SELENOSULFONATION OF ALLENES AND SUBSEQUENT REARRANGEMENT OF THE ADDUCTS: A FACILE SYNTHETIC ROUTE TO $\beta\text{-}arylsulfonyl-substituted}$ allylic alcohols 1

Young-Hee Kang and John L. Kice^{*} Department of Chemistry, Texas Tech University Lubbock, Texas 79409

<u>Abstract</u>: <u>Se-Phenyl</u> areneselenosulfonates add readily to allenes in a highly regiospecific fashion (eq 3) to give 5. Oxidation of the PhSe group in 5 to PhSe(0) is followed by [2,3]-sigmatropic rearrangement to 6 and hydrolysis of 6 to the β -arylsulfonyl-substituted allylic alcohol 7, thereby providing a simple, high-yield route to these interesting compounds.

<u>Se-Phenyl areneselenosulfonates</u> $(ArSO_2SePh)$ readily undergo free-radical addition to alkenes (eq 1)² and alkynes (eq 2)³, affording $\frac{1}{2}$ and $\frac{2}{2}$, respectively. Upon oxidation of the PhSe group to PhSe(0) these adducts eliminate PhSeOH, and vinylic ($\frac{3}{2}$) and acetylenic ($\frac{4}{2}$) sulfones are formed in high yield, providing an excellent route to these synthetically useful compounds.

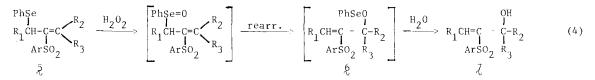
$$RCH=CH_{2} \xrightarrow{ArSO_{2}SePh} RCHCH_{2}SO_{2}Ar \xrightarrow{[0]} -PhSeOH RCH=CHSO_{2}Ar \qquad (1)$$

$$RC = CH \xrightarrow{ArSO_{2}SePh} RC=CHSO_{2}Ar \xrightarrow{[0]} -PhSeOH RC = CSO_{2}Ar \qquad (2)$$

We now wish to report that areneselenosulfonates also readily undergo free-radical addition to allenes. The addition is highly regiospecific, the arylsulfonyl group adding to the <u>central</u> carbon of the allenic system and the phenylseleno group becoming attached to the <u>less highly</u> <u>substituted</u> of the two terminal carbons (eq 3). Table I shows the results with the different allenes studied. In each case the yield of adduct 5 is essentially quantitative.

$$R_{1}CH=C=C \begin{pmatrix} R_{2} \\ R_{3} \end{pmatrix} + ArSO_{2}SePh \xrightarrow{hv} R_{1}CH=C=C \begin{pmatrix} R_{2} \\ R_{3} \end{pmatrix}$$
(3)
$$ArSO_{2} \qquad 5 \end{pmatrix}$$

When the PhSe group in 5 is oxidized to PhSe(0) with hydrogen peroxide there ensues, not an elimination of PhSeOH, but rather a [2,3]-sigmatropic rearrangement⁴ to selenenate 6, followed by hydrolysis of 6 and the formation of the β -arylsulfonyl-substituted allylic alcohol


Table I

Selenosulfonation of Allenes and Rearrangement of the Adducts Upon Oxidation

Allene	Selenosulfonation product (eq 3, Ar = \underline{p} -tolyl), $5^{a,b}$	Product upon oxidation of 5 (eq 4, Ar = p-toly1), 7 (yield), mp ^{C,d}
CH ₂ =C=C(CH ₃) ₂	PhSeCH ₂ C=C(CH ₃) ₂ , oil ArSO ₂	$CH_2=C - C(CH_3)_2$ (75%), 57-58°C ArSO ₂
CH ₃ CH=C=C(CH ₃) ₂	PhSe I CH3CHC≈C(CH3)2, oil ArSO2	$\begin{array}{c} & \text{OH} \\ \text{CH}_{3}\text{CH=C} - \text{C(CH}_{3})_{2} (98\%), 76-77^{\circ}\text{c}^{\text{f}} \\ \text{Arso}_{2} \end{array}$
$CH_2 = C = CCH_2CH_3$ CH_3	PhSeCH ₂ C=CCH ₂ CH ₃ , oil ^e ArSO ₂	$CH_2 = C - CCH_2CH_3$ (92%), 47.5-48°C Arso ₂ CH ₃
$CH_2 = C = CH(CH_2)_5 CH_3$	PhSeCH ₂ C=CH(CH ₂) ₅ CH ₃ , oil ^f ArSO ₂	$CH_2 = C - CH(CH_2)_5 CH_3$ (92%), oil Arso ₂ OH
CH ₂ =C=CHPh	PhSeCH ₂ C=CHPh, 96-97 ⁰ C 21 ArSO ₂	CH ₂ =C - CHPh (70%), 77-78 [°] C ArSO ₂ OH

(a) Selenosulfonations carried out by photolyzing a CCl₄ solution of ArSO₂SePh (1.0 M) and the allene (1.5 M) in pyrex for 2.5-3.0 hr. (Rayonet reactor, RPR-2537 lamp). (b) Each $\overline{\xi}$ had an NMR spectrum consistent only with the assigned structure; satisfactory C,H analyses and IR spectra also obtained. (c) Adduct ξ treated with excess H₂O₂ in THF at -20°C for 2 hr; then Et₃N added and solution allowed to warm to room temperature. (d) Each 7 had an NMR spectrum consistent only with the assigned structure; satisfactory C,H analyses obtained for all ζ . (e) NMF indicates product is mixture of E- and Z-isomers. (f) NMR indicates product is E-isomer.

 7_{c} (eq 4). Yields of 7_{c} range from 70-98% (Table I). The rearrangement to 6_{c} takes place even when R_{1} has a hydrogen located such that elimination of PhSeOH is possible (entry 2 of Table I). 3-Arylsulfonyl-substituted allylic alcohols (7) would seem to have the potential for much

interesting chemistry. Their facile synthesis via eqs 3 and 4 now makes them easily available.

References and Notes

- (1) The support of this research by the Robert A. Welch Foundation (Grant D-650) is gratefully acknowledged.
- Back, T. G.; Collins, S. <u>Tetrahedron Lett.</u>, 1980, 2215; J. Org. Chem., 1981, 46, 3249.
 Gancarz, R. A.; Kice, J. L. <u>Tetrahedron Lett.</u>, 1980, 4155; <u>J. Org. Chem.</u>, 1981, 46, 4899.
- (3) Back, T. G.; Collins, S. <u>Tetrahedron Lett.</u>, 1981, 5111. Miura, T.; Kobayashi, M. <u>Chem.</u> <u>Commun.</u>, 1982, 438.
- Reich, H. J. J. Org. Chem., 1975, 40, 2570. Salmond. W. G.; Barta, J. A.; Cain, A. M.; Sobola, M. C. Tetrahedron Lett., 1977, 1683. Sharpless, K. B.; Lauer, R. F. J. Am. Chem. Soc., 1972, 94, 7154.

(Received in USA 23 August 1982)