Accepted Manuscript

Copper-Catalyzed Aerobic Oxidative Dicarbonylation of Indoles Utilizing α -Carbonyl Aldehydes

Jin-Ming Yang, Zhong-Jian Cai, Qing-Dong Wang, Dong Fang, Shun-Jun Ji

PII: S0040-4020(15)01010-8

DOI: 10.1016/j.tet.2015.07.004

Reference: TET 26949

To appear in: Tetrahedron

Received Date: 13 April 2015

Revised Date: 29 June 2015

Accepted Date: 1 July 2015

Please cite this article as: Yang J-M, Cai Z-J, Wang Q-D, Fang D, Ji S-J, Copper-Catalyzed Aerobic Oxidative Dicarbonylation of Indoles Utilizing α -Carbonyl Aldehydes, *Tetrahedron* (2015), doi: 10.1016/j.tet.2015.07.004.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

Copper-Catalyzed Aerobic Oxidative	Leave this area blank for abstract info.
Dicarbonylation of Indoles Utilizing α -	6
Carbonyl Aldehydes	
Jin-Ming Yang, ^{a,*} Zhong-Jian Cai, ^b Qing-Dong Wang, ^a Dong Fa	ang, ^a and Shun-Jun Ji ^{b,} *
^a School of Pharmacy, Yancheng Teachers University, Yancheng	224051, P. R. China
^b Key Laboratory of Organic Synthesis of Jiangsu Province, Coll	ege of Chemistry , Chemical Engineering and
Materials Science, SoochowUniversity, Suzhou 215123, P. R. Cl	hina
R^{1} + R^{2} + R^{2} + R^{2} + R^{2} + R^{2} + R^{2} + H^{2} + H^{2	$(2 \text{ mL}) C R^{1/2} N$

Tetrahedron journal homepage: www.elsevier.com

Copper-Catalyzed Aerobic Oxidative Dicarbonylation of Indoles Utilizing α -Carbonyl Aldehydes

Jin-Ming Yang,^{a,*} Zhong-Jian Cai,^b Qing-Dong Wang,^a Dong Fang,^a and Shun-Jun Ji^{b,*}

^aSchool of Pharmacy, Yancheng Teachers University, Yancheng 224051, P. R. China ^bKey Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, SoochowUniversity, Suzhou 215123, P. R. China

ARTICLE INFO

Received in revised form

Article history:

Received

Accepted Available online ABSTRACT

An efficient and practical protocol for copper-catalyzed aerobic oxidative dicarbonylation of indoles using α -carbonyl aldehydes to construct C-3 indole-substituted 1,2-diketones is developed. Various C-3 indole-substituted 1,2-diketones were observed in good to excellent yields under mild reaction conditions. This transformation used air as an ideal oxidant and produced water as the only by-product.

Keywords: Copper-catalyzed Aerobic oxidative dicarbonylation Indoles 1.2-diketones

1. Introduction

Indole skeleton is widespread in bioactive synthetic and natural products,¹ and occupies a privileged position in medicinally relevant compounds,² hence the direct indole functionalization reactions are deemed important.³ Heteroaryl 1,2-diketones are a class of versatile and powerful building blocks in organic synthesis, which are ideal for the preparation of heterocyclic compounds possessing pharmacological properties.⁴ Therefore, exploring new methods for the direct dicarbonylation of nonactivated indoles will be much meaningful.⁵

In 2004, Li developed a strategy for constructing functional molecules by only using two different C-H bonds under oxidative conditions, which was termed cross-dehydrogenative coupling (CDC).⁶ Over the past decade, copper catalyzed aerobic oxidative cross dehydrogenative coupling (CDC) has gained impressive progress, which is regarded as an efficient tool in synthetic methodology.⁷ In 2010, Li and co-workers described a novel copper-catalyzed intramolecular C-H oxidation/acylation protocol for constructing substituted indoline-2,3-diones with good functional groups tolerance (Scheme 1, eq. 1),⁸ as such reaction only used two C-H bonds under oxidative conditions. Recently, they reported a novel intermolecular reaction of α amino carbonyls with indoles, which could selectively furnish 2-(1H-indol-3-yl)-2-imino-carbonyls and 2-(1H-indol-3-yl)-2oxocar-bonyls via copper catalyzed C-H oxidative/cross-coupling (Scheme 1, eq. 2).^{5e} More recently, Jiao's group reported a Cu2015 Elsevier Ltd. All rights reserved.

catalyzed aerobic oxidative esterification reaction of 1,3-diones to construct α -ketoesters by C-C bond cleavage and oxidative C-H bond functionalization (Scheme 1, eq. 3).⁹ Moreover, they explored a more efficient and practical strategy for construction of α -ketoesters through Cu-catalyzed aerobic oxidative dehydrogenative coupling of α -carbonyl aldehydes with alcohols (Scheme 1, eq. 4).¹⁰ This transformation used air as an ideal oxidant and produced water as the only by-product. In light of our sustained efforts to perfrom Cu-catalyzed aerobic oxidative cross-coupling,¹¹ we try to explore the possibility of direct dicar-

Scheme 1 Copper-catalyzed cross-dehydrogenative coupling.

Tetrahedror

^{*} Corresponding author. Fax: +86-512-65880307; E-mail: chemyjm@163.com; shunjun@suda.edu.cn

bonylation of non-activated indoles using α -carbonyl aldehydes under mild conditions (Scheme 1, eq. 5). Recently, Wu and coworkers established a molecular iodine mediated direct oxidative cross-coupling of indoles with methyl ketones for the dicarbonylation of indoles.^{5f} Meanwhile, Vishwakarma, Ahmed and co-workers developed a novel aminocatalytic cross-coupling approach to construt C-3 indole-substituted 1,2-diketones via iminium ions.^{5g}

2. Results and discussion

Our study was initiated by treating 1-methyl-1H-indole 1a with phenylglyoxal monohydrate 2a in the presence of pyridine (0.5 equiv) and CuBr (0.1 equiv) at 90 °C for 6 hours. To our delight, 1-(1methyl-1H-indol-3-yl)-2-phenylethane-1,2-dione 3a was formed in 82% LC-yield (75% isolated yield). Then, we screened different catalysts, solvents, reaction temperature, as well as additives (details see Supporting Information). As presented in Table 1, a range of copper salts, such as CuCl, CuI, Cu2O, CuCl2, CuBr2 and Cu(OAc)2H2O could promote the reaction smoothly and afford the desired product in 75% to 81% LC-yields (Table 1, entries 2-7). We then proceed on to screen the effect of different bases, whereby, good yields were achieved when using either organic bases (Table 1, entries 8-12) or inorganic bases (Table 1, entries 12-14). However, the yields obtained were all lower than using pyridine. When the reaction were carried out in other different solvents (Table 1, entries 15-18) such as CH₃CN and 1,4-dioxane, lower yields were obtained. Only trace amount of $\ 3a$ was detected when DCE and DMSO were examined instead of toluene.

Table 1

Screening of reaction conditions.^a

	+	Cat. (10 mc base (50 m)
	N L	n n₂0 solvent (2 r 90 ℃	nL)	
	1a	2a	3a	
Entry	Cat.	Base	Solvent	Yield ^b
	(0.1 equiv)	(0.5 equiv)	(2 mL)	(LC-MS)
1	CuBr	Pyridine	Toluene	82 (75) ^c
2	CuCl	Pyridine	Toluene	81
3	CuI	Pyridine	Toluene	81
4	Cu_2O	Pyridine	Toluene	75
5	CuCl ₂	Pyridine	Toluene	76
6	CuBr ₂	Pyridine	Toluene	76
7	Cu(OAc)2'H2O	Pyridine	Toluene	75
8	CuBr	Et ₃ N	Toluene	67
9	CuBr	DABCO	Toluene	79
10	CuBr	Pyrrolidine	Toluene	72
11	CuBr	Piperidine	Toluene	78
12	CuBr	Êt ₂ NH	Toluene	75
13	CuBr	Na ₂ CO ₃	Toluene	73
14	CuBr	NaHCO ₃	Toluene	75
15	CuBr	Pyridine	CH ₃ CN	36
16	CuBr	Pyridine	1,4-dioxane	20
17	CuBr	Pyridine	DCE	Trace
18	CuBr	Pyridine	DMSO	Trace

^{*a*}Reaction conditions: **1a** (0.5 mmol), **2a** (0.5 mmol), cat. (0.05 mmol), Pyridine (0.25 mmol), solvent (2 mL) at 90 °C. ^{*b*}The yields were determined by LC analysis using biphenyl as the internal standard. ^{*c*}Isolated yields.

With the optimized conditions in hand, the substrate scope was explored at 90 °C for 6 h under atmospheric air using 10 mol% of CuBr as the promoter, pyridine as the base, and toluene (2 mL) as the solvent. As presented in Table 2, A range of indoles could be converted to the corresponding indoleyl 1,2-diketones smoothly. The dicarbonylation of indoles with different *N*-protective groups could react smoothly to afford the desired products **3b** and **3c** in 65% and

62% yield, respectively. However, *N*-benzoyl indole1d with electron-withdrawing moieties could not transform to the corresponding product for the decreased electron density. All 4-methyl-, 5-methyl-, 6-methyl- or 7-methyl-substituted indole substrates could proceed smoothly to furnish the desired products in moderate to good yield (3e-3h). Notably, 3i could be isolated in 91% yield when 5-methoxy-indole was subjected to the reaction with 2a. Particularly, the reactions of 2-substitued indole such as 2-methyl- or 2-phenyl-indole with 2a gave the dicarbonylation products 3k and 3l in 83% and 75% yield, respectively, which was hard to be obtained by other reported methods. However, the reaction of indole with strong electron-withdrawing substituent group failed to give the desired product due to the decreased electron density.

Table 2

The reaction of various indoles with α -carbonyl aldehyde^{*a*}

^aReaction conditions: **1** (0.5 mmol), **2a** (0.5 mmol), CuBr (0.05 mmol), Pyridine (0.25 mmol), toluene (2 mL) at 90 °C, 6 h.

Next, various α -carbonyl aldehydes were applied to the reaction with 1a under the optimal reaction conditions and the results were listed in Table 3. The para-position substituted with methyl, methoxy, isopropyl or t-butyl gave the desired products 4a-d in moderate yields (70% to 75% yields). Moreover, halo-substituted α carbonyl aldehydes were also tolerant in this transformation, affording halo-substituted products (4e-i) in moderate to good yields. The structure of 4g was also further confirmed by X-ray crystallography (Details see supporting information). ¹² Substituents at the meta and ortho position of the aromatic ring reduced the yields for the steric effect. It is noteworthy that naphthyl substituted and heteroaryl substituted α -carbonyl aldehydes survived well, generating 4i, 4k and 4l in 68%, 75% and 82% yield, respectively. Meanwhile, α -carbonyl aldehydes carbonyl aldehydes with electrondeficient groups (trifluoromethyl group) also worked well to afford 4m in 77% yield. However, strong electron-withdrawing substituted

We then carried out some control reactions so as to understand the mechanim of this transformation (Scheme 2). No desired product **3a** was formed when the reaction was proceeded in the absence of CuBr (Scheme 2, eq. 6). The reaction also proceeded and gave the desired product in 61% isolated yield under the modified conditions without pyridine (Scheme 2, eq. 7). These experiments indicate that copper salt is essential for the reaction and pyridine is as an additive to increase the yield. Furthermore, the reaction in the atmosphere of Ar was also investigated, which failed to give **3a** (Scheme 2, eq. 8). This result indicated that air is an important oxidant for the reaction to work.

Table 3

The reaction of indole with various a-carbonyl aldehydes^a

^aReaction conditions: **1a** (0.5 mmol), **2** (0.5 mmol), CuBr (0.05 mmol), Pyridine (0.25 mmol), toluene (2 mL) at 90 °C, 6 h.

Scheme 2 Some control experiments.

Based on our above results and the reported works,¹⁰ a plausible reaction mechanism for the Cu-catalyzed dicarbonylation reaction is presented in Scheme 3. Indole **1a** react with 2,2-dihydroxy-1-phenylethanone **2a'** generated from 2-oxo-2-phenylacetaldehyde hydrate to give the benzoin intermediate **5** via a copper catalyzed Friedel-Crafts type reaction¹³ and followed by a copper-catalyzed aerobic oxidation of the benzoin intermediate **5** to deliver the final product **3a**.¹⁴

Scheme 3 A plausible mechanism.

3. Conclusion

In conclusion, we have developed a Cu-catalyzed aerobic oxidative dicarbonylation of indoles and *α*-carbonyl aldehydes under mild conditions. The reaction can serve as an efficient and practical protocol for the synthesis of various indole-substituted 1,2-diketones in moderate to excellent yield with a broad substrate scopes. This transformation used air as an ideal oxidant and produce water as the only by-product, which is environmentally friendly. Further investigations to understand the mechanism of this reaction and their applications in other organic reactions are ongoing in our laboratory.

4. Experimental Section

4.1. General

Melting points were recorded on an Electrothermal digital melting point apparatus and were uncorrected. IR spectra were recorded on a Varian FT-1000 spectrophotometer. ¹H NMR and ¹³C NMR spectra were recorded on a BRUKER 400 MHz (¹H NMR) and 100 MHz (¹³C NMR) spectrumeter using CDCl₃ or DMSO- d_6 as solvent and TMS as internal standard. High resolution mass spectra were obtained using BRUKER micrOTOF-Q III instrument with ESI source.

4.2. Typical procedure for the construction of 3a:

The substrate 1-methyl-1*H*-indole (**1a**, 0.5 mmol, 0.0655 g), phenylglyoxal monohydrate (**2a**, 0.5 mmol, 0.0760 g), CuBr (0.05 mmol, 0.0072 g, 10 mol%), and Pyridine (0.25 mmol, 0.0198 g) were added to a 10 mL Schlenk tube, followed by addition of Toluene (2.0 mL). The mixture was stirred at 90 °C as monitored by TLC. The solution was then quenched by H₂O and extracted with EtOAc, the combined organic layers were dried over Na₂SO₄, filtered, and evaporated under vaccum. The residue was purified by column chromatography on silica gel (eluent: light petroleum ether : ethyl acetate, V : V = 5 : 1) to afford the desired product 1-(1-methyl-1*H*-indol-3-yl)-2-phenylethane-1,2-dione **3a**.

4.2.1. 1-(1-methyl-1*H***-indol-3-yl)-2-phenylethane-1,2-dione (3a**): Yellow Solid, mp: 92-93 °C; **IR** (neat, v, cm-1): 1674, 1618, 1523, 1446cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) 8.53 – 8.43 (m, 1H), 8.09 (d, J = 7.5 Hz, 2H), 7.77 (s, 1H), 7.61 (t, J = 7.4 Hz, 1H), 7.48 (t, J = 7.7 Hz, 2H), 7.40 – 7.33 (m, 3H), 3.77 (s, 3H);

133.85, 132.98, 129.82, 128.29, 125.84, 123.75, 123.01, 122.11, 112.33, 109.62, 33.28; HRMS (ESI) m/z: Found: 286.0838. Calcd for $C_{17}H_{13}NO_2$: $(M+Na)^+$ 286.0838.

4.2.2. 1-(1-benzyl-1H-indol-3-yl)-2-phenylethane-1,2-dione (3b): Yellow Solid, mp: 79-80 °C; IR (neat, v, cm-1): 1667, 1616, 1595, 1577, 1517cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 8.38 (d, J = 7.8 Hz, 1H), 7.98 (d, J = 7.3 Hz, 2H), 7.78 (s, 1H), 7.48 (t, J = 7.4 Hz, 1H), 7.34 (t, J = 7.7 Hz, 2H), 7.24 (ddd, J = 8.0, 6.0, 2.2 Hz, 1H), 7.16 (dd, J = 9.9, 4.0 Hz, 5H), 7.02 – 6.98 (m, 2H), 5.16 (s. 2H): ¹³C NMR (100 MHz, CDCl₃) δ 193.12, 187.25, 138.53, 136.79, 134.72, 133.88, 132.97, 129.91, 128.62, 128.31, 127.89, 126.57, 126.19, 123.89, 123.14, 122.29, 112.85, 110.29, 50.68; **HRMS (ESI)** *m/z*: Found: 362.1150. Calcd for C₂₃H₁₇NO₂: $(M+Na)^+$ 362.1151.

4.2.3. 1-(1-allyl-1*H*-indol-3-yl)-2-phenylethane-1,2-dione (3c): Yellow Solid, mp: 66-67 °C; IR (neat, v, cm-1): 1670, 1611, 1577, 1521, 1450cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 8.39 (d, J = 9.6 Hz, 1H), 8.06 - 7.97 (m, 2H), 7.74 (s, 1H), 7.51 (t, J = 6.8 Hz, 1H), 7.38 (t, J = 7.7 Hz, 2H), 7.30 – 7.22 (m, 3H), 5.86 (ddd, J = 15.9, 10.7, 5.6 Hz, 1H), 5.13 (dd, J = 39.8, 13.7 Hz, 2H), 4.62 (d, J = 5.6 Hz, 2H); ¹³**C** NMR (100 MHz, CDCl₃) δ 193.20, 187.25, 138.13, 136.65, 133.86, 132.96, 130.97, 129.96, 129.86, 129.62, 128.29, 127.96, 126.05, 123.75, 123.06, 122.25, 118.81, 112.67, 110.08, 49.25, 0.60; **HRMS (ESI)** *m/z*: Found: 312.0995; Calcd for $C_{19}H_{15}NO_2$: $(M+Na)^+$ 312.0995.

4.2.4. 1-(1,4-dimethyl-1*H*-indol-3-yl)-2-phenylethane-1,2dione (3e): Yellow Solid, mp: 102-103 °C; IR (neat, v, cm-1): 1669, 1632, 1575, 1495, 1451cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 7.3 Hz, 2H), 7.75 (s, 1H), 7.67 (t, J = 7.4 Hz, 1H), 7.54 (t, J = 7.7 Hz, 2H), 7.38 – 7.30 (m, 1H), 7.22 (t, J = 7.5 Hz, 2H), 3.81 (s, 3H), 3.08 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 194.56, 187.38, 141.03, 138.31, 133.78, 133.48, 133.16, 129.69, 128.33, 124.81, 124.65, 124.08, 113.64, 107.00, 33.41, 22.79; HRMS (ESI) m/z: Found: 300.0991. Calcd for C₁₈H₁₅NO₂: $(M+Na)^+$ 300.0995.

4.2.5. 1-(1,5-dimethyl-1*H*-indol-3-yl)-2-phenylethane-1,2dione (3f): Yellow Solid, mp: 87-88 °C; IR (neat, v, cm-1): 1661, 1632, 1595, 1448cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.20 (s, 1H), 8.03 – 7.98 (m, 2H), 7.65 (s, 1H), 7.53 (t, J = 7.4 Hz, 1H), 7.40 (t, J = 7.7 Hz, 2H), 7.18 – 7.16 (m, 1H), 7.11 (d, J = 9.7 Hz, 1H), 3.70 (s, 3H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 193.37, 187.14, 139.09, 135.64, 133.78, 133.04, 132.87, 129.83, 128.24, 126.10, 125.24, 121.95, 111.98, 109.20, 33.32, 21.07; HRMS (ESI) *m/z*: Found: 300.0996. Calcd for C₁₈H₁₅NO₂: $(M+Na)^+$ 300.0995.

4.2.6. 1-(1,6-dimethyl-1H-indol-3-yl)-2-phenylethane-1,2dione (3g): Yellow Solid, mp: 120-121 °C; IR (neat, v, cm-1): 1668, 1612, 1594, 1573, 1503, 1450cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.33 (d, *J* = 8.1 Hz, 1H), 8.09 (d, *J* = 7.3 Hz, 2H), 7.71 (s, 1H), 7.61 (t, J = 7.4 Hz, 1H), 7.48 (t, J = 7.7 Hz, 2H), 7.21 (d, J = 8.1 Hz, 1H), 7.15 (s, 1H), 3.75 (s, 3H), 2.52 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 193.40, 187.12, 138.78, 137.68, 133.86, 133.79, 133.04, 129.81, 128.26, 124.65, 123.56, 121.74, 112.34, 109.60, 33.20, 21.42; HRMS (ESI) m/z: Found: 300.0990. Calcd for C₁₈H₁₅NO₂: (M+Na)⁺ 300.0995.

1-(1,7-dimethyl-1*H*-indol-3-yl)-2-phenylethane-1,2-4.2.7. dione (3h): Yellow Solid, mp: 129-130 °C; IR (neat, v, cm-1): 1665, 1620, 1596, 1450cm⁻¹; ¹**Ĥ NMR** (400 MHz, CDCl₃) δ 8.41 (d, J = 7.9 Hz, 1H), 8.14 (d, J = 7.4 Hz, 2H), 7.72 (s, 1H), 7.67 (t, J = 7.4 Hz, 1H), 7.54 (t, J = 7.7 Hz, 2H), 7.29 (dd, J = 12.8, 5.3 Hz, 1H), 7.11 (d, J = 7.2 Hz, 1H), 4.06 (s, 3H), 2.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 193.33, 187.08, 140.70, 135.94,

¹³C NMR (100 MHz, CDCl₃) δ 193.34, 187.20, 139.15, 137.25, M A33.79, 133.03, 129.82, 128.26, 126.98, 126.55, 123.21, 121.52, 120.19, 111.82, 37.52, 18.98; HRMS (ESI) m/z: Found: 300.0992. Calcd for C₁₈H₁₅NO₂: (M+Na)⁺ 300.0995.

> 4.2.8. 1-(5-methoxy-1-methyl-1*H*-indol-3-yl)-2-phenyle-thane-**1,2-dione** (**3i**): Yellow Solid, mp: 147-148 °C; **IR** (neat, v, cm-1): 1672, 1616, 1580, 1449cm⁻¹; ¹**H** NMR (400 MHz, CDCl₃) δ 8.15 (d, J = 7.4 Hz, 2H), 8.02 (d, J = 1.8 Hz, 1H), 7.77 (s, 1H), 7.67 (t, *J* = 7.4 Hz, 1H), 7.54 (t, *J* = 7.7 Hz, 2H), 7.30 (d, *J* = 8.9 Hz, 1H), 7.04 (dd, J = 8.9, 2.3 Hz, 1H), 3.98 (s, 3H), 3.82 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃) δ 193.34, 187.04, 156.66, 138.94, 133.79, 133.04, 132.12, 129.81, 128.26, 126.82, 114.05, 112.07, 110.44, 103.46, 55.37, 33.46; HRMS (ESI) m/z: Found: 316.0948. Calcd for $C_{18}H_{15}NO_3$: (M+Na)⁺ 316.0944.

> 1-(5-bromo-1-methyl-1H-indol-3-yl)-2-phenyle-thane-4.2.9. **1,2-dione (3j):** Yellow Solid, mp: 192-193 °C; **IR** (neat, v, cm-1): 1659, 1636, 1595, 1579, 1450cm⁻¹; ¹H NMR (400 MHz, DMSO d_6) $\delta\delta$ 8.38 (s, 1H), 8.31 (s, 1H), 7.98 (d, J = 7.5 Hz, 2H), 7.76 (t, *J* = 7.4 Hz, 1H), 7.62 (dd, *J* = 15.4, 8.1 Hz, 3H), 7.54 (dd, *J* = 8.7, 1.4 Hz, 1H), 3.88 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 193.55, 187.78, 142.10, 136.53, 134.84, 132.67, 129.78, 129.16, 127.12, 126.45, 123.39, 116.10, 113.55, 110.75, 33.63; HRMS (ESI) m/z: Found: 363.9946. Calcd for $C_{17}H_{12}BrNO_2$: (M+Na)⁺ 363.9944.

> 4.2.10. 1-(1,2-dimethyl-1H-indol-3-yl)-2-phenylethane-1,2dione (3k): Yellow Solid, mp: 147-148 °C; IR (neat, v, cm-1): 1670, 1597, 1578, 1510, 1415cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 8.13 (d, J = 7.4 Hz, 2H), 7.98 (d, J = 7.4 Hz, 1H), 7.70 (t, J = 7.4 Hz, 1H), 7.57 (t, J = 7.7 Hz, 2H), 7.39 – 7.27 (m, 3H), 3.73 (s, 3H), 2.70 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 195.01, 189.57, 147.18, 136.57, 133.97, 132.88, 129.56, 128.52, 125.63, 122.59, 122.56, 120.30, 110.07, 109.21, 29.33, 12.27; HRMS (ESI) m/z: Found: 300.0993. Calcd for C₁₈H₁₅NO₂: (M+Na)⁺ 300.0995.

> 4.2.11. 1-(1-methyl-2-phenyl-1*H*-indol-3-yl)-2-phenylethane-**1,2-dione** (**3l**): Yellow Solid, mp: 119-120 °C; **IR** (neat, v, cm-1): 1673, 1610, 1577, 1464, 1435cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.62 (d, J = 4.5 Hz, 1H), 7.65 (d, J = 7.6 Hz, 2H), 7.54 (t, J = 7.3 Hz, 1H), 7.47 (s, 3H), 7.34 (dd, J = 13.6, 6.3 Hz, 3H), 7.25 – 7.08 (m, 4H), 3.57 (s, 3H); ¹³**C** NMR (100 MHz, CDCl₃) δ 193.37, 190.65, 149.38, 136.72, 133.18, 133.07, 130.58, 129.29, 128.86, 128.54, 127.78, 127.50, 126.03, 123.71, 123.23, 122.19, 112.08, 109.53, 30.54; HRMS (ESI) m/z: Found: 362.1155. Calcd for C₂₃H₁₇NO₂: (M+Na)⁺ 362.1151.

> 1-(1-methyl-1*H*-indol-3-yl)-2-(p-tolyl)ethane-1,2-4.2.12. dione (4a): Yellow Solid, mp: 95-96 °C; IR (neat, v, cm-1): 1672, 1613, 1605, 1577, 1463cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 8.50 -8.42 (m, 1H), 8.00 (d, J = 8.2 Hz, 2H), 7.77 (s, 1H), 7.40 -7.35(m, 3H), 7.28 (d, J = 8.0 Hz, 2H), 3.80 (s, 3H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 193.09, 187.49, 145.01, 139.03, 137.23, 130.50, 129.95, 129.01, 125.87, 123.68, 122.95, 122.17, 112.42, 109.53, 33.27, 21.41; HRMS (ESI) m/z: Found: 300.0992. Calcd for C₁₈H₁₅NO₂: (M+Na)⁺ 300.0995.

> 1-(4-methoxyphenyl)-2-(1-methyl-1H-indol-3-4.2.13. yl)ethane-1,2-dione (4b): Yellow Solid, mp: 116-117 °C; IR (neat, v, cm-1): 1661, 1599, 1573, 1460cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, J = 4.5 Hz, 1H), 8.08 (d, J = 8.6 Hz, 2H), 7.78 (s, 1H), 7.36 (s, 3H), 6.95 (d, J = 8.7 Hz, 2H), 3.86 (s, 3H), 3.79 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 192.05, 187.71, 164.08, 139.05, 137.21, 132.27, 125.95, 125.90, 123.63, 122.91, 122.14, 113.59, 112.46, 109.52, 55.12, 33.25; HRMS (ESI) m/z: Found: 316.0947. Calcd for $C_{18}H_{15}NO_3$: (M+Na)⁺ 316.0944.

1-(4-isopropylphenyl)-2-(1-methyl-1H-indol-3-4.2.14. yl)ethane-1,2-dione (4c): Yellow Solid, mp: 116-117 °C; IR (neat, v, cm-1): 1666, 1631, 1600, 1465cm⁻¹; ¹**H NMR** (400 MHz, M CDCl₃) δ 8.53 (s, 1H), 8.08 (s, 2H), 7.83 (s, 1H), 7.42 (s, 5H), 3.86 (s, 3H), 3.03 (s, 1H), 1.33 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 193.12, 187.53, 155.65, 139.04, 137.23, 130.85, 130.12, 126.45, 125.88, 123.68, 122.94, 122.18, 112.43, 109.53, 33.98, 33.27, 23.13; **HRMS (ESI)** *m*/*z*: Found: 328.1305. Calcd for C₂₀H₁₉NO₂: (M+Na)⁺ 328.1308.

4.2.15. 1-(4-(tert-butyl)phenyl)-2-(1-methyl-1*H***-indol-3-yl)ethane-1,2-dione (4d):** Yellow Solid, mp: 180-181 °C; **IR** (neat, v, cm-1): 1669, 1628, 1600, 1522, 1463cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 8.37 (d, *J* = 4.7 Hz, 1H), 7.93 (d, *J* = 8.1 Hz, 2H), 7.67 (s, 1H), 7.40 (d, *J* = 8.1 Hz, 2H), 7.26 (s, 3H), 3.69 (s, 3H), 1.24 (s, 10H); ¹³**C NMR** (100 MHz, CDCl₃) δ 193.11, 187.49, 157.84, 139.04, 137.23, 130.42, 129.81, 125.89, 125.30, 123.68, 122.94, 122.19, 112.43, 109.53, 34.84, 33.27, 30.56; **HRMS (ESI)** *m/z*: Found: 342.1463. Calcd for C₂₁H₂₁NO₂: (M+Na)⁺ 342.1465.

4.2.16. 1-(4-fluorophenyl)-2-(1-methyl-1*H***-indol-3yl)ethane-1,2-dione (4e): Yellow Solid, mp: 112-113 °C; IR** (neat, v, cm-1): 1665, 1611, 1593, 1504cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.46 (s, 1H), 8.14 (s, 2H), 7.82 (s, 1H), 7.38 (s, 3H), 7.15 (t, *J* = 8.0 Hz, 2H), 3.82 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.50, 186.55, 166 (d, *J* = 255.4), 139.20, 137.24, 132.7 (d, *J* = 9.6), 129.4 (d, *J* = 2.6) 125.89, 123.81, 123.09, 122.14, 115.5 (d, J = 21.9), 112.26, 109.59, 33.32; **HRMS (ESI)** *m/z*: Found: 304.0747. Calcd for C₁₇H₁₂FNO₂: (M+Na)⁺ 304.0744.

4.2.17. 1-(4-chlorophenyl)-2-(1-methyl-1*H***-indol-3-yl)ethane-1,2-dione** (**4f**): Yellow Solid, mp: 157-158 °C; **IR** (neat, v, cm-1): 1670, 1618, 1583, 1459cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 8.48 – 8.42 (m, 1H), 8.08 – 8.01 (m, 2H), 7.81 (s, 1H), 7.49 – 7.42 (m, 2H), 7.42 – 7.35 (m, 3H), 3.81 (s, 3H).; ¹³**C NMR** (100 MHz, CDCl₃) δ 191.78, 186.24, 140.36, 139.24, 137.24, 131.38, 131.22, 128.61, 125.89, 123.84, 123.13, 122.15, 112.21, 109.61, 33.34; **HRMS** (**ESI**) *m/z*: Found: 320.0441. Calcd for C₁₇H₁₂ClO₂: (M+Na)⁺ 320.0449.

4.2.18. 1-(4-bromophenyl)-2-(1-methyl-1*H***-indol-3yl)ethane-1,2-dione (4g):** Yellow Solid, mp: 165-166 °C; **IR** (neat, v, cm-1): 1662, 1624, 1583, 1467cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 8.51 – 8.41 (m, 1H), 7.96 (d, *J* = 8.5 Hz, 2H), 7.81 (s, 1H), 7.62 (d, *J* = 8.5 Hz, 2H), 7.39 (dd, *J* = 6.7, 3.3 Hz, 3H), 3.81 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.97, 186.16, 139.24, 137.24, 131.79, 131.60, 131.28, 129.25, 125.89, 123.85, 123.14, 122.16, 112.21, 109.60, 33.35; **HRMS** (ESI) *m/z*: Found: 363.9931. Calcd for C₁₇H₁₂BrNO₂: (M+Na)⁺ 363.9944.

4.2.19. 1-(3-fluorophenyl)-2-(1-methyl-1*H***-indol-3yl)ethane-1,2-dione (4h): Yellow Solid, mp: 121-122 °C; IR** (neat, v, cm-1): 1672, 1619, 1523cm⁻¹; ¹**H** NMR (400 MHz, CDCl₃) δ 8.52 (s, 1H), 7.94 (d, J = 6.8 Hz, 1H), 7.87 (s, 2H), 7.51 (d, J = 5.5 Hz, 1H), 7.94 (s, 3H), 7.38 (d, J = 6.8 Hz, 1H), 3.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.72, 186.02, 162.3 (d, J = 247), 139.22, 137.26, 135.0 (d, J = 6.5), 130.0 (d, J = 7.5), 125.9 (d, J = 2.8), 125.85, 123.87, 123.15, 122.18, 120.8 (d, J = 21.3), 116.1 (d, J = 22.5), 112.19, 109.60, 33.34; **HRMS (ESI)** *m/z*: Found: 304.0745. Calcd for C₁₇H₁₂FNO₂: (M+Na)⁺ 304.0744.

4.2.20. 1-(2-chlorophenyl)-2-(1-methyl-1*H***-indol-3yl)ethane-1,2-dione (4i): Yellow Solid, mp: 163-164 °C; IR (neat, v, cm-1): 1687, 1611, 1588, 1518cm⁻¹; ¹H NMR (400 MHz, CDCl₃) \delta 8.47 – 8.39 (m, 1H), 8.04 (s, 1H), 7.78 (d,** *J* **= 6.8 Hz, 1H), 7.48 (d,** *J* **= 7.0 Hz, 1H), 7.44 – 7.36 (m, 5H), 3.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) \delta 193.52, 184.44, 139.10, 137.14, 134.85, 132.88, 132.76, 131.37, 129.88, 126.52, 126.36,**

IR (400 MHz, M A23.68, 122.98, 122.24, 111.53, 109.51, 33.38; **HRMS** (**ESI**) 7.42 (s, 5H), m/z: Found: 320.0454. Calcd for C₁₇H₁₂ClO₂: (M+Na)⁺ 320.0449.

4.2.21. 1-(1-methyl-1*H***-indol-3-yl)-2-(naphthalen-1-yl)ethane-1,2-dione (4j):** Yellow Solid, mp: 102-103 °C; **IR** (neat, v, cm-1): 1649, 1638, 1525, 1469cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 8.64 (s, 1H), 8.54 (d, *J* = 6.4 Hz, 1H), 8.17 (dd, *J* = 8.6, 1.4 Hz, 1H), 7.93 (dd, *J* = 8.4, 3.0 Hz, 2H), 7.88 (d, *J* = 8.2 Hz, 1H), 7.83 (s, 1H), 7.62 (t, *J* = 7.1 Hz, 1H), 7.54 (t, *J* = 7.2 Hz, 1H), 7.44 – 7.37 (m, 3H), 3.80 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃) δ 193.40, 187.33, 139.18, 137.28, 135.70, 133.23, 131.96, 130.25, 129.51, 128.71, 128.30, 127.38, 126.45, 125.93, 123.92, 123.77, 123.06, 122.24, 112.54, 109.58, 33.30; **HRMS** (**ESI**) *m/z*: Found: 336.0993. Calcd for C₂₁H₁₅NO₂: (M+Na)⁺ 336.0995.

4.2.22. 1-(1-methyl-1*H***-indol-3-yl)-2-(naphthalen-2-yl)ethane-1,2-dione (4k):** Yellow Solid, mp: 106-107 °C; **IR** (neat, v, cm-1): 1637, 1595, 1524, 1468cm⁻¹; ¹**H** NMR (400 MHz, CDCl₃) δ 8.00 (s, 1H), δ 8.64 (s, 1H), 8.54 (d, *J* = 6.8 Hz, 1H), 8.16 (d, *J* = 8.5 Hz, 1H), 7.97 – 7.90 (m, 2H), 7.88 (d, *J* = 8.1 Hz, 1H), 7.83 (s, 1H), 7.62 (t, *J* = 7.4 Hz, 1H), 7.53 (t, *J* = 7.4 Hz, 1H), 7.41 (dd, *J* = 9.5, 2.6 Hz, 3H), 3.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 193.40, 187.33, 139.18, 137.28, 135.69, 133.22, 131.95, 130.25, 129.51, 128.71, 128.30, 127.38, 126.46, 125.93, 123.92, 123.77, 123.06, 122.24, 112.54, 109.58, 33.30; **HRMS (ESI)** *m/z*: Found: 336.0999. Calcd for C₂₁H₁₅NO₂: (M+Na)⁺ 336.0995.

4.2.23. 1-(**1**-methyl-1*H*-indol-3-yl)-2-(thiophen-2-yl)ethane-**1,2-dione** (**4**): Yellow Solid, mp: 93-94 °C; **IR** (neat, v, cm-1): 1642, 1610, 1578, 1520, 1463cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 8.36 (dd, *J* = 6.0, 1.6 Hz, 1H), 7.97 (d, *J* = 5.8 Hz, 2H), 7.69 – 7.61 (m, 1H), 7.24 (ddd, *J* = 10.6, 7.7, 4.3 Hz, 3H), 7.07 – 7.00 (m, 1H), 3.66 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃) δ 184.11, 184.11, 139.92, 138.87, 137.00, 136.25, 136.24, 127.94, 126.41, 123.67, 123.02, 122.14, 111.52, 109.61, 33.30; **HRMS** (**ESI**) *m/z*: Found: 292.0401. Calcd for C₁₅H₁₁NO₂S: (M+Na)⁺ 292.0403.

4.2.24. 1-(1-methyl-1*H***-indol-3-yl)-2-(4-(trifluoromethyl)phenyl)ethane-1,2-dione (4m):** Yellow Solid, mp: 153-154 °C; **IR** (neat, v, cm-1): 1680, 1614, 1579, 1491cm⁻¹; ¹**H** NMR (400 MHz, CDCl₃) δ 8.46 (d, J = 4.0 Hz, 1H), 8.22 (d, J = 8.1 Hz, 2H), 7.86 (s, 1H), 7.75 (d, J = 8.2 Hz, 2H), 7.41 (d, J = 10.0 Hz, 3H), 3.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 191.70, 185.53, 139.34, 137.27, 135.85, 134.7 (q, J = 32.5), 130.17, 125.91, 125.2 (q, J = 3.7), 123.95, 123.24, 123.0 (q, J = 271.3), 122.17, 112.13, 109.64, 33.36; **HRMS** (**ESI**) *m/z*: Found: 354.0712. Calcd for C₁₈H₁₂F₃NO₂: (M+Na)⁺ 354.0712.

Acknowledgements

We gratefully acknowledge the Natural Science Foundation of China (no. 21172162, 21372174), the Ph.D. Programs Foundation of Ministry of Education of China (2013201130004), Nature Science Foundation of Jiangsu Province (BK20141257) Nature Science Foundation of YanCheng Teachers University (14YCKL001) PAPD, and Soochow University for financial support.

References

 (a) Sundberg, R. J. in Comprehensive Heterocyclic Chemistry II, Eds. Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V. and Bird, C. W. Pergamon Press, Oxford, UK, 1996, vol. 2, pp. 119–206; (b) Gribble, G. W. In Comprehensive Heterocyclic Chemistry II; Eds. Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V.; Pergamon: Oxford, 1996; Vol. 2, p 207; (c) Joule, J. A. In Science of Synthesis--Houben-Weyl Methods of Molecular Transformations; Ed. Thomas, E. J. George Thieme Verlag, Stuttgart, Germany, 2000; Vol. 10, p 361; (d) Somei, M. and Yamada, F. MANUSCRIP Nat. Prod. Rep., **2005**, 22, 73; (e) Lebsack, A. D.; Link, J. T.; Overman, L. E.; Stearn, B. A. J. Am. Chem. Soc., **2002**, 124, 9008; (f) Movassaghi, M.; Schmidt, M. A. Angew. Chem., Int. Ed., **2007**, 46, 3725.

- (a) Sundberg, R. J. *Indoles*; Academic: New York, 1996; (b) Katritzky, A. R.; Pozharskii, A. F. *Handbook of Heterocyclic Chemistry*, Pergamon Press, Oxford, 2000; (c) Takayama, H.; Tsutsumi, S. I.; Kitajima, M.; Santiarworn, D.; Liawruangrath, B.; Aimi, N. *Chem. Pharm. Bull.*, 2003, 51, 232; (d) Humphrey, G. R.; Kuethe, J. T. *Chem. Rev.*, 2006, 106, 2875.
- (a) Cacchi, S.; Fabrizi, G. Chem. Rev. 2005, 105, 2873; (b) Seregin, I.
 V.; Gevorgyan, V. Chem. Soc. Rev. 2007, 36, 1173; (c) Bandini, M.;
 Eichholzer, A. Angew. Chem., Int. Ed. 2009, 48, 9608; (d) Shiri, M.
 Chem. Rev. 2012, 112, 3508; (e) Ball, C. J.; Willis, M. C. Eur. J. Org.
 Chem. 2013, 425.
- (a) Fitzi, K. Ger. Pat. 2221546, 1972; US Pat. 3929807, 1975; Chem. 4. Abstr. 1973, 78, 58428. (b) Kozlov, N. S.; Shmanal, G. S. Chem. Heterocycl. Compd. (Engl. Transl.) 1974, 974. (c) Cremlyn, R. J.; Lynch, J. M.; Swinbourne, F. J. Phosphorus Sulfur 1991, 57, 173; (d) Tong, L.; Ho, D. M.; Vogelaar, N. J.; Schutt, C. E.; Pascal, Jr. R. A. Tetrahedron Lett. 1997, 38, 7. (e) Barta, T. E.; Stealey, M. A.; Collins, P. W.; Weier, R. M. Bioorg. Med. Chem. Lett. 1998, 8, 3443; (f) Bark, T.; Weyhermüller, T.; Heirtzler, F. Chem. Commun. 1998, 1475. (g) Heirtzler, F. R. Synlett 1999, 8, 1203. (h) Collis, A. J.; Foster, M. L.; Halley, F.; Maslen, C.; McLay, I. M.; Page, K. M.; Redford, E. J.; Souness, J. E.; Wilsher, N. E. Bioorg. Med. Chem. Lett. 2001, 11, 693. (i) Chang, L. L.; Sidler, K. L.; Cascieri, M. A.; de Laszlo, S.; Koch, G.; Li, B.; MacCoss, M.; Mantlo, N.; O'Keefe, S.; Pang, M.; Rolando, A.; Hagmann, W. K. Bioorg. Med. Chem. Lett. 2001, 11, 2549. (j) Heirtzler, F.; Neuburger, M.; Kulike, K. J. Chem. Soc., Perkin Trans. 1 2002, 809. (k) McKenna, J. M.; Halley, F. Souness, J. E.; McLay, I. M.; Pickett, S. D.; Collis, A. J.; Page, K.; Ahmed, I. J. Med. Chem. 2002, 45, 2173.
- (a) Zhang, Z. X.; Yang, Z.; Wong, H.; Zhu, J. L.; Meanwell, N. A.; Kadow, J. F.; Wan, T. J. Org. Chem. 2002, 67, 6226. (b) Katritzky, A. R.; Zhang, D. Z.; Kirichenko, K. J. Org. Chem. 2005, 70, 3271. (c) Merkul, E.; Dohe, J.; Gers, C.; Rominger, F.; Müller, T. J. J. Angew. Chem., Int. Ed. 2011, 50, 2966. (d) Xing, Q.; Shi, L. J.; Lang, R.; Xia, C. G.; Li, F. W. Chem. Commun. 2012, 48, 11023. (e) Wu, J. C.; Song, R. J.; Wang, Z. Q.; Huang, X. C.; Xie, Y. X.; Li, J. H. Angew. Chem., Int. Ed. 2012, 51, 3453. (f) Gao, Q.; Zhang, J.; Wu, X.; Liu, S.; Wu, A. Org. Lett. 2015, 17, 134. (g) Mupparapu, N.; Battini, N.; Battula, S.; Khan, S.; Vishwakarma, R. A.; Ahmed, Q. N. Chem. Eur. J. 2015, 21, 2954.

6. Li, C.-J. Acc. Chem. Res. 2009, 42, 335.

- (a) Siemsen, P.; Livingston, R. C.; Diederich, F. Angew. Chem. Int. Ed. 2000, 39, 2632; (b) Li, Z.; Bohle, D. S.; Li, C.-J. Proc. Natl. Acad. Sci. USA 2006, 103, 8928; (c) Li, C.-J.; Li, Z. Pure Appl. Chem. 2006, 78, 935; (d) Sarhan, A. A. O.; Bolm, C. Chem. Soc. Rev. 2009, 38, 2730; (e) Ashenhurst, J. A. Chem. Soc. Rev. 2010, 39, 540; (f) Shang, R.; Ji, D.-S.; Chu, L.; Fu Y.; Liu, L. Angew. Chem. Int. Ed., 2011, 50, 4470. (g) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215; (h) Cho, S. H.; Kim, J. Y.; Kwak, J. Chang, S. Chem. Soc. Rev. 2011, 40, 5068; (i) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780; (j) Yang, L.; Huang, H. Catal. Sci. Technol. 2012, 2, 1099; (k) Hirano, K.; Miura, M. Chem. Commun. 2012, 48, 10704; (l) Patureau, F. W.; Wencel-Delord, J.; Glorius, F. Aldrichimica Acta 2012, 45, 31; (m) Shang, X.; Liu, Z.-Q. Chem. Soc. Rev. 2013, 42, 3253; (n) Kozhushkov, S. I.; Ackermann, L. Chem. Sci. 2013, 4, 886.
- Tang, B.-X.; Song, R.-J.; Wu, C.-Y.; Liu, Y.; Zhou, M.-B.; Wei, W.-T.; Deng, G.-B.; Yin, D.-L.; Li, J.-H. J. Am. Chem. Soc., 2010, 132, 8900.
- 9. Zhang, C.; Feng P.; Jiao, N. J. Am. Chem. Soc., 2013, 135, 15257.
- 10. Zhang, C.; Jiao, N. Org. Chem. Front., 2014, 1, 109.
- 11. (a) Cai, Z.-J.; Wang, S.-Y.; Ji, S.-J. Org. Lett. **2012**, *14*, 6068. (b) Cai, Z.-J.; Wang, S.-Y.; Ji, S.-J. Adv. Synth. Catal. **2013**, 355, 2686.
- 12. Compounds 3g was determined by X-ray crystallography. See the Supporting Information for full details. CCDC 1041632 (3g) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data request/cif</u>.
- (a) Gathergood, N.; Zhuang, W.; Jørgensen, K. A. J. Am. Chem. Soc. 2000, 122, 12517. (b) Bigi, F.; Casiraghi, G.; Casnati, G.; Sartori, G.; Fava, G. G.; Belicchi, M. F. J. Org. Chem. 1985, 50, 5018. (c) Erker, G.; van der Zeijden, A. A. H. Angew. Chem., Int. Ed. 1990, 29, 512. (d) Poulsen, T. B.; Jørgensen, K. A. Chem. Rev. 2008, 108, 2903.
- (a) Clarke, H. T.; Dreger, E. E. Org. Synth. 1926, 6, 6. (b) Bordner, C. A. U.S. Patent 2,377,749, June 5, 1945. (c) Gampp, H.; Haspra, D.; Spieler, W.; Zuberbühler, A. D. Helv. Chim. Acta 1984, 67, 1019. (d) Singh, G.; Mahajan, D. S. Oxid. Commun. 2005, 28, 555. (e) Allen, S. E.; Walvoord, R. R.; Padilla-Salinas, R.; Kozlowski, M. C. Chem. Rev. 2013, 113, 6234.

6

Supporting Information for

Copper-Catalyzed Aerobic Oxidative Dicarbonylation of Indoles

Utilizing α -Carbonyl Aldehydes

Jin-Ming Yang,^{a,*} Zhong-Jian Cai,^b Qing-Dong Wang,^a Dong Fang,^a and Shun-Jun Ji^{b,*}

^aSchool of Pharmacy, Yancheng Teachers University, Yancheng 224051, P. R. China
^bKey Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry , Chemical Engineering and Materials Science, SoochowUniversity, Suzhou 215123, P. R. China
E-mail: chemyjm@163.com; shunjun@suda.edu.cn **Table of Contents**Experimental Section -------S2
Optimization of The Reaction Conditions --------S3-S4
Characterization Data of Compounds --------S4-S12
Copies of ¹H and ¹³C NMR Spectra for Compounds --------S13-S36

Experimental Section

General

Melting points were recorded on an Electrothermal digital melting point apparatus and were uncorrected. IR spectra were recorded on a Varian FT-1000 spectrophotometer. ¹H NMR and ¹³C NMR spectra were recorded on a BRUKER 400 MHz (¹H NMR) and 100 MHz (¹³C NMR) spectrumeter using CDCl₃ or DMSO- d_6 as solvent and TMS as internal standard. High resolution mass spectra were obtained using BRUKER micrOTOF-Q III instrument with ESI source.

Typical procedure for the construction of 3a:

The substrate 1-methyl-1*H*-indole (**1a**, 0.5 mmol, 0.0655 g), phenylglyoxal monohydrate (**2a**, 0.5 mmol, 0.0760 g), CuBr (0.05 mmol, 0.0072 g, 10 mol%), and Pyridine (0.25 mmol, 0.0198 g) were added to a 10 mL Schlenk tube, followed by addition of Toluene (2.0 mL). The mixture was stirred at 90 °C as monitored by TLC. The solution was then quenched by H₂O and extracted with EtOAc, the combined organic layers were dried over Na₂SO₄, filtered, and evaporated under vaccum. The residue was purified by column chromatography on silica gel (eluent: light petroleum ether : ethyl acetate, V : V = 5 : 1) to afford the desired product 1-(1-methyl-1*H*-indol-3-yl)-2-phenylethane-1,2-dione **3a**.

S2

	cat.	base		temp	yield
entry	(equiv)	(equiv)	solvent (mL)	(°C)	(LC-MS)
1	CuBr (0.1)	Py (0.5)	Tol. (2)	90	82
2	CuCl (0.1)	Py (0.5)	Tol. (2)	90	81
3	CuI (0.1)	Py (0.5)	Tol. (2)	90	81
4	$Cu_{2}O(0.1)$	Py (0.5)	Tol. (2)	90	75
5	CuCl ₂ (0.1)	Py (0.5)	Tol. (2)	90	76
6	$CuBr_{2}(0.1)$	Py (0.5)	Tol. (2)	90	76
7	Cu(OAc)2·H2O (0.1)	Py (0.5)	Tol. (2)	90	75
8	CuSO4 ⁻ H ₂ O (0.1)	Py (0.5)	Tol. (2)	90	75

Table S1:	The reaction	s of 1a a	nd 2a ca	atalyzed b	v different	catalysts .
10010 10 11					/	

^aReaction conditions: **1a** (0.5 mmol), **2a** (0.5 mmol), cat. (0.05 mmol), Pyridine (0.25 mmol), solvent (2 mL) at 90 °C, 6 h. ^bThe yields were determined by LC analysis using biphenyl as the internal standard.

Table S2: The reactions of 1a and 2a catalyzed by different solvents .

ontry	cat.	base	columnt (mL)	temp	yield
entry	(equiv)	(equiv)	solvent (IIIL)	(°C)	(LC-MS)
1	CuBr (0.1)	Py (0.5)	Tol. (2)	90	82
2	CuBr (0.1)	Py (0.5)	$CH_{3}CN(2)$	80	36
3	CuBr (0.1)	Py (0.5)	$\operatorname{CH}_{3}\operatorname{NO}_{2}(2)$	80	38
4	CuBr (0.1)	Py (0.5)	DMSO (2)	90	Trace
5	CuBr (0.1)	Py (0.5)	DCE (2)	90	Trace
6	CuBr (0.1)	Py (0.5)	1,4-dioxane (2)	90	20
7	CuBr (0.1)	Py (0.5)	EtOH (2)	80	Trace

^{*a*}Reaction conditions: **1a** (0.5 mmol), **2a** (0.5 mmol), cat. (0.05 mmol), Pyridine (0.25 mmol), solvent (2 mL) at 90 °C, 6 h. ^{*b*}The yields were determined by LC analysis using biphenyl as the internal standard.

cat.		base	colvent (mI)	temp	yield
entry	(equiv)	(equiv)	solvent (IIIL)	(°C)	(LC-MS)
1	CuBr (0.1)	Py (0.5)	Tol. (2)	90	82
2	CuBr (0.1)	$Et_{3}N(0.5)$	Tol. (2)	90	67
3	CuBr (0.1)	DABCO (0.5)	Tol. (2)	90	79
4	CuBr (0.1)	Pyrrolidine (0.5)	Tol. (2)	90	72
5	CuBr (0.1)	Piperidine (0.5)	Tol. (2)	90	78
6	CuBr (0.1)	$Et_{2}NH(0.5)$	Tol. (2)	90	75
7	CuBr (0.1)	$Na_{2}CO_{3}(0.5)$	Tol. (2)	90	73
8	CuBr (0.1)	NaHCO ₃ (0.5)	Tol. (2)	90	75

"Reaction conditions: 1a (0.5 mmol), 2a (0.5 mmol), cat. (0.05 mmol), base (0.25 mmol), tol. (2 mL) at 90 °C, 6 h. "The yields were determined

by LC analysis using biphenyl as the internal standard.

ACCEPTED MANUSCRIPT

entry	cat.	base	Time	solvent (mL)	temp	yield
	(equiv)	(equiv)	(h)		(°C)	(LC-MS)
1	CuBr (0.1)	Py (0.5)	4	Tol. (2)	90	74
2	CuBr (0.1)	Py (0.5)	5	Tol. (2)	90	74
3	CuBr (0.1)	Py (0.5)	6	Tol. (2)	90	82
4	CuBr (0.1)	Py (0.5)	7	Tol. (2)	90	76
5	CuBr (0.1)	Py (0.5)	8	Tol. (2)	90	76

Table S6: The reactions of **1a** and **2a** with different time.

^aReaction conditions: **1a** (0.5 mmol), **2a** (0.5 mmol), cat. (0.05 mmol), base (0.25 mmol), tol. (2 mL) at 90 °C. ^bThe yields were determined by LC analysis using biphenyl as the internal standard.

Characterization Data of Compounds:

1-(1-methyl-1*H*-indol-3-yl)-2-phenylethane-1,2-dione (3a)

Yellow Solid, mp: 92-93 °C;

IR (neat, v, cm-1): 1674, 1618, 1523, 1446cm⁻¹;

¹**H NMR** (400 MHz, CDCl₃) 8.53 – 8.43 (m, 1H), 8.09 (d, J = 7.5 Hz, 2H), 7.77 (s, 1H), 7.61 (t, J = 7.4 Hz, 1H), 7.48 (t, J = 7.7 Hz, 2H), 7.40 – 7.33 (m, 3H), 3.77 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 193.34, 187.20, 139.15, 137.25, 133.85, 132.98, 129.82, 128.29, 125.84, 123.75, 123.01, 122.11, 112.33, 109.62,

33.28;

HRMS (ESI) *m*/*z*: Found: 286.0838. Calcd for C₁₇H₁₃NO₂: (M+Na)⁺ 286.0838.

1-(1-benzyl-1*H*-indol-3-yl)-2-phenylethane-1,2-dione (3b)

Yellow Solid, mp: 79-80 °C;

IR (neat, v, cm-1): 1667, 1616, 1595, 1577, 1517cm⁻¹;

¹**H** NMR (400 MHz, CDCl₃) δ 8.38 (d, *J* = 7.8 Hz, 1H), 7.98 (d, *J* = 7.3 Hz, 2H), 7.78 (s, 1H), 7.48 (t, *J* = 7.4 Hz, 1H), 7.34 (t, *J* = 7.7 Hz, 2H), 7.24 (ddd, *J* = 8.0, 6.0, 2.2 Hz, 1H), 7.16 (dd, *J* = 9.9, 4.0 Hz, 5H), 7.02 – 6.98 (m, 2H), 5.16 (s, 2H);

Bn ¹³C NMR (100 MHz, CDCl₃) δ 193.12, 187.25, 138.53, 136.79, 134.72, 133.88, 132.97, 129.91, 128.62, 128.31, 127.89, 126.57, 126.19, 123.89, 123.14, 122.29, 112.85, 110.29, 50.68;

HRMS (ESI) *m*/*z*: Found: 362.1150. Calcd for C₂₃H₁₇NO₂: (M+Na)⁺ 362.1151.

1-(1-allyl-1*H*-indol-3-yl)-2-phenylethane-1,2-dione (3c)

Yellow Solid, mp: 66-67 °C;

IR (neat, v, cm-1): 1670, 1611, 1577, 1521, 1450cm⁻¹;

¹**H** NMR (400 MHz, CDCl₃) δ 8.39 (d, J = 9.6 Hz, 1H), 8.06 – 7.97 (m, 2H), 7.74 (s, 1H), 7.51 (t, J = 6.8 Hz, 1H), 7.38 (t, J = 7.7 Hz, 2H), 7.30 – 7.22 (m, 3H), 5.86 (ddd, J = 15.9, 10.7, 5.6 Hz, 1H), 5.13 (dd, J = 39.8, 13.7 Hz, 2H), 4.62 (d, J = 5.6 Hz, 2H);

¹³C NMR (100 MHz, CDCl₃) δ 193.20, 187.25, 138.13, 136.65, 133.86, 132.96, 130.97, 129.96, 129.86, 129.62, 128.29, 127.96, 126.05, 123.75, 123.06, 122.25, 118.81, 112.67, 110.08, 49.25, 0.60;

HRMS (ESI) *m*/*z*: Found: 312.0995; Calcd for C₁₉H₁₅NO₂: (M+Na)⁺ 312.0995.

1-(1,4-dimethyl-1*H*-indol-3-yl)-2-phenylethane-1,2-dione (3e)

Yellow Solid, mp: 102-103 °C;

IR (neat, v, cm-1): 1669, 1632, 1575, 1495, 1451cm⁻¹; ¹**H** NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 7.3 Hz, 2H), 7.75 (s, 1H), 7.67 (t,

J = 7.4 Hz, 1H), 7.54 (t, J = 7.7 Hz, 2H), 7.38 – 7.30 (m, 1H), 7.22 (t, J = 7.5 Hz, 2H), 3.81 (s, 3H), 3.08 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 194.56, 187.38, 141.03, 138.31, 133.78, 133.48, 133.16, 129.69, 128.33, 124.81, 124.65, 124.08, 113.64, 107.00,

33.41, 22.79; **HRMS (ESI)** *m/z*: Found: 300.0991. Calcd for C₁₈H₁₅NO₂: (M+Na)⁺ 300.0995.

1-(1,5-dimethyl-1*H*-indol-3-yl)-2-phenylethane-1,2-dione (3f)

Yellow Solid, mp: 87-88 °C;

IR (neat, v, cm-1): 1661, 1632, 1595, 1448cm⁻¹;

¹**H** NMR (400 MHz, CDCl₃) δ 8.20 (s, 1H), 8.03 – 7.98 (m, 2H), 7.65 (s, 1H), 7.53 (t, J = 7.4 Hz, 1H), 7.40 (t, J = 7.7 Hz, 2H), 7.18 – 7.16 (m, 1H), 7.11 (d, J = 9.7 Hz, 1H), 3.70 (s, 3H), 2.44 (s, 3H); ¹³C NMP (100 MHz, CDCl₃) δ 193 37, 187 14, 139 09, 135 64, 133 78

¹³C NMR (100 MHz, CDCl₃) δ 193.37, 187.14, 139.09, 135.64, 133.78, 133.04, 132.87, 129.83, 128.24, 126.10, 125.24, 121.95, 111.98, 109.20,

33.32, 21.07; **HRMS (ESI)** *m/z*: Found: 300.0996. Calcd for C₁₈H₁₅NO₂: (M+Na)⁺ 300.0995.

1-(1,6-dimethyl-1*H*-indol-3-yl)-2-phenylethane-1,2-dione (3g)

Yellow Solid, mp: 120-121 °C; **IR** (neat, v, cm-1): 1668, 1612, 1594, 1573, 1503, 1450cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 8.33 (d, *J* = 8.1 Hz, 1H), 8.09 (d, *J* = 7.3 Hz, 2H), 7.71 (s, 1H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.48 (t, *J* = 7.7 Hz, 2H), 7.21 (d, *J* = 8.1 Hz, 1H), 7.15 (s, 1H), 3.75 (s, 3H), 2.52 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 193.40, 187.12, 138.78, 137.68, 133.86, 133.79, 133.04, 129.81, 128.26, 124.65, 123.56, 121.74, 112.34, 109.60,

33.20, 21.42; **HRMS (ESI)** *m*/*z*: Found: 300.0990. Calcd for C₁₈H₁₅NO₂: (M+Na)⁺ 300.0995.

1-(1,7-dimethyl-1*H*-indol-3-yl)-2-phenylethane-1,2-dione (3h)

Yellow Solid, mp: 129-130 °C; **IR** (neat, v, cm-1): 1665, 1620, 1596, 1450cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 8.41 (d, J = 7.9 Hz, 1H), 8.14 (d, J = 7.4 Hz, 2H), 7.72 (s, 1H), 7.67 (t, J = 7.4 Hz, 1H), 7.54 (t, J = 7.7 Hz, 2H), 7.29 (dd, J= 12.8, 5.3 Hz, 1H), 7.11 (d, J = 7.2 Hz, 1H), 4.06 (s, 3H), 2.77 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 193.33, 187.08, 140.70, 135.94, 133.79, 133.03, 129.82, 128.26, 126.98, 126.55, 123.21, 121.52, 120.19, 111.82, 37.52, 18.98; **HRMS (ESI)** *m*/*z*: Found: 300.0992. Calcd for C₁₈H₁₅NO₂: (M+Na)⁺ 300.0995.

1-(5-methoxy-1-methyl-1*H*-indol-3-yl)-2-phenylethane-1,2-dione (3i)

Yellow Solid, mp: 147-148 °C;

IR (neat, v, cm-1): 1672, 1616, 1580, 1449cm⁻¹;

¹**H** NMR (400 MHz, CDCl₃) δ 8.15 (d, J = 7.4 Hz, 2H), 8.02 (d, J = 1.8 Hz, 1H), 7.77 (s, 1H), 7.67 (t, J = 7.4 Hz, 1H), 7.54 (t, J = 7.7 Hz, 2H), 7.30 (d, J = 8.9 Hz, 1H), 7.04 (dd, J = 8.9, 2.3 Hz, 1H), 3.98 (s, 3H), 3.82 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 193.34, 187.04, 156.66, 138.94, 133.79, 133.04, 132.12, 129.81, 128.26, 126.82, 114.05, 112.07, 110.44, 103.46, 55.37, 33.46; **HRMS (ESI)** m/z: Found: 316.0948. Calcd for C₁₈H₁₅NO₃: (M+Na)⁺ 316.0944.

1-(5-bromo-1-methyl-1*H*-indol-3-yl)-2-phenylethane-1,2-dione (3j)

Yellow Solid, mp: 192-193 °C;

IR (neat, v, cm-1): 1659, 1636, 1595, 1579, 1450cm⁻¹; ¹**H NMR** (400 MHz, DMSO- d_6) $\delta\delta$ 8.38 (s, 1H), 8.31 (s, 1H), 7.98 (d, J =7.5 Hz, 2H), 7.76 (t, J = 7.4 Hz, 1H), 7.62 (dd, J = 15.4, 8.1 Hz, 3H), 7.54 (dd, J = 8.7, 1.4 Hz, 1H), 3.88 (s, 3H);

¹³C NMR (100 MHz, DMSO-*d*₆) δ 193.55, 187.78, 142.10, 136.53, 134.84, 132.67, 129.78, 129.16, 127.12, 126.45, 123.39, 116.10, 113.55,

110.75, 33.63; **HRMS (ESI)** *m/z*: Found: 363.9946. Calcd for C₁₇H₁₂BrNO₂: (M+Na)⁺ 363.9944.

1-(1,2-dimethyl-1*H*-indol-3-yl)-2-phenylethane-1,2-dione (3k)

Yellow Solid, mp: 147-148 °C;

IR (neat, v, cm-1): 1670, 1597, 1578, 1510, 1415cm⁻¹;

¹**H NMR** (400 MHz, CDCl₃) δ 8.13 (d, J = 7.4 Hz, 2H), 7.98 (d, J = 7.4 Hz, 1H), 7.70 (t, J = 7.4 Hz, 1H), 7.57 (t, J = 7.7 Hz, 2H), 7.39 – 7.27 (m, 3H), 3.73 (s, 3H), 2.70 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 195.01, 189.57, 147.18, 136.57, 133.97, 132.88, 129.56, 128.52, 125.63, 122.59, 122.56, 120.30, 110.07, 109.21,

```
29.33, 12.27;
```

HRMS (ESI) *m/z*: Found: 300.0993. Calcd for C₁₈H₁₅NO₂: (M+Na)⁺ 300.0995.

1-(1-methyl-2-phenyl-1*H*-indol-3-yl)-2-phenylethane-1,2-dione (3l)

Yellow Solid, mp: 119-120 °C;

IR (neat, v, cm-1): 1673, 1610, 1577, 1464, 1435cm⁻¹;

¹**H** NMR (400 MHz, CDCl₃) δ 8.62 (d, J = 4.5 Hz, 1H), 7.65 (d, J = 7.6 Hz, 2H), 7.54 (t, J = 7.3 Hz, 1H), 7.47 (s, 3H), 7.34 (dd, J = 13.6, 6.3 Hz, 3H), 7.25 – 7.08 (m, 4H), 3.57 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 193.37, 190.65, 149.38, 136.72, 133.18, 133.07, 130.58, 129.29, 128.86, 128.54, 127.78, 127.50, 126.03, 123.71, 2.08, 100.52, 20.54.

123.23, 122.19, 112.08, 109.53, 30.54;

HRMS (ESI) *m/z*: Found: 362.1155. Calcd for C₂₃H₁₇NO₂: (M+Na)⁺ 362.1151.

1-(1-methyl-1*H*-indol-3-yl)-2-(p-tolyl)ethane-1,2-dione (4a)

Yellow Solid, mp: 95-96 °C;

IR (neat, v, cm-1): 1672, 1613, 1605, 1577, 1463cm⁻¹;

¹**H** NMR (400 MHz, CDCl₃) δ 8.50 – 8.42 (m, 1H), 8.00 (d, *J* = 8.2 Hz, 2H), 7.77 (s, 1H), 7.40 – 7.35 (m, 3H), 7.28 (d, *J* = 8.0 Hz, 2H), 3.80 (s, 3H), 2.42 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 193.09, 187.49, 145.01, 139.03, 137.23, 130.50, 129.95, 129.01, 125.87, 123.68, 122.95, 122.17, 112.42, 109.53, 33.27, 21.41;

HRMS (ESI) *m/z*: Found: 300.0992. Calcd for C₁₈H₁₅NO₂: (M+Na)⁺ 300.0995.

1-(4-methoxyphenyl)-2-(1-methyl-1*H*-indol-3-yl)ethane-1,2-dione (4b)

Yellow Solid, mp: 116-117 °C;

IR (neat, v, cm-1): 1661, 1599, 1573, 1460cm⁻¹;

¹**H NMR** (400 MHz, CDCl₃) δ 8.46 (d, *J* = 4.5 Hz, 1H), 8.08 (d, *J* = 8.6 Hz, 2H), 7.78 (s, 1H), 7.36 (s, 3H), 6.95 (d, *J* = 8.7 Hz, 2H), 3.86 (s, 3H), 3.79 (s, 3H);

¹³**C NMR** (100 MHz, CDCl₃) δ 192.05, 187.71, 164.08, 139.05, 137.21, 132.27, 125.95, 125.90, 123.63, 122.91, 122.14, 113.59, 112.46, 109.52, 55.12, 33.25;

HRMS (ESI) *m*/*z*: Found: 316.0947. Calcd for C₁₈H₁₅NO₃: (M+Na)⁺ 316.0944.

1-(4-isopropylphenyl)-2-(1-methyl-1*H*-indol-3-yl)ethane-1,2-dione (4c)

Yellow Solid, mp: 116-117 °C;

IR (neat, v, cm-1): 1666, 1631, 1600, 1465cm⁻¹;

¹**H** NMR (400 MHz, CDCl₃) δ 8.53 (s, 1H), 8.08 (s, 2H), 7.83 (s, 1H), 7.42 (s, 5H), 3.86 (s, 3H), 3.03 (s, 1H), 1.33 (s, 6H);

¹³C NMR (100 MHz, CDCl₃) δ 193.12, 187.53, 155.65, 139.04, 137.23, 130.85, 130.12, 126.45, 125.88, 123.68, 122.94, 122.18, 112.43, 109.53, 33.98, 33.27, 23.13;

```
HRMS (ESI) m/z: Found: 328.1305. Calcd for C<sub>20</sub>H<sub>19</sub>NO<sub>2</sub>: (M+Na)<sup>+</sup> 328.1308.
```

1-(4-(tert-butyl)phenyl)-2-(1-methyl-1*H*-indol-3-yl)ethane-1,2-dione (4d)

Yellow Solid, mp: 180-181 °C;

IR (neat, v, cm-1): 1669, 1628, 1600, 1522, 1463cm⁻¹;

¹**H NMR** (400 MHz, CDCl₃) δ 8.37 (d, *J* = 4.7 Hz, 1H), 7.93 (d, *J* = 8.1 Hz, 2H), 7.67 (s, 1H), 7.40 (d, *J* = 8.1 Hz, 2H), 7.26 (s, 3H), 3.69 (s, 3H), 1.24 (s, 10H);

¹³C NMR (100 MHz, CDCl₃) δ 193.11, 187.49, 157.84, 139.04, 137.23, 130.42, 129.81, 125.89, 125.30, 123.68, 122.94, 122.19, 112.43, 109.53, 34.84, 33.27, 30.56;

HRMS (ESI) m/z: Found: 342.1463. Calcd for C₂₁H₂₁NO₂: (M+Na)⁺

342.1465.

1-(4-fluorophenyl)-2-(1-methyl-1*H*-indol-3-yl)ethane-1,2-dione (4e)

Yellow Solid, mp: 112-113 °C;

IR (neat, v, cm-1): 1665, 1611, 1593, 1504cm⁻¹;

¹**H NMR** (400 MHz, CDCl₃) δ 8.46 (s, 1H), 8.14 (s, 2H), 7.82 (s, 1H), 7.38 (s, 3H), 7.15 (t, *J* = 8.0 Hz, 2H), 3.82 (s, 3H);

¹³**C NMR** (100 MHz, CDCl₃) δ 191.50, 186.55, 166 (d, *J* = 255.4), 139.20, 137.24, 132.7 (d, *J* = 9.6), 129.4 (d, *J* = 2.6) 125.89, 123.81, 123.09, 122.14, 115.5 (d, *J* = 21.9), 112.26, 109.59, 33.32;

HRMS (ESI) m/z: Found: 304.0747. Calcd for C₁₇H₁₂FNO₂: (M+Na)⁺

304.0744.

ACCEPTED MANUSCRIPT

1-(4-chlorophenyl)-2-(1-methyl-1*H*-indol-3-yl)ethane-1,2-dione (4f)

Yellow Solid, mp: 157-158 °C; **IR** (neat, v, cm-1): 1670, 1618, 1583, 1459cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 8.48 – 8.42 (m, 1H), 8.08 – 8.01 (m, 2H), 7.81 (s, 1H), 7.49 – 7.42 (m, 2H), 7.42 – 7.35 (m, 3H), 3.81 (s, 3H).; ¹³**C NMR** (100 MHz, CDCl₃) δ 191.78, 186.24, 140.36, 139.24, 137.24, 131.38, 131.22, 128.61, 125.89, 123.84, 123.13, 122.15, 112.21, 109.61, 33.34; **HRMS** (ESI) *m/z*: Found: 320.0441. Calcd for C₁₇H₁₂ClO₂: (M+Na)⁺

320.0449.

1-(4-bromophenyl)-2-(1-methyl-1*H*-indol-3-yl)ethane-1,2-dione (4g)

Yellow Solid, mp: 165-166 °C;

IR (neat, v, cm-1): 1662, 1624, 1583, 1467cm⁻¹;

¹**H** NMR (400 MHz, CDCl₃) δ 8.51 – 8.41 (m, 1H), 7.96 (d, *J* = 8.5 Hz, 2H), 7.81 (s, 1H), 7.62 (d, *J* = 8.5 Hz, 2H), 7.39 (dd, *J* = 6.7, 3.3 Hz, 3H), 3.81 (s, 3H);

¹³**C NMR** (100 MHz, CDCl₃) δ 191.97, 186.16, 139.24, 137.24, 131.79, 131.60, 131.28, 129.25, 125.89, 123.85, 123.14, 122.16, 112.21, 109.60, 33.35;

HRMS (ESI) *m/z*: Found: 363.9931. Calcd for C₁₇H₁₂BrNO₂: (M+Na)⁺ 363.9944.

1-(3-fluorophenyl)-2-(1-methyl-1*H*-indol-3-yl)ethane-1,2-dione (4h)

Yellow Solid, mp: 121-122 °C;

IR (neat, v, cm-1): 1672, 1619, 1523cm⁻¹;

¹**H NMR** (400 MHz, CDCl₃) δ 8.52 (s, 1H), 7.94 (d, *J* = 6.8 Hz, 1H), 7.87 (s, 2H), 7.51 (d, *J* = 5.5 Hz, 1H), 7.44 (s, 3H), 7.38 (d, *J* = 6.8 Hz, 1H), 3.88 (s, 3H);

¹³**C NMR** (100 MHz, CDCl₃) δ 191.72, 186.02, 162.3 (d, J = 247), 139.22, 137.26, 135.0 (d, J = 6.5), 130.0 (d, J = 7.5), 125.9 (d, J = 2.8), 125.85, 123.87, 123.15, 122.18, 120.8 (d, J = 21.3), 116.1 (d, J = 22.5), 112.19,

109.60, 33.34;

HRMS (ESI) *m/z*: Found: 304.0745. Calcd for C₁₇H₁₂FNO₂: (M+Na)⁺ 304.0744.

1-(2-chlorophenyl)-2-(1-methyl-1*H*-indol-3-yl)ethane-1,2-dione (4i)

Yellow Solid, mp: 163-164 °C; **IR** (neat, v, cm-1): 1687, 1611, 1588, 1518cm⁻¹; ¹**H** NMR (400 MHz, CDCl₃) δ 8.47 – 8.39 (m, 1H), 8.04 (s, 1H), 7.78 (d, J = 6.8 Hz, 1H), 7.48 (d, J = 7.0 Hz, 1H), 7.44 – 7.36 (m, 5H), 3.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 193.52, 184.44, 139.10, 137.14, 134.85, 132.88, 132.76, 131.37, 129.88, 126.52, 126.36, 123.68, 122.98, 122.24, 111.53, 109.51, 33.38; HRMS (ESI) *m/z*: Found: 320.0454. Calcd for C₁₇H₁₂ClO₂: (M+Na)⁺ 320.0449.

1-(1-methyl-1*H*-indol-3-yl)-2-(naphthalen-1-yl)ethane-1,2-dione (4j)

Yellow Solid, mp: 102-103 °C; **IR** (neat, v, cm-1): 1649, 1638, 1525, 1469cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 8.64 (s, 1H), 8.54 (d, *J* = 6.4 Hz, 1H), 8.17 (dd, *J* = 8.6, 1.4 Hz, 1H), 7.93 (dd, *J* = 8.4, 3.0 Hz, 2H), 7.88 (d, *J* = 8.2 Hz, 1H), 7.83 (s, 1H), 7.62 (t, *J* = 7.1 Hz, 1H), 7.54 (t, *J* = 7.2 Hz, 1H), 7.44 – 7.37 (m, 3H), 3.80 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 193.40, 187.33, 139.18, 137.28, 135.70, 133.23, 131.96, 130.25, 129.51, 128.71, 128.30, 127.38, 126.45, 125.93, 123.92, 123.77, 123.06, 122.24, 112.54, 109.58, 33.30;

HRMS (ESI) *m*/*z*: Found: 336.0993. Calcd for C₂₁H₁₅NO₂: (M+Na)⁺ 336.0995.

1-(1-methyl-1*H*-indol-3-yl)-2-(naphthalen-2-yl)ethane-1,2-dione (4k)

Yellow Solid, mp: 106-107 °C;

IR (neat, v, cm-1): 1637, 1595, 1524, 1468cm⁻¹;

¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (s, 1H), δ 8.64 (s, 1H), 8.54 (d, J = 6.8 Hz, 1H), 8.16 (d, J = 8.5 Hz, 1H), 7.97 – 7.90 (m, 2H), 7.88 (d, J = 8.1 Hz, 1H), 7.83 (s, 1H), 7.62 (t, J = 7.4 Hz, 1H), 7.53 (t, J = 7.4 Hz, 1H), 7.41 (dd, J = 9.5, 2.6 Hz, 3H), 3.80 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 193.40, 187.33, 139.18, 137.28, 135.69, 133.22, 131.95, 130.25, 129.51, 128.71, 128.30, 127.38, 126.46, 125.93,

123.92, 123.77, 123.06, 122.24, 112.54, 109.58, 33.30; **HRMS (ESI)** *m/z*: Found: 336.0999. Calcd for C₂₁H₁₅NO₂: (M+Na)⁺ 336.0995.

1-(1-methyl-1*H*-indol-3-yl)-2-(thiophen-2-yl)ethane-1,2-dione (4l)

Yellow Solid, mp: 93-94 °C;

IR (neat, v, cm-1): 1642, 1610, 1578, 1520, 1463cm⁻¹;

¹**H** NMR (400 MHz, CDCl₃) δ 8.36 (dd, J = 6.0, 1.6 Hz, 1H), 7.97 (d, J = 5.8 Hz, 2H), 7.69 – 7.61 (m, 1H), 7.24 (ddd, J = 10.6, 7.7, 4.3 Hz, 3H), 7.07 – 7.00 (m, 1H), 3.66 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 184.11, 184.11, 139.92, 138.87, 137.00, 136.25, 136.24, 127.94, 126.41, 123.67, 123.02, 122.14, 111.52, 109.61,

33.30;

HRMS (ESI) *m/z*: Found: 292.0401. Calcd for C₁₅H₁₁NO₂S: (M+Na)⁺ 292.0403.

1-(1-methyl-1*H*-indol-3-yl)-2-(4-(trifluoromethyl)phenyl)ethane-1,2-dione (4m)

³ Yellow Solid, mp: 153-154 °C; IP (neat y am 1): 1680, 1614, 1570, 1401a

IR (neat, v, cm-1): 1680, 1614, 1579, 1491cm⁻¹;

¹**H** NMR (400 MHz, CDCl₃) δ 8.46 (d, *J* = 4.0 Hz, 1H), 8.22 (d, *J* = 8.1 Hz, 2H), 7.86 (s, 1H), 7.75 (d, *J* = 8.2 Hz, 2H), 7.41 (d, *J* = 10.0 Hz, 3H), 3.84 (s, 3H);

¹³**C NMR** (100 MHz, CDCl₃) δ 191.70, 185.53, 139.34, 137.27, 135.85, 134.7 (q, *J* = 32.5), 130.17, 125.91, 125.2 (q, *J* = 3.7), 123.95, 123.24, 123.0 (q, *J* = 271.3), 122.17, 112.13, 109.64, 33.36;

HRMS (ESI) *m/z*: Found: 354.0712. Calcd for C₁₈H₁₂F₃NO₂: (M+Na)⁺ 354.0712.

Copies of ¹H and ¹³C NMR Spectra for Compounds

¹³C NMR Spectrum of Compound 3b

¹³C NMR Spectrum of Compound 3c

¹³C NMR Spectrum of Compound 3e

¹³C NMR Spectrum of Compound 3f

¹³C NMR Spectrum of Compound 3g

¹³C NMR Spectrum of Compound 3h

¹³C NMR Spectrum of Compound 3i

¹³C NMR Spectrum of Compound 3j

¹³C NMR Spectrum of Compound 3k

¹³C NMR Spectrum of Compound 4a

¹³C NMR Spectrum of Compound 4b

S26

¹³C NMR Spectrum of Compound 4f

¹³C NMR Spectrum of Compound 4h

¹³C NMR Spectrum of Compound 4j

¹³C NMR Spectrum of Compound 4k

¹³C NMR Spectrum of Compound 4m