Synthetic Studies toward Amphidinolide B₁: Synthesis of the C₉–C₂₆ Fragment

Wei Zhang and Rich G. Carter*

Department of Chemistry, 153 Gilbert Hall, Oregon State University, Corvallis, Oregon 97331

rich.carter@oregonstate.edu

Received June 30, 2005

ORGANIC LETTERS 2005 Vol. 7, No. 19 4209-4212

ABSTRACT

The synthesis of the C_9-C_{26} portion of amphidinolide B_1 is described. A Fleming allylation followed by elimination was employed for the construction of the $C_{13}-C_{15}$ diene portion. Sharpless asymmetric dihydroxylation was utilized for regioselective functionalization of a styrene-derived alkene, in the presence of the $C_{13}-C_{15}$ diene functionality. A highly diastereoselective aldol reaction was developed to establish the C_{18} stereochemistry.

Amphidinolide B₁ (1) was first observed in the dinoflagellate *Amphidinium* sp., isolated from the Okinawan flatworm *Amphiscolops* sp. (Scheme 1).¹ The relative stereochemistry of 1 was determined by X-ray crystal analysis,² and the absolute stereochemistry was established by degradation.³ Macrolide 1 is a member of a diverse family of natural products⁴ that are potent cytotoxic agents with impressive IC₅₀ activity in a series of screens: L1210 murine leukemia cell line (0.14 ng/mL), human colon tumor HCT 116 cell line (0.12 μ g/mL), and KB cancer cell line (4.2 ng/mL).^{1,2,4,5} The biological activity and complex structural architecture of 1 has led to considerable synthetic interest;^{6,7} yet, the total synthesis of 1 remains an elusive target.⁸

Our initial retrosynthetic strategy, as outlined in Scheme 1, involves a Mitsunobu macrolactonization of seco acid 2.

(5) Kobayashi, J.; Ishibashi, M.; Nakamura, H.; Ohizumi, Y.; Hirata, Y.; Sasaki, T.; Ohta, T.; Nozoe, S. *J. Nat. Prod.* **1989**, *52*, 1036–41.

Compound 2 could, in turn, be available from Wadsworth– Emmons reaction of a C_9 aldehyde with the phosphonate 4. A diastereoselective aldol reaction between methyl ketone

⁽¹⁾ Ishibashi, M.; Ohizumi, Y.; Hamashima, M.; Nakamura, H.; Hirata, Y.; Sasaki, T.; Kobayashi, J. J. Chem. Soc., Chem. Commun. **1987**, 1127–29.

⁽²⁾ Bauer, I.; Maranda, L.; Shimizu, Y.; Peterson, R. W.; Cornell, L.; Steiner, J. R.; Clardy, J. J. Am. Chem. Soc. **1994**, 116, 2657–58.

⁽³⁾ Ishibashi, M.; Ishiyama, H.; Kobayashi, J. Tetrahedron Lett. 1994, 35, 8241-42.

⁽⁴⁾ For a recent review: Kobayashi, J.; Tsuda, M. Nat. Prod. Rep. 2004, 21, 77–93.

6 and aldehyde **5** would be used to form the $C_{18,19}$ linkage. Finally, the 1,3-diene fragment present in **5** is particularly challenging as it appears that the C_{16} -alkoxy moiety renders a palladium- or copper-mediated strategy problematic for its formation.^{7a,9} For this reason, an alternate method for its construction needed to be developed.

The synthesis of aldehyde **5** began with the commercially available (*S*)-lactic acid (**7**) (Scheme 2). After acetalization with pivaldehyde, Seebach alkylation¹⁰ with cinnamyl bro-

mide provided the tertiary alkoxy function in 91% yield and greater than 20:1 dr. Subsequent treatment with MeLi and silylation yielded the protected methyl ketone **9**. Combination with the readily available allyl silane **12** using freshly distilled TiCl₄ yielded the C_{14,15}-coupled material **13** in 65–70% yield as 6:1 ratio of diastereomers at C₁₅. Next, elimination of the homoallylic alcohol **13** using SOCl₂ and pyridine in toluene provided the C₁₃–C₁₅ diene **14** as a *single* stereoisomer at C₁₄–C₁₅. The desired product was contaminated with the unconjugated diene **15** in a 2.2:1 ratio (**14/15**). While compounds **14** and **15** could be separated by HPLC,

^{(6) (}a) Zhang, W.; Carter, R. G.; Yokochi, A. F. T. *J. Org. Chem.* **2004**, 69, 2569–72. (b) Carter, R. G.; Zhang, W. 227th ACS National Meeting, Mar 28–Apr 2, 2004, Anaheim, CA; American Chemical Society: Washington, DC, 2004; ORGN-398.

^{(7) (}a) Cid, B.; Pattenden, G. Tetrahedron Lett. 2000, 41, 7373-78. (b) Lee, D.-H.; Rho, M.-D. Tetrahedron Lett. 2000, 41, 2573-76. (c) Ohi, K.; Nishiyama, S. Synlett 1999, 571-72. (d) Ohi, K.; Nishiyama, S. Synlett 1999, 573-75. (e) Eng, H. M.; Myles, D. C. Tetrahedron Lett. 1999, 40, 2275-78. (f) Eng, H. M.; Myles, D. C. Tetrahedron Lett. 1999, 40, 2279-82. (g) Chakraborty, T. K.; Thippewamy, D. *Synlett* **1999**, 150–52. (h) Ishiyama, H.; Takemura, T.; Tsuda, M.; Kobayashi, J. *J. Chem. Soc., Perkin Trans. 1* **1999**, 1163–66. (i) Chakraborty, T. K.; Thippewamy, D.; Suresh, V. R.; Jayaprakash, S. *Chem. Lett.* **1997**, 563–64. (j) Chakraborty, T. K.; Suresh, V. R. Chem. Lett. 1997, 565-66. (k) Lee, D. H.; Lee, S.-W. Tetrahedron Lett. 1997, 38, 7909-10. (1) Ohi, K.; Shima, K.; Hamada, K.; Saito, Y.; Yamada, N.; Ohba, S.; Nishiyama, S. Bull. Chem. Soc. Jpn. 1998, 71, 2433-40. (m) Ndubaku, C. O.; Jamison, T. F. 227th ACS National Meeting, Mar 28–Apr 2, 2004, Anaheim, CA; American Chemical Society: Washington, DC, 2004; ORGN-392. (n) Schneekloth, J. S., Jr.; Mandal, A.; Crews, C. M. 228th ACS National Meeting, Aug 22-27, 2004, Philadelphia; American Chemical Society: WAshington, DC, 2004; MEDI-172. (o) Nelson, S. G.; Gopalarathnam, A.; Kassick, A. J. 229th ACS National Meeting, Mar 13-18, 2005, San Diego; American Chemical Society: Washington, DC, 2005; ORGN-413. (p) Mandal, A. K.; Schneekloth, J. S., Jr.; Crews, C. M. Org. Lett. 2005, 7, 3645-48.

⁽⁸⁾ For total syntheses of other members of the amphidinolides: (a) Williams, D. R.; Kissel, W. S. J. Am. Chem. Soc. 1998, 120, 11198–99.
(b) Williams, D. R.; Myers, B. J.; Mi, L. Org. Lett. 2000, 2, 945–48. (c) Williams, D. R.; Myers, K. G. J. Am. Chem. Soc. 2001, 123, 765–66. (d) Lam, H. W.; Pattenden, G. Angew. Chem., Int. Ed. 2002, 41, 508–511. (e) Maleczka, R. E.; Terrell, L. R.; Geng, F.; Ward, J. S., III. Org. Lett. 2002, 4, 2841–44. (f) Trost, B. M.; Chrisholm, J. D.; Wrobleski, S. T.; Jung, M. J. Am. Chem. Soc. 2003, 125, 2374–75. (h) Aïssa, C.; Riveiros, R.; Ragot, J.; Frustner, A. J. Am. Chem. Soc. 2004, 126, 15512–20. (i) Ghosh, A. K.; Gong, G. J. Am. Chem. Soc. 2004, 126, 5028–29. (k) Trost, B. M.; Papillon, J. P. N. J. Am. Chem. Soc. 2004, 126, 13618–19. (i) Lepage, O.; Kattnig, E.; Fürstner, A. J. Am. Chem. Soc. 2004, 126, 13618–19. (i) Lepage, O.; Kattnig, E.; O'Brien, K. C.; Jamison, T. F. J. Am. Chem. Soc. 2005, 127, 4297–307.

⁽⁹⁾ Chakraborty^{7g} has shown that the $C_{13}-C_{14}$ palladium coupling can be affected on substrates containing an sp²-hybridized center at C_{16} . Also, Nelson and co-workers quite recently have disclosed the apparent ability access the $C_{13}-C_{15}$ diene via a Suzuki coupling.⁷⁰

⁽¹⁰⁾ Seebach, D.; Naef, R.; Calderari, G. Tetrahedron 1984, 40, 1313–24.

purification of the desilylated compounds 16 and 17 proved logistically easier as they were separable by standard chromatographic methods. Subsequent Mitsunobu-type incorporation of the C_9 cyanide¹¹ and protection yielded **18**. Next, Sharpless asymmetric dihydroxylation of 18 using AD mix β^{*12} provided the C_{18,19} diol as an inconsequential 6:1 mixture of diastereomers. The selectivity for the C_{18,19} alkene over the C_{13} - C_{15} diene was attributed to, in part, a beneficial π -stacking interaction between the neighboring aromatic ring and the corresponding Sharpless ligand.¹³ Dihydroxylation under standard OsO₄, NMO conditions provided a complex mixture of products. AD mix α^* also proved to be a poor reagent for this transformation. Interestingly, dihydroxylation of the unconjugated diene 20 with AD mix β^* was again regioselective for the C_{18,19} alkene; however, no diastereoselectvity was observed in the dihydroxylation. Finally, cleavage of the diol 19 yielded the necessary aldehyde 5. An analogous procedure with the unconjugated diene series provided the aldehyde 22.

The synthesis of the eastern subunit 6 commenced with the previously prepared aldehyde 24^{6a} (Scheme 3). Boron-

mediated aldol reaction of aldehyde **24** with the oxazolidinone **23**¹⁴ gave the desired C₂₁–C₂₃ *syn,syn* adduct **25** in good yield. The minor diastereomer in the aldol appeared to be the *anti* aldol adduct ($J_{H21,H22} = 9.0$ Hz). Subsequent silylation at C₂₂ followed by conversion to the thioester and cuprate addition yielded the desired methyl ketone **6**.

With the methyl ketone subunit **6** and the diene fragment **5** constructed, focus shifted toward their union (Scheme 4).

Chelation-controlled aldol condensation of lithium enolate derived from the methyl ketone 6 with the aldehyde 5 provided the coupled material 27 in 69% yield as a single diastereomer. This result is in contrast to work by Pattenden's and Kobayashi's laboratories in which poor selectivity (approximately 3:2 dr) was observed using enolates derived from LDA, NaHMDS, or KHMDS.7a,h In both cases, nonchelating silvl protecting groups¹⁵ were employed on C₂₁ of the enolate. We attribute part of the improved selectivity at C_{18} to the use of the α -chelating PMB group on the enolate, as shown in the model 26. It should be noted, however, that when the analogous aldol reaction with the unconjugated diene-containing aldehyde 22 was preformed, diminished selectivity (approximately 2:1 dr) was observed. The C_{18} stereochemistry of 27 was confirmed by Mosher ester analysis.¹⁶ Finally, silvl protection under specific conditions¹⁷

⁽¹¹⁾ Andrus, M. B.; Meredith, E. L.; Hicken, E. J.; Simmons, B. L.; Glancey, R. R.; Ma, W. J. Org. Chem. 2003, 68, 8162-69.

⁽¹²⁾ AD mix $\beta^* = (DHQD)_2PHAL$ (15.2 mg), K₂OsO₄·2H₂O (2.55 mg), K₂CO₃ (293.6 mg), K₃Fe(CN)₆ (699.6 mg). Commercially available AD mix β proved to be slow and inefficient.

^{(13) (}a) Kolb, H. C.; Andersson, P. G.; Sharpless, K. B. J. Am. Chem. Soc. 1994, 116, 1278–91. (b) Corey, E. J.; Guzman-Perez, A.; Noe, M. C. J. Am. Chem. Soc. 1995, 117, 10805–16. (c) Mander, L. N.; Morris, J. C. J. Org. Chem. 1997, 62, 7497–99. (d) Carter, R. G.; Weldon, D. J. Org. Lett. 2000, 2, 3913–16.

⁽¹⁴⁾ Evans, D. A.; Gage, J. R.; Leighton, J. L.; Kim, A. S. J. Org. Chem. 1992, 57, 1961–63.

^{(15) (}a) Keck, G. A.; Castellino, S. *Tetrahedron. Lett.* **1987**, *28*, 281–
84. (b) Frye, S. V.; Eliel, E. *Tetrahedron Lett.* **1986**, *27*, 3223–26. It should be noted that there have been selected examples reported to the contrary:
(c) Willard, P. G.; Hintze, M. J. *J. Am. Chem. Soc.* **1987**, *109*, 5539–41.
(d) Evans, D. A.; Allison, B. D.; Yang, M. G. *Tetrahedron Lett.* **1999**, *40*, 4457–60.
(e) Evans, D. A.; Halstead, D. P.; Allison, B. D. *Tetrahedron Lett.* **1999**, *40*, 4461–64.

^{(16) (}a) Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. **1991**, 113, 4092–96. (b) Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. **1973**, 95, 512–19. (c) Sullivan, G. R.; Dale, J. A.; Mosher, H. S. J. Org. Chem. **1973**, 38, 2143–47. (d) For a recent review: Seco, J. M.; Quinoa, E.; Riguera, R. Chem. Rev. **2004**, 104, 17–118.

⁽¹⁷⁾ Magnus, P.; Carter, R.; Davies, M.; Elliott, J.; Pitterna, T. *Tetrahedron* **1996**, *52*, 6283–306.

[TBSOTf (1.2 equiv), $E_{t_3}N/CH_2Cl_2$ (1:1)] provided silyl ether 27. If more traditional silylation conditions were employed [e.g., TBSOTf (1.2 equiv), 2,6-lutidine (1.5 equiv)], migration of the 1,1-disubstituted alkene at C_{13} into the $C_{12}-C_{13}$ trisubstituted position appeared to be observed.

In summary, an efficient approach to the C_9-C_{26} portion of amphidinolide B_1 is disclosed. Key steps in the approach include a novel method for the construction of the $C_{13}-C_{15}$ diene, regioselective dihydroxylation of a styrene derivative using Sharpless AD mix and a highly diastereoselective aldol reaction to form the C_{18} stereocenter. While much has been accomplished toward the total synthesis of **1**, significant challenges remain including the incorporation of the C_6-C_9 epoxy alkene moiety and the nontrivial Mitsunobu macrocyclization of an $\alpha_{,\beta}$ -unsaturated seco acid.

Acknowledgment. Financial support was provided by the National Institutes of Health (NIH) (GM63723) and Oregon State University. This publication was also made possible

in part by a grant from the NIH – National Institute of Environmental Health Sciences (P30 ES00210). We thank Professor Max Deinzer (Mass Spectrometry Facility, Environmental Health Sciences Center, Oregon State University) and Dr. Jeff Morré (Mass Spectrometry Facility, Environmental Health Sciences Center, Oregon State University) for mass spectral data, Rodger Kohnert (Oregon State University) for NMR assistance, and Dr. Roger Hanselmann (Rib-X Pharmaceuticals) for his helpful discussions.

Note Added after ASAP Publication. There was an error in Scheme 2 in the version published ASAP August 19, 2005; the corrected version was published September 2, 2005.

Supporting Information Available: Complete experimental procedures are provided, including ¹H and ¹³C spectra, of all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL051544E