs.org/joc

Table 2. Reaction Scope with Respect to Allylic Electrophiles^a

	R ¹ R ¹ R ² OCO ₂ Me -	CH ₃ CN) ₃ W(CO) ₃ (10 mol%) L3 (15 mol%) EtOH, 60 °C, 24 h R ³ SO ₂ Na	$R^{O} = S^{R^{3}} + Linear isomer$ $R = R^{1} \text{ or } R^{2}$	
entry	1	\mathbb{R}^3	b/l ^b	yield (%) ^c
1	$R^{1} = CH_{2}CH_{2}Ph (1c)$	Ph	>20:1	95 (3ca)
2	$R^{1} = CH_{3}CH_{2}CH_{2} (1d)$	Ph	>20:1	87 (3da)
3	$\mathbf{R}^1 = \mathbf{C}\mathbf{y} \ (1\mathbf{e})$	Ph	9:1	56 (3ea)
4	$\mathbf{R}^1 = \mathbf{CH}_2(\mathbf{CH}_2)_7\mathbf{CH}_3 \ (\mathbf{1f})$	Ph	>20:1	89 (3fa)
5	$\mathbf{R}^{1} = \mathbf{CH}_{2}\mathbf{CH}_{2}\mathbf{CHCH}_{2} (\mathbf{1g})$	Ph	>20:1	91 (3ga)
6	$\mathbf{R}^1 = \mathbf{Cl}(\mathbf{CH}_2)_2\mathbf{CH}_2 \ (\mathbf{1h})$	Ph	>20:1	82 (3ha)
7	$\mathbf{R}^{1} = \mathbf{Ph} \ (\mathbf{1i})$	Ph	>19:1	84 (3ia)
8	$R^1 = 4 - ClC_6H_4 (1j)$	Ph	>19:1	82 (3ja)
9	$R^1 = 4 - MeOC_6H_4 (1k)$	Ph	>19:1	92 (3ka)
10	$R^2 = Me (11)$	Ph	>19:1	76 (3la)
11	$R^2 = Ph (1m)$	Ph	>19:1	81 (3ia)
12	$R^2 = 4 - MeOC_6H_4 (1n)$	Ph	>19:1	85 (3ka)
13	$R^2 = PhCH_2CH_2 (1o)$	<i>p</i> -tol	>19:1	89 (3ob)
14	$R^2 = Cy (1p)$	<i>p</i> -tol	10:1	72 (3pb)

^{*a*}Reaction conditions: W catalyst (10 mol %), ligand L3 (15 mol %), 1 (0.2 mmol), R³SO₂Na (2a or 2b) (0.30 mmol), EtOH (1.0 mL, 0.2 M), 60 °C, 24 h. ^{*b*}Branched-to-linear ratio was determined by ¹H NMR of crude reaction mixture. ^{*c*}Isolated yields.

Table 3. Reaction Scope with Respect to Sulfinate Nucleophile^a

	R ¹ R	(CH ₃ CN) ₃ W(CO) ₃ (10 → +R ² SO ₂ Na (2) → EtOH, 60 °C, 24	$\xrightarrow{\text{mol}\%)} 0 \xrightarrow{\text{O}=\text{S}^{-R^2}} R^1 \xrightarrow{\text{O}=\text{S}^{-R^2}} 3$	Linear + isomer	
entry	1	2	3	b/l ^b	yield (%) ^c
1	1c	2b $(R^2 = 4 - MeC_6H_4)$	3ob	>20:1	94
2	1c	$2c (R^2 = 4-MeOC_6H_4)$	3cc	>20:1	92
3	1c	2d $(R^2 = 4 - ClC_6H_4)$	3cd	>19:1	89
4	1c	2e $(R^2 = 4 - FC_6H_4)$	3ce	>19:1	85
5	1c	$2f(R^2 = 2,4-MeOC_6H_3)$	3cf	>20:1	90
6	1c	$2g (R^2 = 2-MeO, 5-BrC_6H_3)$	3cg	>20:1	86
7	1c	2h ($\mathbb{R}^2 = 2$ -naphthyl)	3ch	>19:1	94
8	1c	2i (R ² = 2,3-dihydrobenzofuryl)	3ci	>19:1	92
9	1c	2j (R2 = 2-thienyl)	3cj	>19:1	85
10	1c	$2\mathbf{k} \ (\mathbf{R}^2 = \mathbf{M}\mathbf{e})$	3ck	>20:1	78
11	1c	2l (R2 = Et)	3cl	>20:1	82
12	1c	2m (R2 = cyclopropyl)	3cm	>20:1	76
13	1i	2b ($R^2 = 4$ -MeC ₆ H ₄)	3ib	>19:1	87
14	1i	$2c (R^2 = 4-MeOC_6H_4)$	3ic	>19:1	90
15	1i	2d $(R^2 = 4 - ClC_6H_4)$	3id	>19:1	86
16	1i	2e $(R^2 = 4 - FC_6H_4)$	3ie	>19:1	78
17	1i	$2n (R^2 = 4-CNC_6H_4)$	3in	>19:1	80
18	1i	2o $(R^2 = 4 - NO_2C_6H_4)$	3io	>19:1	81
19	1i	2p ($R^2 = 3$ -Br C_6H_4)	3ip	>19:1	86

^aReaction conditions: W catalyst (10 mol %), ligand L3 (15 mol %), 1 (0.2 mmol), R²SO₂Na 2 (0.30 mmol), EtOH (1.0 mL, 0.2 M), 60 °C, 24 h. ^bBranched-to-linear ratio was determined by ¹H NMR of crude reaction mixture. ^cIsolated yields.

desired C–S bond formation (entries 7–9). Linear allyl carbonates with methyl (11) or phenyl (1m) groups exclusively afforded the branched product (entries 10 and 11), suggesting a negligible decrease in yield. Allyl carbonate containing a 4-methoxyphenyl (1n), PhCH₂CH₂ (1o), or cyclohexyl (1p) group produced the products in a high yield while maintaining the excellent regioselectivity (entries 12–14).

The substrate scope with respect to sulfinate nucleophile is summarized in Table 3. Sulfinate salt with both electron-

withdrawing and electron-donating substituents on the aromatic ring underwent sulfonylation in high yield and absolute regioselectivity (entries 1-6). The sulfinate salt with bulky naphthyl (**2h**), 2,3-dihydrobenzofuryl (**2i**), and 2-thienyl (**2j**) as nucleophile also afforded satisfactory results (entries 7-9). Alkyl-substituted sodium sulfinates also returned the desired branched product in high yields (entries 10-12). Various sulfinate salts with different electronic nature were coupled with phenyl allylic carbonate (**1i**) in good yield with

pubs.acs.org/joc

Article

Figure 2. Formal synthesis of (\pm) -hinokiresinol. Reaction conditions: (a) Ni(cod)₂ (10 mol %) BrettPhos (12 mol %), 3ka (0.2 mmol), 4 (0.2 mmol), NaOEt (2.2 equiv), PhMe (0.2 M), 24 h, 80 °C. (b) 3ka (0.2 mmol), 4 (0.4 mmol), [{PdCl(allyl)}₂] (5 mol %), SIPr·HCl (10 mol %), NaOH (3 equiv), dioxane/H₂O = 5:3, 120 °C, 15 h.

excellent regioselectivity (entries 13–19). Of particular note, in almost all cases, the reactions proceeded with excellent branched regioselectivity (>19:1).

Due to their ambiphilic nature, (allylic) sulfones have attracted special attention in allylic substitution and in Suzuki cross-coupling reactions.¹⁶ Therefore, we decided to utilize allyl sulfone 3ka in Suzuki-Miyaura cross-coupling to achieve formal synthesis of the (\pm) -hinokiresinol natural product.¹ For this purpose, synthesis of 3ka was performed on a large scale (5.0 mmol) under standard conditions and isolated in 89% yield (1.3 g) without any loss in regioselectivity, which proved the practical use of the current protocol.¹⁹ As illustrated in Figure 2, exposure of allylic sulfone 3ka to boronic acid 4 (1.1 equiv) under previously reported conditions¹⁶ produces compound 5, which could be converted to (\pm) -hinokiresinol through the known procedures reported by Carreira and coworkers.^{18b} Furthermore, we invision that this approach could find significant utility in the target-directed synthesis of other related compounds containing gem-diarylalkyl group,²⁰ which would have proven challenging to prepare via more conventional approaches.

To investigate the potential application of this newly developed methodology in asymmetric synthesis of allylic sulfone, a preliminary study on chiral ligand screening was probed. One result with the chiral ligand (*R*)-**L8**, the branched allylic sulfone (*R*)-**3ia** was obtained with 62% of isolated yield, excellent branched regioselectivity (>19:1), and a promising 35.5% enantiomeric excess (ee), as shown in Scheme 1.¹⁹

CONCLUSIONS

In summary, a relatively mild (tungsten) W-catalyzed sulfonylation of both linear and α -branched allylic electrophiles has been developed. By modifying the sodium sulfinate, a variety of allylic sulfones can be obtained using a simple and inexpensive catalyst system. This operationally simple reaction proceeds at a mild temperature, affording the allyl sulfones with excellent regioselectivity, good to excellent yields, and good functional-group tolerance, thus providing ample opportunities for further derivatization. Through the desulfinative cross-coupling of allylic sulfone **3ka**, we were able to achieve the formal synthesis of (\pm) -hinokiresinol (as presented in Figure 2). Investigations of enantioselective reactions and extension of current catalyst system to other nucleophiles are currently ongoing in our lab and will be reported in due course.

(±)-hinokiresinol

EXPERIMENTAL SECTION

Preparative column chromatography was performed according to the Still method. Solvents for the chromatography are listed as volume/ volume ratios. High-resolution mass spectra (HRMS) were performed at Instrumental Analysis Center of Xi'an Jiao Tong University using a QTOF microspectrometer. Proton nuclear magnetic resonance (¹H NMR) spectra were recorded with a Varian Mercury Plus 400 (400 MHz) spectrometer. Chemical shifts are reported in delta (δ) units, parts per million (ppm) downfield from tetramethylsilane or ppm relative to the center of the singlet at 7.26 ppm for deuteriochloroform. Coupling constants are reported in hertz (Hz). Carbon-13 nuclear magnetic resonance (¹³C NMR) spectra were recorded with a Varian Gemini 400 (100 MHz) spectrometer. Chemical shifts are reported in delta (δ) units, ppm relative to the center of the triplet at 77.0 ppm for deuteriochloroform. ¹³C NMR spectra were routinely run with broad-band decoupling. High-performance liquid chromatography (HPLC) was performed with FuLi Instruments spectrometers using a chiralcel OD-H column. Optical rotations were measured on an SGW-1 polarimeter. W(CO)₆, (CH₃CN)₃W(CO)₃, and bipyridine compounds were purchased from Energy Chemicals and Aladin/Sigma-Aldrich companies and used as received. Allylic carbonates were synthesized according to the previously reported procedure.²¹ Sodium sulfinates were prepared according to a method reported in the literature.²² All other chemicals were used as received from commercial resources.

Synthesis and Characterization of Allylic Carbonates. Allylic carbonates 1 were synthesized according to the previously reported

pubs.acs.org/joc

procedures.²¹ All characterization data are in accordance with the literature. New substrates have been fully characterized.

tert-Butyl Dodec-1-en-3-yl Carbonate (**1f**). Obtained as a colorless oil (85% yield, 1.3 g); ¹H NMR (400 MHz, CDCl₃) δ 5.77 (ddd, *J* = 17.2, 10.4, 7.2 Hz, 1H), 5.25 (d, *J* = 17.2 Hz, 1H), 5.21 (d, *J* = 10.4 Hz, 1H), 4.78 (t, *J* = 7.2 Hz, 1H), 1.77–1.73 (m, 2H), 1.42 (s, 9H), 1.24–1.10 (m, 14H), 0.85 (t, *J* = 6.4 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 151.9, 137.1, 115.4, 83.6, 79.0, 36.0, 31.9, 29.8, 29.5, 29.3, 27.8, 25.2, 22.6, 14.0. HRMS (ESI) *m/z*: [M + Na]⁺ calcd for C₁₇H₃₂O₃Na 307.2249; found 307.2241.

tert-Butyl (6-Chlorohex-1-en-3-yl) Carbonate (1h). Obtained as a colorless oil (80% yield, 1.4 g); ¹H NMR (400 MHz, CDCl₃) δ 5.99–5.92 (m, 1H), 5.17–5.11 (m, 2H), 4.69 (t, *J* = 7.2 Hz, 1H), 3.52–3.47 (m, 2H), 1.93–1.75 (m, 4H), 1.42 (s, 9); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 151.7, 136.7, 115.8, 82.8, 79.7, 44.9, 30.7, 27.7, 27.0. HRMS (ESI) *m*/*z*: [M + Na]⁺ calcd for C₁₁H₁₉ClO₃Na: 257.0920; found 257.0914.

tert-Butyl (1-(4-Chlorophenyl)allyl) Carbonate (1j). Obtained as colorless oil (70% yield, 1.1 g); ¹H NMR (400 MHz, CDCl₃) δ 7.38–7.31 (m, 4H), 6.06–5.97 (m, 2H), 5.36–5.26 (m, 2H), 1.49 (s, 9); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 152.6, 137.2, 135.7, 134.0, 128.7, 128.4, 117.6, 82.6, 78.4, 27.7. HRMS (ESI) m/z: [M + Na]⁺ calcd for C₁₄H₁₇ClO₃Na 291.0764; found 291.0758.

tert-Butyl (1-(4-Methoxyphenyl)allyl) Carbonate (1k). Obtained as a colorless oil (72% yield, 1.2 g); ¹H NMR (400 MHz, CDCl₃) δ 7.33 (d, J = 8.4 Hz, 2H), 7.12 (d, J = 8.4 Hz, 2H), 5.99–5.91 (m, 1H), 5.28 (d, J = 17.2 Hz, 1H), 5.14 (d, J = 10.0 Hz, 1H), 5.10 (t, J =7.2 Hz, 1H), 3.79 (s, 3H), 1.54 (s, 9); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 156.6, 150.2, 140.1, 139.9, 127.3, 121.1, 115.0, 83.4, 74.4, 55.3, 27.5. HRMS (ESI) m/z: [M + Na]⁺ calcd for C₁₅H₂₀O₄Na 287.1259; found 287.1251.

General Procedure for W-Catalyzed Allylic Sulfonylation of α -Substituted Allylic Carbonate 1 with Sodium Sulfinate 2. To an oven-dried screw-cap reaction tube equipped with a magnetic stir bar, $(CH_3CN)_3W(CO)_3$ (10 mol %), bipyridine ligand (L3) (15 mol %), allylic carbonate 1 (0.2 mmol), and sodium sulfinate 2 (0.3 mmol) were added. The reaction tube was sealed with a rubber septum, then evacuated and backfilled with nitrogen. Anhydrous ethanol (0.2 M, 1 mL) was added via a syringe. The resulting mixture was stirred at 60 °C for 24 h. The reaction mixture was cooled to room temperature, and the residue was purified by flash column chromatography on silica gel to afford the pure allylic sulfone 3.

((5-Phenylpent-1-en-3-yl)sulfonyl)benzene (**3ca**). Prepared from **1c** and **2a** by following the general procedure. Purification was performed with flash column chromatography (PE/EA = 20:1) on silica gel to obtain the title compound as a colorless oil in 95% yield (54.42 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.81–7.79 (m, 2H), 7.64–7.60 (m, 1H), 7.53–7.50 (m, 2H), 7.29–7.25 (m, 2H), 7.22–7.18 (m, 1H), 7.13–7.10 (m, 2H), 5.67 (dt, *J* = 9.6, 17.2 Hz, 1H), 5.37 (d, *J* = 10.0 Hz, 1H), 5.07 (d, *J* = 17.2 Hz, 1H), 3.49 (t, *J* = 7.2 Hz, 1H), 2.82–2.75 (m, 1H), 2.57–2.40 (m, 2H), 2.02–1.93 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 141.3, 135.1, 133.6, 130.8, 129.8, 129.4, 128.5, 128.4, 126.6, 124.2, 69.3, 32.5, 28.6. HRMS (ESI) *m/z*: [M + Na]⁺ calcd for C₁₇H₁₈O₂SNa 309.0925; found 309.0917.

(*Hex-1-en-3-ylsulfonyl)benzene* (**3***da*). Prepared from **1d** and **2a** by following the general procedure. Purification was performed with flash column chromatography (PE/EA = 20:1) on silica gel to obtain the title compound as a colorless oil in 87% yield (39.0 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.74–7.71 (m, 2H), 7.57–7.53 (m, 1H), 7.46–7.42 (m, 2H), 5.60 (dt, *J* = 9.6, 17.2 Hz, 1H), 5.30 (d, *J* = 10.0 Hz, 1H), 5.00 (d, *J* = 17.2 Hz, 1H), 3.42 (t, *J* = 7.2 Hz, 1H), 1.95–1.86 (m, 2H), 1.51–1.26 (m, 2H), 0.91 (t, *J* = 7.4 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 136.9, 135.4, 133.5, 130.8, 128.3, 120.3, 69.6, 35.3, 16.6, 14.1. HRMS (ESI) *m*/*z*: [M + Na]⁺ calcd for C₁₂H₁₆O₂SNa 247.0769; found 247.0761.

((1-Cyclohexylallyl)sulfonyl)benzene (**3ea**). Prepared from **1e** and **2a** by following the general procedure. Purification was performed with flash column chromatography (PE/EA = 20:1) on silica gel to obtain the title compound as a colorless oil in 56% yield (29.6 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.72–7.69 (m, 2H), 7.58–7.49 (m,

3H), 5.62 (dt, *J* = 9.6, 17.2 Hz, 1H), 5.11 (d, *J* = 10.0 Hz, 1H), 4.76 (d, *J* = 17.2 Hz, 1H), 3.46 (t, *J* = 7.2 Hz, 1H), 2.23–2.09 (m, 2H), 1.82–1.58 (m, 4H), 1.30–0.95 (m, 5H); $^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 143.3, 136.7, 133.2, 130.5, 128.1, 119.2, 74.6, 43.1, 30.8, 30.6, 26.9, 26.6, 26.3. HRMS (ESI) *m*/*z*: [M + Na]⁺ calcd for C₁₅H₂₀O₂SNa 287.1082; found 287.1076.

(Dodec-1-en-3-ylsulfonyl)benzene (**3fa**). Prepared from 1f and **2a** by following the general procedure. Purification was performed with flash column chromatography (PE/EA = 20:1) on silica gel to obtain the title compound as a colorless oil in 89% yield (54.9 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.82–7.80 (m, 2H), 7.63–7.61 (m, 1H), 7.52–7.49 (m, 2H), 5.60 (dt, *J* = 9.6, 17.2 Hz, 1H), 5.34 (d, *J* = 10.0 Hz, 1H), 4.90 (d, *J* = 17.2 Hz, 1H), 3.47 (t, *J* = 7.2 Hz, 1H), 1.95–1.86 (m, 2H), 1.30–1.23 (m, 14H), 0.88 (t, *J* = 6.4 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 135.4, 134.8, 133.5, 130.8, 128.3, 120.4, 69.5, 33.8, 31.9, 29.9, 29.5, 29.4, 29.3, 23.7, 22.7, 14.1. HRMS (ESI) *m/z*: [M + Na]⁺ calcd for C₁₈H₂₈O₂SNa 331.1708; found 331.1702.

(*Hepta-1,6-dien-3-ylsulfonyl)benzene* (**3ga**). Prepared from **1g** and **2a** by following the general procedure. Purification was performed with flash column chromatography (PE/EA = 20:1) on silica gel to obtain the title compound as a colorless oil in 91% yield (43.0 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.83–7.81 (m, 2H), 7.64–7.61 (m, 1H), 7.53–7.50 (m, 2H), 5.81–5.75 (m, 1H), 5.65–5.59 (m, 1H), 5.37 (d, *J* = 6.8 Hz, 1H), 5.34 (d, *J* = 10.0 Hz, 1H), 4.98 (d, *J* = 6.8 Hz, 1H), 5.92 (d, *J* = 17.0 Hz, 1H), 3.53 (t, *J* = 7.2 Hz, 1H), 2.08–1.96 (m, 4H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 135.6, 135.3, 135.1, 133.6, 130.8, 128.4, 120.7, 115.3, 69.2, 31.1, 29.4. HRMS (ESI) *m/z*: [M + Na]⁺ calcd for C₁₃H₁₆O₂SNa 259.0769; found 259.0764.

((6-Chlorohex-1-en-3-yl)sulfonyl)benzene (**3ha**). Prepared from **1h** and **2a** by following the general procedure. Purification was performed with flash column chromatography (PE/EA = 20:1) on silica gel to obtain the title compound as a colorless oil in 82% yield (42.4 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.83–7.81 (m, 2H), 7.65–7.62 (m, 1H), 7.54–7.51 (m, 2H), 5.65 (dt, *J* = 10.0, 17.2 Hz, 1H), 5.37 (d, *J* = 10.0 Hz, 1H), 5.07 (d, *J* = 17.2 Hz, 1H), 4.47–4.42 (m, 1H), 3.53 (t, *J* = 4.4 Hz, 2H), 2.15–2.02 (m, 2H), 1.83–1.69 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 137.0, 134.3, 133.7, 130.8, 128.4, 120.9, 68.7, 43.4, 31.9, 30.4. HRMS (ESI) *m/z*: [M + Na]⁺ calcd for C₁₂H₁₅ClO₂SNa 281.0379; found 281.0371. ((1-Phenylallyl)sulfonyl)benzene (**3ia**).^{21f} Prepared from **1i** and **2a**

((1-Phenylallyl)sulfonyl)benzene (3ia).²¹⁷ Prepared from 1i and 2a by following the general procedure. Purification was performed with flash column chromatography (PE/EA = 10:1) on silica gel to obtain the title compound as a white solid in 84% yield (43.4 mg); NMR spectra of the obtained product were consistent with the reported one.^{1f 1}H NMR (400 MHz, CDCl₃) δ 7.64–7.62 (m, 2H), 7.59–7.55 (m, 1H), 7.44–7.40 (m, 2H), 7.32–7.22 (m, 5H), 6.32 (dt, *J* = 9.6, 17.2 Hz, 1H), 5.46 (d, *J* = 10.0 Hz, 1H), 5.31 (d, *J* = 17.2 Hz, 1H), 4.69 (d, *J* = 8.8 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 137.4, 133.8, 132.1, 129.7, 129.3, 129.2, 128.8, 128.6, 123.5, 75.6. HRMS (ESI) *m/z*: [M + Na]⁺ calcd for C₁₅H₁₄O₂SNa 281.0612; found 281.0604.

1-Chloro-4-(1-(phenylsulfonyl)allyl)benzene (**3***ja*). Prepared from **1***j* and **2a** by following the general procedure. Purification was performed with flash column chromatography (PE/EA = 10:1) on silica gel to obtain the title compound as a white solid in 82% yield (48.0 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.66–7.60 (m, 2H), 7.58–7.55 (m, 1H), 7.42–7.40 (m, 2H), 7.34–7.24 (m, 4H), 6.31 (dt, *J* = 10.0, 17.2 Hz, 1H), 5.50 (d, *J* = 10.0 Hz, 1H), 5.36 (d, *J* = 17.2 Hz, 1H), 4.69 (d, *J* = 8.4 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 139.1, 135.7, 131.7, 130.7, 129.7, 129.1, 129.0, 128.8, 128.7, 124.1, 75.8. HRMS (ESI) *m*/*z*: [M + Na]⁺ calcd for C₁₅H₁₃ClO₂SNa 315.0222; found 315.0214.

1-Methoxy-4-(1-(phenylsulfonyl)allyl)benzene (**3ka**).^{21f} Prepared from **1k** and **2a** by following the general procedure. Purification was performed with flash column chromatography (PE/EA = 10:1) on silica gel to obtain the title compound as a white solid in 92% yield (53.1 mg); NMR spectra of the obtained product were consistent with the reported one.^{1f} ¹H NMR (400 MHz, CDCl₃) δ 7.64–7.59 (m, 2H), 7.57–7.55 (m, 1H), 7.44–7.42 (m, 2H), 7.15 (d, *J* = 9.0 Hz, 2H), 6.82 (d, J = 9.0 Hz, 2H), 6.27 (dt, J = 17.0, 9.0 Hz, 1H), 5.43 (d, J = 9.6 Hz, 1H), 5.27 (d, J = 17.0 Hz, 1H), 4.64 (d, J = 9.0 Hz, 1H), 3.79 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 160.2, 133.7, 131.1, 129.7, 129.3, 129.2, 128.8, 128.6, 123.5, 114.2, 75.1, 55.4. HRMS (ESI) m/z: [M + Na]⁺ calcd for C₁₆H₁₆O₃SNa 311.0718; found 311.0712.

(*But-3-en-2-ylsulfonyl*)*benzene* (*3la*). Prepared from 11 and 2a by following the general procedure. Purification was performed with flash column chromatography (PE/EA = 20:1) on silica gel to obtain the title compound as a colorless oil in 76% yield (29.8 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.87–7.79 (m, 2H), 7.67–7.61 (m, 1H), 7.56–7.50 (m, 2H), 5.81 (ddd, *J* = 17.5, 10.4, 7.6 Hz, 1H), 5.26 (d, *J* = 10.4 Hz, 1H), 5.10 (d, *J* = 17.2 Hz, 1H), 3.75–3.69 (m, 1H), 1.45 (d, *J* = 7.2 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 136.4, 133.5, 130.2, 128.8, 128.4, 121.5, 63.7, 12.5. HRMS (ESI) *m*/*z*: [M + Na]⁺ calcd for C₁₀H₁₂O₂SNa 219.0456; found 219.0448.

1-Methyl-4-((5-phenylpent-1-en-3-yl)sulfonyl)benzene (**3ob**).^{21f} Prepared from **1o** and **2b** by following the general procedure. Purification was performed with flash column chromatography (PE/ EA = 20:1) on silica gel to obtain the title compound as a colorless oil in 89% yield (53.5 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.68–7.66 (m, 2H), 7.34–7.18 (m, 5H), 7.13–7.08 (m, 2H), 5.66 (dt, *J* = 10.0, 17.2 Hz, 1H), 5.37 (d, *J* = 10.0 Hz, 1H), 5.08 (d, *J* = 17.2 Hz, 1H), 3.50–3.44 (m, 1H), 2.81–2.74 (m, 1H), 2.68–2.47 (m, 2H), 2.43 (s, 3H), 2.00–1.90 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 144.5, 140.0, 134.3, 130.2, 129.4, 129.2, 128.5, 128.4, 126.3, 124.0, 69.0, 32.3, 28.4, 21.6. HRMS (ESI) *m/z*: [M + Na]⁺ calcd for C₁₈H₂₀O₂SNa 323.1082; found 323.1076.

1-((1-Cyclohexylallyl)sulfonyl)-4-methylbenzene (**3pb**).^{21f} Prepared from **1p** and **2b** by following the general procedure. Purification was performed with flash column chromatography (PE/EA = 20:1) on silica gel to obtain the title compound as a colorless oil in 72% yield (40.1 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.59–7.56 (m, 2H), 7.19 (d, *J* = 8.0 Hz, 2H), 5.75 (dt, *J* = 10.0, 17.2 Hz, 1H), 5.12 (d, *J* = 10.0 Hz, 1H), 5.72 (d, *J* = 17.2 Hz, 1H), 3.18–3.15 (m, 1H), 2.34 (s, 3H), 2.24–2.02 (m, 2H), 1.90–1.65 (m, 4H), 1.37–1.32 (m, 2), 1.20–1.02 (m, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 143.3, 135.8, 129.0, 128.8, 128.4, 123.7, 75.7, 36.7, 32.1, 28.8, 26.5, 26.1, 26.0, 21.7. HRMS (ESI) *m/z*: [M + Na]⁺ calcd for C₁₅H₂₀O₂SNa 287.1082; found 287.1074.

1-Methoxy-4-((5-phenylpent-1-en-3-yl)sulfonyl)benzene (**3cc**). Prepared from **1c** and **2c** by following the general procedure. Purification was performed with flash column chromatography (PE/ EA = 20:1) on silica gel to obtain the title compound as a colorless oil in 92% yield (58.2 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.73–7.70 (m, 2H), 7.29–7.24 (m, 2H), 7.22–7.18 (m, 1H), 7.13–7.11 (m, 2H), 6.98–6.95 (m, 2H), 5.67 (dt, *J* = 10.0, 17.2 Hz, 1H), 5.37 (d, *J* = 10.0 Hz, 1H), 5.09 (d, *J* = 17.2 Hz, 1H), 3.88 (s, 3H), 3.49–3.43 (m, 1H), 2.81–2.74 (m, 1H), 2.57–2.39 (m, 2H), 2.02–1.90 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.6, 140.1, 131.4, 130.4, 128.8, 128.5, 128.4, 126.3, 123.9, 114.0, 69.2, 55.6, 32.3, 28.5. HRMS (ESI) *m/z*: [M + Na]⁺ calcd for C₁₈H₂₀O₃SNa 339.1031; found 339.1024.

1-Chloro-4-((5-phenylpent-1-en-3-yl)sulfonyl)benzene (3cd). Prepared from 1c and 2d by following the general procedure. Purification was performed with flash column chromatography (PE/ EA = 20:1) on silica gel to obtain the title compound as a colorless oil in 89% yield (57.1 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.74–7.70 (m, 2H), 7.52–7.47 (m, 2H), 7.25–7.19 (m, 3H), 7.05–6.98 (m, 2H), 5.67 (dt, *J* = 10.0, 17.2 Hz, 1H), 5.39 (d, *J* = 10.0 Hz, 1H), 5.08 (d, *J* = 17.0 Hz, 1H), 3.50–3.44 (m, 1H), 2.83–2.76 (m, 1H), 2.58– 2.44 (m, 2H), 2.02–1.93 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 140.4, 138.9, 135.7, 130.6, 129.6, 129.5, 128.5, 128.4, 126.3, 124.5, 69.0, 34.6, 28.4. HRMS (ESI) *m/z*: [M + Na]⁺ calcd for C₁₇H₁₇ClO₂SNa 343.0535; found 343.0527.

1-Fluoro-4-((5-phenylpent-1-en-3-yl)sulfonyl)benzene (**3ce**). Prepared from 1c and 2e by following the general procedure. Purification was performed with flash column chromatography (PE/EA = 20:1) on silica gel to obtain the title compound as a colorless oil in 85% yield (51.7 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.82–7.79 (m, 2H), 7.30–7.09 (m, 7H), 5.67 (dt, J = 10.0, 17.2 Hz, 1H), 5.38 (d, J = 10.0 Hz, 1H), 5.07 (d, J = 17.0 Hz, 1H), 3.50–3.44 (m, 1H), 2.83–2.76 (m, 1H), 2.58–2.41 (m, 2H), 2.02–1.93 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 167.0, 166.7, 164.5, 164.2, 139.9, 132.1, 132.0, 130.9, 130.8, 130.0, 128.6, 128.5, 128.4, 126.4, 124.4, 116.6, 116.3, 116.2, 116.0, 69.1, 32.2, 28.3. HRMS (ESI) m/z: [M + Na]⁺ calcd for C₁₇H₁₇FO₂SNa 327.0831; found 327.0824.

2,4-Dimethoxy-1-((5-phenylpent-1-en-3-yl)sulfonyl)benzene (**3cf**). Prepared from **1c** and **2f** by following the general procedure. Purification was performed with flash column chromatography (PE/ EA = 20:1) on silica gel to obtain the title compound as a white solid in 90% yield (62.4 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.42 (dd, *J* = 2.2, 8.8 Hz, 1H), 7.29–7.18 (m, 4H), 7.12–7.10 (m, 2H), 6.94 (d, *J* = 8.4 Hz, 1H), 5.69 (dt, *J* = 10.0, 17.2 Hz, 1H), 5.39 (d, *J* = 10.0 Hz, 1H), 5.12 (d, *J* = 17.0 Hz, 1H), 3.95 (s, 3H), 3.89 (s, 3H), 3.50–3.44 (m, 1H), 2.81–2.75 (m, 1H), 2.57–2.49 (m, 1H), 2.45–2.36 (m, 1H), 2.02–1.92 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 153.2, 148.8, 140.0, 130.2, 128.9, 128.5, 128.4, 126.3, 123.9, 123.3, 111.3, 110.3, 69.1, 56.2, 56.1, 32.3, 28.5. HRMS (ESI) *m*/*z*: [M + Na]⁺ calcd for C₁₉H₂₂O₄SNa 369.1136; found 369.1128.

4-Bromo-1-methoxy-2-((5-phenylpent-1-en-3-yl)sulfonyl)benzene (**3cg**). Prepared from **1c** and **2g** by following the general procedure. Purification was performed with flash column chromatography (PE/EA = 20:1) on silica gel to obtain the title compound as a white solid in 86% yield (68.0 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 1.2 Hz, 1H), 7.63 (dd, *J* = 1.2, 8.8 Hz, 1H), 7.33–7.12 (m, 5H), 6.82 (d, *J* = 8.8 Hz, 1H), 5.72 (dt, *J* = 10.0, 17.2 Hz, 1H), 5.35 (d, *J* = 10.0 Hz, 1H), 5.14 (d, *J* = 17.0 Hz, 1H), 4.05–3.99 (m, 1H), 3.73 (s, 3H), 2.88–2.81 (m, 1H), 2.60–2.50 (m, 1H), 2.36– 2.28 (m, 1H), 2.15–2.05 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 156.1, 140.1, 137.9, 136.9, 133.4, 128.5, 128.4, 126.2, 123.7, 121.0, 113.7, 112.8, 66.3, 56.2, 32.0, 27.7. HRMS (ESI) *m/z*: [M + Na]⁺ calcd for C₁₈H₁₉BrO₃SNa 417.0136; found 417.0128.

2-((5-Phenylpent-1-en-3-yl)sulfonyl)naphthalene (**3ch**). Prepared from **1c** and **2h** by following the general procedure. Purification was performed with flash column chromatography (PE/EA = 20:1) on silica gel to obtain the title compound as a white solid in 94% yield (63.3 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.38 (s, 1H), 8.01–7.93 (m, 2H), 7.81–7.77 (m, 1H), 7.68–7.62 (m, 2H), 7.27–7.16 (m, 3H), 7.12–7.05 (m, 3H), 5.72 (dt, *J* = 10.0, 17.2 Hz, 1H), 5.36 (d, *J* = 10.0 Hz, 1H), 5.07 (d, *J* = 17.0 Hz, 1H), 3.61–3.56 (m, 1H), 2.83– 2.75 (m, 1H), 2.58–2.45 (m, 2H), 2.08–1.98 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 140.6, 135.0, 132.2, 131.0, 129.7, 129.5, 129.3, 129.1, 128.5, 128.4, 127.9, 127.6, 127.5, 126.3, 126.2, 123.0, 69.0, 34.7, 28.4. HRMS (ESI) *m/z*: [M + Na]⁺ calcd for C₂₁H₂₀O₂SNa 359.1082; found 359.1076.

6-((5-Phenylpent-1-en-3-yl)sulfonyl)-2,3-dihydrobenzofuran (**3***ci*). Prepared from 1c and 2i by following the general procedure. Purification was performed with flash column chromatography (PE/ EA = 20:1) on silica gel to obtain the title compound as a white solid in 92% yield (60.4 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.70–7.56 (m, 2H), 7.30–7.26 (m, 2H), 7.22–7.18 (m, 1H), 7.14–7.10 (m, 2H), 6.83 (d, *J* = 8.4 Hz, 1H), 5.68 (dt, *J* = 10.0, 17.2 Hz, 1H), 5.39 (d, *J* = 10.0 Hz, 1H), 5.12 (d, *J* = 17.0 Hz, 1H), 4.69 (t, *J* = 8.8 Hz, 2H), 3.49–3.43 (m, 1H), 3.26 (t, *J* = 8.8 Hz, 2H), 2.82–2.74 (m, 1H), 2.56–2.39 (m, 2H), 1.99–1.90 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 164.6, 140.1, 130.9, 130.4, 128.7, 128.5, 128.4, 128.1, 126.2, 123.9, 109.3, 72.3, 69.2, 32.3, 28.9, 28.6. HRMS (ESI) *m/z*: [M + Na]⁺ calcd for C₁₉H₂₀O₃SNa 351.1031; found 351.1023.

2-((5-Phenylpent-1-en-3-yl)sulfonyl)thiophene (3cj). Prepared from 1c and 2j by following the general procedure. Purification was performed with flash column chromatography (PE/EA = 20:1) on silica gel to obtain the title compound as a colorless oil in 85% yield (49.7 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.71 (dd, *J* = 1.2, 5.2 Hz, 1H), 7.60 (dd, *J* = 1.2, 5.2 Hz, 1H), 7.30–7.27 (m, 2H), 7.23–7.19 (m, 1H), 7.15–7.12 (m, 3H), 5.73 (dt, *J* = 10.0, 17.2 Hz, 1H), 5.44 (d, *J* = 10.0 Hz, 1H), 5.19 (d, *J* = 17.0 Hz, 1H), 3.00–3.54 (m, 1H), 2.83–2.77 (m, 1H), 2.60–2.45 (m, 2H), 2.05–1.96 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 139.9, 138.0, 135.2, 134.2,

129.9, 128.6, 128.4, 127.6, 126.4, 124.4, 70.1, 32.3, 28.7. HRMS (ESI) m/z: $[M + Na]^+$ calcd for $C_{15}H_{16}O_2S_2Na$ 315.0489; found 315.0481.

(3-(*Methylsulfonyl*)*pent-4-en-1-yl*)*benzene* (**3***ck*). Prepared from **1c** and **2k** by following the general procedure. Purification was performed with flash column chromatography (PE/EA = 20:1) on silica gel to obtain the title compound as a colorless oil in 78% yield (35.0 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.34–7.17 (m, 5H), 5.87 (dt, *J* = 10.0, 17.2 Hz, 1H), 5.58 (d, *J* = 10.0 Hz, 1H), 5.44 (d, *J* = 17.2 Hz, 1H), 3.46–3.40 (m, 1H), 2.89–2.83 (m, 1H), 2.82 (s, 3H), 2.63–2.44 (m, 2H), 2.08–1.99 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 139.8, 131.3, 128.6, 128.5, 126.4, 124.1, 67.7, 38.1, 32.0, 27.0. HRMS (ESI) *m/z*: [M + Na]⁺ calcd for C₁₂H₁₆O₂SNa 247.0769; found 247.0763.

(3-(Ethylsulfonyl)pent-4-en-1-yl)benzene (3cl). Prepared from 1c and 2l by following the general procedure. Purification was performed with flash column chromatography (PE/EA = 20:1) on silica gel to obtain the title compound as a colorless oil in 82% yield (39.1 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.34–7.17 (m, 5H), 5.85 (dt, *J* = 10.0, 17.2 Hz, 1H), 5.54 (dt, *J* = 10.0 Hz, 1H), 5.40 (dt, *J* = 17.0 Hz, 1H), 3.49–3.43 (m, 1H), 2.97 (ddt, *J* = 11.6, 19.2 Hz, 2H), 2.88–2.81 (m, 1H), 2.62–2.43 (m, 2H), 2.10–2.01 (m, 1H), 1.33 (tt, *J* = 7.6 Hz, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 139.9, 131.4, 128.6, 128.4, 126.4, 121.1, 65.5, 44.5, 32.1, 26.8, 6.0. HRMS (ESI) *m*/*z*: [M + Na]⁺ calcd for C₁₃H₁₈O₂SNa 261.0925; found 261.0916.

(3-(*Cyclopropylsulfonyl*)*pent-4-en-1-yl*)*benzene* (**3***cm*). Prepared from **1c** and **2m** by following the general procedure. Purification was performed with flash column chromatography (PE/EA = 20:1) on silica gel to obtain the title compound as a white colorless oil in 76% yield (38.1 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.33–7.17 (m, 5H), 5.87 (dt, *J* = 10.0, 17.2 Hz, 1H), 5.54 (d, *J* = 10.0 Hz, 1H), 5.44 (d, *J* = 17.0 Hz, 1H), 3.51–3.45 (m, 1H), 2.87–2.80 (m, 1H), 2.62–2.55 (m, 1H), 2.52–2.43 (m, 1H), 2.40–2.34 (m, 1H), 2.12–2.02 (m, 1H), 1.31–1.22 (m, 2H), 1.03–0.94 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 140.1, 131.0, 128.5, 128.4, 126.3, 123.7, 67.2, 32.1, 27.6, 27.4, 4.8, 4.6. HRMS (ESI) *m/z*: [M + Na]⁺ calcd for C₁₄H₁₈O₂SNa 273.0925; found 273.0916.

1-Methyl-4-((1-phenylallyl)sulfonyl)benzene (**3ib**).^{21f} Prepared from **1i** and **2b** by following the general procedure. Purification was performed with flash column chromatography (PE/EA = 10:1) on silica gel to obtain the title compound as a white solid in 87% yield (47.4 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 8.4 Hz, 2H), 7.32–7.23 (m, 7H), 6.30 (dt, *J* = 10.0, 17.2 Hz, 1H), 5.45 (d, *J* = 10.0 Hz, 1H), 5.30 (d, *J* = 17.2 Hz, 1H), 4.67 (d, *J* = 9.2 Hz, 1H), 2.40 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 144.5, 134.2, 132.1, 129.7, 129.3, 129.2, 128.8, 128.6, 123.5, 75.6, 21.6. HRMS (ESI) *m/z*: [M + Na]⁺ calcd for C₁₆H₁₆O₂SNa 295.0769; found 295.0762.

1-Methoxy-4-((1-phenylallyl)sulfonyl)benzene (**3ic**). Prepared from **1i** and **2c** by following the general procedure. Purification was performed with flash column chromatography (PE/EA = 10:1) on silica gel to obtain the title compound as a white solid in 90% yield (51.9 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, *J* = 8.8 Hz, 2H), 7.33–7.22 (m, 5H), 6.87 (d, *J* = 8.8 Hz, 2H), 6.31 (dt, *J* = 10.0, 17.2 Hz, 1H), 5.45 (d, *J* = 10.0 Hz, 1H), 5.31 (d, *J* = 17.2 Hz, 1H), 4.66 (d, *J* = 9.2 Hz, 1H), 3.84 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.6, 132.4, 131.4, 129.7, 129.4, 128.7, 128.5, 123.4, 113.8, 75.8, 55.6. HRMS (ESI) *m/z*: [M + Na]⁺ calcd for C₁₆H₁₆O₃SNa 311.0718; found 311.0718.

1-Chloro-4-((1-phenylallyl)sulfonyl)benzene (3id). Prepared from 1i and 2d by following the general procedure. Purification was performed with flash column chromatography (PE/EA = 10:1) on silica gel to obtain the title compound as a white solid in 86% yield (50.4 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 8.0 Hz, 2H), 7.64–7.23 (m, 7H), 6.30 (dt, *J* = 10.0, 17.2 Hz, 1H), 5.49 (d, *J* = 10.0 Hz, 1H), 5.35 (d, *J* = 17.2 Hz, 1H), 4.68 (d, *J* = 9.2 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 140.4, 135.6, 131.7, 130.7, 129.7, 129.1, 128.9, 128.8, 128.7, 124.1, 75.7. HRMS (ESI) *m*/*z*: [M + Na]⁺ calcd for C₁₅H₁₃ClO₂SNa 315.0222; found 315.0214.

1-Fluoro-4-((1-phenylally)/sulfonyl)benzene (3ie). Prepared from 1i and 2e by following the general procedure. Purification was performed with flash column chromatography (PE/EA = 10:1) on silica gel to obtain the title compound as a yellow solid in 78% yield (43.1 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.64–7.61 (m, 2H), 7.33–7.23 (m, 5H), 7.12–7.07 (m, 2H), 6.31 (dt, *J* = 10.0, 17.2 Hz, 1H), 5.49 (d, *J* = 10.0 Hz, 1H), 5.35 (d, *J* = 17.2 Hz, 1H), 4.68 (d, *J* = 9.2 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 167.0, 164.5, 133.2, 133.1, 132.1, 132.0, 131.9, 129.6, 129.0, 128.9, 128.7, 124.0, 116.0, 115.8, 75.8. HRMS (ESI) *m/z*: [M + Na]⁺ calcd for C₁₅H₁₃FO₂SNa 299.0518; found 299.0512.

4-((1-Phenylallyl)sulfonyl)benzonitrile (3in). Prepared from 1i and 2n by following the general procedure. Purification was performed with flash column chromatography (PE/EA = 10:1) on silica gel to obtain the title compound as a white solid in 80% yield (56.3 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.75–7.70 (m, 4H), 7.36–7.29 (m, 3H), 7.25–7.22 (m, 2H), 6.30 (dt, *J* = 10.0, 17.2 Hz, 1H), 5.53 (d, *J* = 10.0 Hz, 1H), 5.42 (d, *J* = 17.2 Hz, 1H), 4.71 (d, *J* = 9.2 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 141.5, 132.3, 131.1, 129.9, 129.6, 129.3, 128.9, 128.2, 124.6, 117.3, 117.1, 75.7. HRMS (ESI) *m/z*: [M + Na]⁺ calcd for C₁₆H₁₃NO₂SNa 306.0565; found 306.0558.

1-Nitro-4-((1-phenylallyl)sulfonyl)benzene (**3io**). Prepared from **1i** and **2o** by following the general procedure. Purification was performed with flash column chromatography (PE/EA = 10:1) on silica gel to obtain the title compound as a white solid in 81% yield (49.1 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, *J* = 8.8 Hz, 2H), 7.82 (d, *J* = 8.8 Hz, 2H), 7.36–7.24 (m, 5H), 6.32 (dt, *J* = 10.0, 17.2 Hz, 1H), 5.54 (d, *J* = 10.0 Hz, 1H), 5.39 (d, *J* = 17.2 Hz, 1H), 4.74 (d, *J* = 9.2 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 150.7, 143.0, 130.7, 129.7, 129.4, 128.9, 128.1, 124.8, 123.7, 118.2, 75.8. HRMS (ESI) *m/z*: [M + Na]⁺ calcd for C₁₅H₁₃NO₄SNa 326.0463; found 326.0455.

1-Bromo-3-((1-phenylallyl)sulfonyl)benzene (**3ip**). Prepared from **1i** and **2p** by following the general procedure. Purification was performed with flash column chromatography (PE/EA = 10:1) on silica gel to obtain the title compound as a yellow oil in 86% yield (58.0 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (s, 1H), 7.69 (d, *J* = 8.0 Hz, 1H), 7.55 (d, *J* = 8.0 Hz, 1H), 7.36-7.24 (m, 6H), 6.31 (dt, *J* = 10.0, 17.2 Hz, 1H), 5.50 (d, *J* = 10.0 Hz, 1H), 5.35 (d, *J* = 17.2 Hz, 1H), 4.69 (d, *J* = 9.2 Hz, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 138.9, 136.6, 132.1, 131.5, 130.0, 129.7, 129.1, 128.7, 128.6, 127.8, 124.2, 122.7, 75.7. HRMS (ESI) *m*/*z*: [M + Na]⁺ calcd for C₁₅H₁₃BrO₂SNa 358.9717; found 358.9709.

Scale-up Experiment and Synthesis of (\pm) -Hinokiresinol. Scale-up Experiment. To an oven-dried 100 mL round-bottom flask equipped with a magnetic stir bar, $(CH_3CN)_3W(CO)_3$ (145.5 mg, 10 mol %), 4,4'-di-tert-butyl-2,2'-bipyridine ligand (L3) (201.3 mg, 15 mol %), allylic carbonate 1k (1.32 g, 5.0 mmol), and sodium benzenesulfinate 2a (1.23 g, 7.5 mmol) were added. The reaction flask was sealed with a rubber septum, then evacuated and backfilled with nitrogen. Anhydrous ethanol (0.2 M, 25 mL) was added via a syringe. The resulting mixture was stirred at 60 °C for 24 h. The reaction mixture was cooled to room temperature and concentrated. The obtained crude mixture was purified by flash column chromatography on silica gel to afford the pure allylic sulfone 3ka in 89% (1.3 g) isolated yield. The branched-to-linear ratio is 19:1.

Synthesis of (±)-Hinokiresinol. Condition A. Following the literature procedure^{16a} by Crudden and co-workers, with some modifications: under nitrogen environment, to an oven-dried screw-cap reaction tube equipped with a magnetic stir bar, $Ni(cod)_2$ (10 mol %), BrettPhos (12 mol %), and NaOEt (2.2 equiv) were added. Then, allylic sulfone **3ka** (0.2 mmol), boronic acid **4** (1.0 equiv), and toluene (0.2 M) were also added. The reaction tube was capped, sealed, and stirred at 80 °C for 20 h. After completion, the reaction mixture was cooled to room temperature and then diluted with EtOAc and saturated aqueous NH₄Cl (0.2 mL) was added. The reaction mixture was then filtered and washed with EtOAc. The obtained residue was concentrated and purified by flash column chromatography on silica gel to afford pure **5** as a colorless oil (15.6 mg, 24%).

Condition B. By following the literature procedure, ^{16b} to an ovendried screw-cap reaction tube (10 mL) with a magnetic stir bar, [PdCl(allyl)]₂ (3.7 mg, 5 mol %), SIPr-HCl (8.5 mg, 10 mol %), dry

dioxane (0.5 mL), and 1M NaOH_{aq} (0.6 mL, 0.6 mmol) were added at room temperature under the nitrogen atmosphere. After stirring for 30 min, allylic sulfone 3ka (57.67 mg, 0.2 mmol), boronic acid 4 (71.2 mg, 0.4 mmol), and dry dioxane (0.5 mL) were added. The reaction tube was sealed and was stirred at 120 °C for 15 h. The reaction mixture was cooled to room temperature and then diluted with EtOAc, and saturated aqueous NH₄Cl (0.2 mL) was added. The mixture was filtered and washed with EtOAc. The obtained residue was concentrated and purified by flash column chromatography on silica gel to afford pure 5 as a colorless oil (18 mg, 32%). This compound can be converted to (\pm) -hinokiresinol by following the reported literature procedures.^{18b} ¹H NMR (400 MHz, CDCl₃): $\delta =$ 7.36-7.31 (m, 2H), 7.22-7.17 (m, 2H), 6.92-6.83 (m, 4H), 6.39 (d, I = 16.0 Hz, 1H), 6.27 (dd, I = 16.0, 6.8 Hz, 1H), 6.11 (ddd, I = 17.1, 10.2, 6.8 Hz, 1H), 5.17 (dt, J = 10.2, 1.6 Hz, 1H), 5.14 (dt, J = 17.1, 1.6 Hz, 1H), 4.18 (t, J = 6.8 Hz, 1H), 3.82 (s, 3H), 3.80 (s, 3H); $^{13}\text{C}\{^{1}\text{H}\}$ NMR (100 MHz, CDCl₃): δ 158.7, 158.1, 140.5, 134.7, 130.1, 130.0, 129.8, 129.1, 127.4, 115.2, 113.8, 55.1, 51.6. HRMS (ESI) m/z: $[M + Na]^+$ calcd for $C_{13}H_{18}O_3SNa$ 277.0869; found 277.0871. The overall spectroscopic data are in complete agreement with assigned structures and fully consistent with the reported literature.

W-Catalyzed Asymmetric Allylic Sulfonylation. As described in Scheme 1 of the main text, allylic sulfonylation of 1m with (*R*)-L8 as a chiral ligand occurred in 35.5% ee. Further studies including evaluation of other reaction parameters and chiral ligands are currently in progress.

EXPERIMENTAL PROCEDURE

To an oven-dried screw-cap reaction tube equipped with a magnetic stirrer, (CH₃CN)₃W(CO)₃ (7.8 mg, 10 mol %), (R)-L8 as the chiral ligand (6.7 mg, 15 mol %), allylic carbonate 1m (38.44 mg. 0.2 mmol), and sodium benzenesulfinate 2a (49.25 mg, 0.3 mmol) were added. The reaction tube was sealed with a rubber septum, then evacuated and backfilled with nitrogen. Anhydrous ethanol (0.2 M, 1 mL) was added via a syringe. The resulting mixture was stirred at 60 °C for 24 h. The reaction mixture was cooled to room temperature, and the residue was purified by flash column chromatography on silica gel to afford the pure allylic sulfone (R)-3ia with 62% isolated yield. The branched-to-linear ratio was determined to be 10:1. Analytical data of the pure (R)-3ia product are similar to the corresponding racemate 3ia. Enantiomeric excess of (R)-3ia was determined by HPLC analysis.^{21f} HPLC conditions: Chiralcel OD-H column, 254 nm; flow rate: 1 mL/min; i-PrOH/hexanes: 1/9; tminor: 10.87 min; t_{maior} : 11.72 min; 35.5% ee. $[\alpha]_D^{25} = 19.5$ (c = 0.52, CHCl₃).

ASSOCIATED CONTENT

③ Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.joc.0c01632.

Spectral data of all prepared compounds with copies of ¹H, ¹³C NMR spectra and HPLC chromatograms (PDF)

AUTHOR INFORMATION

Corresponding Author

Ajmal Khan – Department of Applied Chemistry, School of Science and Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China; ⊙ orcid.org/0000-0002-2415-7534; Email: ajmalkhan@xjtu.edu.cn

Authors

Yaoyao Xu – Department of Applied Chemistry, School of Science and Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China

- Muhammad Salman Department of Applied Chemistry, School of Science and Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
- Shahid Khan Department of Applied Chemistry, School of Science and Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
- Junjie Zhang Department of Applied Chemistry, School of Science and Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.joc.0c01632

Author Contributions

^TY.X. and M.S. contributed equally to this work.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the "Fundamental Research Funds for Central Universities" (No. 1191329135), Key Laboratory Construction Program of Xi'an Municipal Bureau of Science and Technology (No. 201805056ZD7CG40), and the starting fund of Xi'an Jiao Tong University (No. 7121182002). The instrumental analysis center of Xi'an Jiao Tong University is acknowledged for analytical assistance.

REFERENCES

(1) For reviews on Pd-catalysis, see: (a) Trost, B. M.; Vranken, D. L. Asymmetric Transition Metal-Catalyzed Allylic Alkylations. *Chem. Rev.* **1996**, *96*, 395–422. (b) Trost, B. M. Pd Asymmetric Allylic Alkylation (AAA). A Powerful Synthetic Tool. *Chem. Pharm. Bull.* **2002**, *50*, 1–14. (c) Trost, B. M.; Crawley, M. L. Asymmetric Transition-Metal-Catalyzed Allylic Alkylations: Applications in Total Synthesis. *Chem. Rev.* **2003**, *103*, 2921–2944.

(2) For selected reviews on transition metal-catalyzed allylic substitution, see: (a) Lu, Z.; Ma, S. Matal-Catalyzed Enantioselective Allylation in Asymmetric Synthesis. Angew. Chem., Int. Ed. 2008, 47, 258–297. (b) Cheng, Q.; Tu, H.-F.; Zheng, C.; Qu, J.-P.; Helmchen, G.; You, S.-L. Iridium-Catalyzed Asymmetric Allylic Substitution Reactions. Chem. Rev. 2019, 119, 1855–1969. and references therein. (3) For selected reviews on Ir-catalysis, see: (a) Hartwig, J. F.; Stanley, L. M. Mechanisticallyl Driven Development of Iridium Catalysts for Asymmetric Allylic Substitution. Acc. Chem. Res. 2010, 43, 1461–1475. (b) Reference 2b.

(4) For initial work on molybdenum, see: (a) Trost, B. M.; Lautens, M. Molybdenum catalysts for allylic alkylation. *J. Am. Chem. Soc.* **1982**, *104*, 5543–5545. For initial work on tungsten, see: (b) Trost, B. M.; Hung, M.-H. Tungsten-catalyzed allylic alkylations. New avenues for selectivity. *J. Am. Chem. Soc.* **1983**, *105*, 7757–7759.

(5) For other selected examples reported by Trost and co-workers, see: (a) Trost, B. M. Pd- and Mo-Catalyzed Asymmetric Allylic Alkylation. Org. Process Res. Dev. 2012, 16, 185–194. (b) Trost, B. M.; Hachiya, I. Asymmetric Molybdenum-Catalyzed Alkylations. J. Am. Chem. Soc. 1998, 120, 1104–1105. (c) Trost, B. M.; Dogra, K. Synthesis of Novel Quaternary Amino Acids Using Molybdenum-Catalyzed Asymmetric Allylic Alkylation. J. Am. Chem. Soc. 2002, 124, 7256–7257. (d) Trost, B. M.; Zhang, Y. Mo-Catalyzed Regio-, Diastereo-, and Enantioselective Allylic Alkylation of 3-Aryloxindoles. J. Am. Chem. Soc. 2007, 129, 14548–14549. (e) Trost, B. M.; Zhang, Y. Catalytic Double Stereoinduction in Asymmetric Allylic Alkylation of Oxindoles. Chem. - Eur. J. 2010, 16, 296–303. (f) Trost, B. M.; Miller, J. R.; Hoffman, C. M. A Highly Enantio- and Diastereoslective

Molybdenum-Catalyzed Asymmetric Allylic Alkylation of Cyanoesters. J. Am. Chem. Soc. 2011, 133, 8165–8167.

(6) For selected examples, see: (a) Belda, O.; Moberg, C. Molybdenum-Catalyzed Asymmetric Allylic Alkylations. Acc. Chem. Res. 2004, 37, 159–167. (b) Moberg, C. Molybdenum-Catalyzed and Tungsten-Catalyzed Enantioselective Allylic Substitutions. Top. Organomet. Chem. 2011, 38, 209–234. (c) Del Litto, R. D.; Benessere, V.; Ruffo, F.; Moberg, C. Carbohydrate-Based Pyridine-2-carboxamides for Mo-Catalyzed Asymmetric Allylic Alkylations. Eur. J. Org. Chem. 2009, 9, 1352–1356.

(7) (a) Hughes, D. L.; Palucki, M.; Yasuda, N.; Reamer, R. A.; Reider, P. J. Solvent-Dependent Dynamic Kinetic Asymmetric Transformation/Kinetic Resolution in Molybdenum-catalyzed Asymmetric Allylic Alkylation. J. Org. Chem. 2002, 67, 2762-2768.
(b) Trost, B. M.; Dogra, K.; Hachiya, I.; Emura, T.; Hughes, D. L.; Krska, S.; Reamer, R. A.; Palucki, M.; Yasuda, N.; Reider, P. J. Designed Ligands as Probes for the Catalytic Binding Mode in Mo-Catalyzed Asymmetric Allylic Alkylation. Angew. Chem., Int. Ed. 2002, 41, 1929-1932.

(8) (a) Lloyd-Jones, G. C.; Pfaltz, A. Chiral Phosphanodihydroxanzoles in Asymmetric Catalysis: Tungsten-Catalyzed Allylic Substitution. *Angew. Chem.* **1995**, *34*, 462–464. (b) Glorius, F.; Neuburger, M.; Pfaltz, A. Highly Enantio- and Regioselective Allylic Alkylations Catalyzed by Chiral [Bis(dihydrooxazole)]molybdenum Complexes. *Helv. Chim. Acta* **2001**, *84*, 3178–3196. (c) Lehmann, J.; Lloyd-Jones, G. C. Regiocontrol and Stereoselectivity in Tungsten-Bipyridine Catalysed Allylic Alkylation. *Tetrahedron* **1995**, *51*, 8863– 8874.

(9) For other examples, see: (a) Malkov, A. V.; Gouriou, L.; Lloyd-Jones, G. C.; Stary, I.; Langer, V.; Spoor, P.; Vinader, V.; Kocovsky, P. Asymmetric Allylic Substitution Catalyzed by C1-Symmetrical Complexes of Molybdenum: Structural Requirements of the Ligand and the Stereochemical Course of the Reaction. *Chem. - Eur. J.* 2006, *12*, 6910–6929. (b) Krska, S. W.; Hughes, D. L.; Reamer, R. A.; Mathre, D. J.; Sun, Y. The Unusual Role of CO Transfer in Molybdenum-Catalyzed Asymmetric Alkylations. *J. Am. Chem. Soc.* 2002, *124*, 12656–12657. (c) Ozkal, E.; Pericas, M. A. A Bis(Triazolecarboxamido) Ligand for Enantio- and Regioselective Molybdenum-Catalyzed Asymmetric Allylic Alkylation Reactions. *Adv. Synth. Catal.* 2014, *356*, 711–717.

(10) Salman, M.; Xu, Y.; Khan, S.; Zhang, J.; Khan, A. Regioselective molybdenum-catalyzed allylic substitution of tertiary allylic electrophiles: methodology development and applications. *Chem. Sci.* **2020**, *11*, 5481–5486.

(11) Tungsten catalyzed allylic substitutions are limited to the few reports available in literature with stabilized carbon nucleophiles to form C-C bond; see: refs 4b and 8

(12) To the best of our knowledge, there is no report available in literature on the use of heteroatom nucleophile to form carbonheteroatom bond in W-catalyzed allylic substitution.

(13) (a) Khan, A.; Zhao, H.; Zhang, M.; Khan, S.; Zhao, D. Regioand Enantioselective Synthesis of Sulfone-Bearing Quaternary Carbon Stereocenters via Pd-Catalyzed Allylic Substitution. *Angew. Chem., Int. Ed.* **2020**, *59*, 1340–1345. (b) Khan, A.; Zhang, J.; Khan, S. Palladium nano-particles as a recyclable catalyst for C-O bond formation under solvent free conditions. *Green Chem.* **2020**, *22*, 4116–4120. (c) Zhang, M.-N.; Khan, S.; Zhang, J.; Khan, A. Palladium nanoparticles as efficient catalyst for C-S bond formation reactions. *RSC Adv.* **2020**, *10*, 31022–31026.

(14) For the application of sulfone in organic synthesis, see: (a) Fuchs, P. L.; Braish, T. F. Multiply Convergent Synthesis via Conjugate-addition Reactions to Cycloalkenyl Sulfones. *Chem. Rev.* **1986**, *86*, 903–917. (b) Peters, B. K.; Zhou, T.; Rujirawanich, J.; Cadu, A.; Singh, T.; Rabten, W.; Kerdphon, S.; Andersson, P. W. An Enantioselective Approach to the Preparation of Chiral Sulfones by Ir-Catalyzed asymmetric Hydrogenation. *J. Am. Chem. Soc.* **2014**, *136*, 16557–16562. For the application of sulfone in drugs and bioactive compounds, see: (c) Feng, M.; Tang, B.; Liang, S. H.; Jiang, X. Sulfur Containing Scaffolds in Drugs: Synthesis and Application in Article

Medicinal Chemistry. *Curr. Top. Med. Chem.* **2016**, *16*, 1200–1216. (d) Scott, K. A.; Njardarson, J. T. Analysis of US FDA-Approved Drugs Containing Sulfur Atoms. *Top. Curr. Chem.* **2018**, *376*, 5.

(15) For selected examples on the synthesis of allylic sulfone via transition metal-catalyzed allylic substitution, see: (a) Jegelka, M.; Plietker, B. Selective C-S Bond Formation via Fe-Catalyzed Allylic Substitution. Org. Lett. 2009, 11, 3462–3465. (b) Ueda, M.; Hartwig, J. F. Iridium-catalyzed Regio- and Enantioselective Allylic Substitution with Aromatic and Aliphatic Sulfinates. Org. Lett. 2010, 12, 92–94. (c) Wu, X.-S.; Chen, Y.; Li, M.-B.; Zhou, M.-G.; Tian, S.-K. Direct Substitution of Primary Allylic Amines with Sulfinate Salts. J. Am. Chem. Soc. 2012, 134, 14694–14697. (d) Ma, X.-T.; Dai, R.-H.; Zhang, J.; Gu, Y.; Tian, S.-K. Catalytic Stereospecific Substitution of Enantioselective Allylic Alcohols with Sodium Sulfinates. Adv. Synth. Catal. 2014, 356, 2984–2988. (e) Cai, A.; Kleij, A. W. Regio- and Enantioselective Preparation of Chiral Allylic Sulfones Featuring Elusive Quaternary Stereocenters. Angew. Chem., Int. Ed. 2019, 58, 14944–14949. and references therein.

(16) For selected examples on sulfone as electrophile in Suzuki cross-coupling, see: (a) Ariki, Z. T.; Maekawa, Y.; Nambo, M.; Crudden, C. M. Preparation of Quaternary Centers via Nickel-Catalyzed Suzuki-Miyaura Cross-Coupling of Tertiary Sulfones. J. Am. Chem. Soc. 2018, 140, 78-81. (b) Nambo, M.; Crudden, C. M. Modular Synthesis of Triarylmethanes through Palladium-Catalyzed Sequential Arylation of Methyl Phenyl Sulfone. Angew. Chem., Int. Ed. 2014, 53, 742-746. (c) Nambo, M.; Crudden, C. M. Recent Advances in the Synthesis of Triarylmethanes by Transition Metal Catalysis. ACS Catal. 2015, 5, 4734-4742. For selected examples on sulfone as electrophile in allylic substitutions, see: (d) Trost, B. M.; Merlic, C. A. Geminal alkylation: substitutions of allyl sulfones. Regiocontrol via molybdenum catalysis. J. Org. Chem. 1990, 55, 1127-1129. (e) Takizawa, K.; Sekino, T.; Sato, S.; Yoshino, T.; Kojima, M.; Matsunaga, S. Cobalt-Catalyzed Allylic Alkylation Enabled by Organophotoredox Catalysis. Angew. Chem., Int. Ed. 2019, 58, 9199-9203.

(17) For reviews on the use of bipyridine type ligands, see; (a) Kaes, C.; Katz, A.; Hosseini, M. W. Bipyridine: The Most Widely Used Ligand. A Review of Molecules Comprising at Least Two 2,2'-Bipyridine Units. *Chem. Rev.* **2000**, *100*, 3553–3590. (b) Chelucci, G.; Thummel, R. P. Chiral 2,2'-Bipyridine, 1,10-Phenanthrolines, and 2,2':6',2"-Terpyridines: Synthesis and Applications in Asymmetric Homogeneous Catalysis. *Chem. Rev.* **2002**, *102*, 3129–3170.

(18) For previous synthesis, see: (a) Lassen, P. R.; Skytte, D. M.; Hemmingsen, L.; Nielsen, S. F.; Freedman, T. B.; Nafie, L. A.; Christensen, S. B. Structure and Absolute Configuration of Nyasol and Hinokiresinol via Synthesis and Vibrational Circular Dichroism Spectroscopy. J. Nat. Prod. 2005, 68, 1603–1609. (b) Hamilton, J. Y.; Sarlah, D.; Carreira, E. M. Iridium-Catalyzed Enantioselective Allylic Vinylation. J. Am. Chem. Soc. 2013, 135, 994–997.

(19) See Experimental Section.

(20) For the synthesis of other related gem-diarylalkyl compounds, see: (a) Goswami, G.; Chauhan, N.; Mal, A.; Das, S.; Das, M.; Ghorai, M. K. Synthesis of 3,3-Diaryl/Heteroarylpropylamines via Nucleophilic Ring Opening of Activated Azetidines with Arenes and Heteroarenes: New Synthetic Route to (\pm) -Tolterodine. ACS Omega 2018, 3, 17562–17572. (b) Qu, J.; Helmchen, G. Applications of Iridium-Catalyzed Asymmetric Allylic Substitution Reactions in Target-Oriented Synthesis. Acc. Chem. Res. 2017, 50, 2539–2555. (c) Polet, D.; Rathgeb, X.; Falciola, C. A.; Langlois, J.-B.; Hajjaji, S. E.; Alexakis, A. Enantioselective Iridium-Catalyzed Allylic Arylation. Chem. - Eur. J. 2009, 15, 1205–1216.

(21) (a) Zhang, P.; Brozek, L. A.; Morken, J. P. Pd-Catalyzed Enantioselective Allyl-Allyl Cross-Coupling. J. Am. Chem. Soc. 2010, 132, 10686–10688. (b) Roberts, J. P.; Lee, C. Allylic Etherification via Ir(I)/Zn(II) Bimetallic Catalysis. Org. Lett. 2005, 7, 2679–2682.
(c) Trost, B. M.; Fraisse, P. L.; Ball, Z. T. A Stereospecific Ruthenium-Catalyzed Allylic Alkylation. Angew. Chem., Int. Ed. 2002, 41, 1059–1061. (d) Yatsumonji, Y.; Ishida, Y.; Tsubouchi, A.; Takeda, T. Nickel(0) Triethyl Phosphite Complex-Catalyzed Allylic

pubs.acs.org/joc

Article

Substitution with Retention of Regio- and Stereochemistry. *Org. Lett.* **2007**, 9, 4603–4606. (e) R eference 16e. (f) Reference 15b. (22) Du, B.; Qian, P.; Wang, Y.; Mei, H.; Han, J.; Pan, Y. Cu-Catalyzed Deoxygenative C2-Sulfonylation Reaction of Quinoline N-Oxides with Sodium Sulfinate. *Org. Lett.* **2016**, *18*, 4144–4147.