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ABSTRACT: A 109-membered library of 5’-substituted cytidine analogs was synthesized, via 

funding through the NIH Roadmap Initiative and the Pilot Scale Library (PSL) Program.  Reaction 

core compounds contained -NH2 (2) and -COOH (44 and 93) groups that were coupled to a 

diversity of reactants in a parallel, solution phase format to produce the target library. The assorted 

reactants included -NH2, -CHO, -SO2Cl, and –COOH functional groups, and condensation with 

the intermediate core materials 2 and 44 followed by acidic hydrolysis, produced 3-91 in good 

yields and high purity. Linkage of the amino terminus of D-phenylalanine methyl ester to the free 

5’-COOH of 44 and NaOH treatment led to core library –COOH precursor 93. In a libraries from 

libraries approach, compound 93 served as the vital building block for our unique library of 

dipeptidyl cytidine analogs 94-114 through amide coupling of the –COOH group with numerous 

commercial amines followed by acidic deprotection. Initial screening of the complete final library 

through the MLPCN program revealed a modest number of hits over diverse biological processes. 

These hits might be considered as starting points for hit-to-lead optimization and development 

studies.
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INTRODUCTION

Nucleosides are fundamental biological components that interact with a significant portion of the 

human proteome, including peptide ligases, tRNA synthetases, polymerases, kinases, reductases, 

motor proteins, membrane receptors, and structural proteins.  With advances in both high 

throughput chemical synthesis and screening, these key building blocks are increasingly relevant 

today, and they are finding utility in the discipline of chemical biology as well as modern drug 

discovery.  As privileged and biologically relevant scaffolds, nucleosides continue to be useful as 

probes for novel and essential nucleoside-dependent processes.  In fact, over the past few decades, 

new nucleoside-based agents have been discovered that are active for viral infections, cancers, 

cardiovascular disorders, pain, etc. A number of drugs have resulted from targeting nucleoside 

metabolism, including potent antiviral and anticancer drugs.1-3  As with many drug classes, 

however, the increasing resistance of pathogens and cancers to current nucleoside-based drugs, the 

severe side effects sometimes produced by nucleoside antimetabolites, and the plethora of new 

nucleoside-dependent targets resulting from genetic sequencing highlight the continued need for 

new and unique nucleoside diversity sets relevant to this fundamental slice of the proteome.  Such 

diverse nucleoside-based libraries will be potentially useful not only as probes for new chemical 

biology approaches to assess fundamental pathways and the role of target proteins in metabolism, 

growth, and drug resistance, but may also serve as a reservoir for new drug leads.  Nucleosides are 

relatively low molecular weight compounds that can serve as superb starting components for 

diversity-oriented synthesis to prepare interesting and highly diversified small molecules with 

various groups having unique and varied spatial orientation for probing biological diversity space.  

In spite of their rich history and utility, however, nucleoside analogs are not commonly present in 

research or commercial chemical libraries.
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Advancements in high-throughput chemistry have rarely been applied to nucleoside synthesis but 

may allow rapid preparation of diverse and biologically relevant libraries featuring this privileged 

scaffold. Thus, the goal of our PSL grant was to prepare novel and diverse nucleosides not only 

for our own use, but also as a public resource for access via government-sponsored chemical 

libraries and screening programs.  It is notable that standard nucleosides can be promiscuous toxins 

via phosphorylation of the 5’-hydroxyl group and entry into numerous crucial metabolic pathways.  

As such, the perception that nucleoside drugs are generally nonselective and potently toxic through  

cross reactivity through multifarious DNA and RNA pathways has led to the stigma associated 

with this class.  In sharp contrast, however, there are abundant cases of relatively discriminating 

nucleosides, both simple and complex, that exhibit specific biological activities.5,6  The naturally 

occurring nucleoside antibiotics, are one such example.  As a class, they show widely varying and 

compelling activities against numerous specific targets such as the protein synthesis machinery, 

glycosyltransferases, and  methyltransferases as well as many other critical protein targets.4-7    Of 

particular interest are the 5’-substituted peptidyl nucleoside analogs containing a diversity of 

amino acids and amino sugars, leading to the vigorous research to isolate and prepare new amino 

acid and perptide-substituted nucleosides.7-11 Herein, we report the preparation of a focused set of 

cytidine compounds inspired by the broad class of natural peptidyl nucleosides6,12,13 including 

capuramycin, the polyoxins (tunicamycin and nikkomycin), the muramycins and the 

mureidomycins.

EXPERIMENTAL DESIGN AND DISCUSSION

We recently described the preparation and testing of a variety of adenosine and uridine analogs 

that demonstrated diverse biological activities in early MLPCN assays.14 We now report the 
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synthesis of a cytidine analog library derived from intermediates 2 (-NH2 reactant) and 44 and 93 

(-COOH reactants) (Schemes 1 & 2) using solution phase, parallel chemistry. 

Our goal was to target variations around the 5’-position to mimic structures represented by the 

natural nucleoside antibiotics that demonstrate a variety of interesting activities.  This task was 

accomplished through robust coupling chemistry either utilizing 5’-aminocytidine (2) or the 4’-

COOH analog of the nucleoside to produce amines (via reductive amination), amides (peptide 

coupling), or sulfonamides (via diverse commercial R-SO2Cl reagents). In a libraries-from-

libraries approach, D-phenylalanine was randomly chosen to be coupled to 44 to give the chiral 

amino acid intermediate.  Further coupling through the free D-Phe carboxylic acid yielded a 

diverse array of amide-linked analogs potentially relevant to the natural nucleoside antibiotics, 

since the more complex natural products oftentimes contain chiral linkages (amino acids, 

carbohydrates, etc.) that are considered critical for biological uptake and targeting.  It was essential 

to demonstrate that our new library was unique in order to obtain PSL funding.  Hence, we first 

selected a commercial set of -CHO, -NH2, -COOH, and –SO2Cl containing reactants that were 

obtainable in satisfactory amounts and at an acceptable cost to drive downstream synthesis and 

diversity.  This set was further filtered by eye for diversity and desired reactivity to work in the 

designed coupling reactions and provide the expected diversity of nucleoside products.  Finally, 

the 3D representations were further assessed using Tanimoto structural similarity relative to the 

current MLSCN library set at that time.  Tanimoto similarity is one measure to determine similarity 

between compounds and compound sets using compound fingerprints.  The score ranges from 0 

to 1 with 0 (no similarity) and 1 (100% similarity).  A Tanimoto value of 0.7 to 1.0 suggests that 

two molecules are highly similar to identical.  Every proposed structure was compared with the 

total MLSCN library (as of the year 2010 - 197,873 discrete molecules).  Only 9.3% of our total 
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proposed set had a Tanimoto value greater than 0.7, indicating that the new materials were 

significantly divergent from the MLSCN library available in 2010.  Furthermore, 36% of the new 

nucleosides had Tanimoto values below 0.5, indicating significant diversity relative to the current 

MLSCN library. 

5’-Amino and 5’-carboxylic nucleosides are common staring points to prepare diverse nucleosides 

for screening.12-20 Consequently, the nucleoside 2 and nucleosides 44 and 93 were chosen as three 

diversification reagents for robust reductive aminations, sulfonation reactions or amidations in 

order to synthesize our unique cytidine-based library as depicted in Schemes 1-3.

Reagents and conditions: i) TsCl, pyridine; ii): NaN3, DMF, 50 oC. iii): NH4OOCH, Pd-C
10%, MeOH. iv) aldehyde derivative MeOH, 0-40 oC, NaBH4; sulfonyl chloride derivative,
DMF, Cs2CO3 or carboxylic acid derivative, HATU, DIEA, CH3CN; v) 50% HCO2H, 70 oC.

iv) and v)

3-29

Scheme 1: Synthesis of Analogs 3-43
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Reagents and conditions: i) cat. TEMPO, BAIB, NaHCO3, MeCN:H2O, r.t.;
ii): R = amine derivative, HATU, DIEA, CH3CN.; iii) 50% HCO2H, 70 oC.

Scheme 2: Synthesis of Analogs 45-91
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NaOH, dioxane, r.t.; iii): a: R = amine derivatives, HATU, DIEA, MeCN, r.t.; b: 50% HCO2H, 70 oC, 2 h.
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5’-Amino-5’deoxycytidine (2) was prepared from 1 in three steps via a reported procedure and 

was identical in all respects to the reported material.20 Reductive amination is efficient and easily 

adaptable to parallel chemistry, and we utilized this approach to couple pure compound 2 with a 

variety of diverse, commercially available -CHO containing reagents. Coupling was accomplished 

in MeOH over molecular sieves to drive intermediate imine formation through water removal; the 

drying reagent was critical for higher yields. A Radleys 12-place carousel reaction station was 

used for parallel production of the libraries.  Chemistry was carried out at room temperature unless 

indicated as certain reactions with poorly soluble aldehydes required warming to 40 oC for 10 

minutes. The aldimine intermediates were treated in situ by careful addition of solid NaBH4. After 

30 minutes, the reaction was adsorbed onto silica gel without further workup and dried followed 
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by automated flash chromatography purification. Acid catalyzed removal of the acetonide 

protecting group in 50% formic acid yielded the final compounds 3-29 (Scheme 1) in 67-85% 

yields. 

Target compounds are presented in Charts 1-3.  
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A 24-position MiniBlock XT vessel was employed to prepare our library members 30-43 (Chart 

1), 45-91 (Chart 2) and 94-114 (Chart 3) in solution phase. A Tecan liquid handling system was 

used for dispensation, retraction, and aspiration with a compatible 17 × 110 mm test tube carousel 

and a Genevac evaporation system. In this format, five sulfonyl chlorides were reacted with 2 to 

prepare the sulfonylamide cytidine analogs 30-34 (Scheme 1) using the solvent DMF and CsCl 

(base) for coupling.  The isopropylidene blocking groups were removed as described above. 

HATU  (1 equiv) was used for amide coupling of 2 with nine -COOH compounds catalyzed by 

DIEA (1.5 equiv) in acetonitrile (three hours) to prepare amide-linked compounds 35-43 in 65-

78% yields (Scheme 1) after acid mediated deprotection.. These conditions with intermediate 44 

gave amides 45-91 in 66-82% yields (Scheme 2). Compound 44 was prepared by reported methods 

using catalytic amounts of TEMPO and BAI in acetonitrile-water (1:1).12a

Compound 44 was coupled to the free amino group of D-phenylalanine-COOMe 92 (Scheme 3) 

in 88% yield. Hydrolysis with 1N NaOH in dioxane at 25 oC gave the -COOH intermediate 93 in 

75% yield. Deprotection with 50% formic acid at 70 oC afforded a high yield of nucleoside 94. 

Target 93 was designed from a “libraries from libraries” standpoint, and produced a site of further 

diversity expansion through another amide coupling with diverse amines to produce targets 95-

114 (Scheme 2). Coupling of 93 with 20 diverse amines and HATU/DIEA produced the desired 

targets in 65-73% yield and high purity after acid catalyzed removal of the isopropylidene 

protecting group and purification. 

Analysis of all products involved 1H NMR, HPLC, and mass analysis. Purity ranged from 90-

100%, and the average purity was 97%. Comparison of the NMR spectra of crude 93 as its 

carboxylate salt with spectra of the corresponding crude epi-93 carboxylate salt -prepared by amide 

coupling of 44 with methyl (S)-2-amino-3-phenylpropanate to form epi-92, purification, then 
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13

saponification using 1N LiOH in dioxane - established that the hydrolysis of 92 to 93 proceeds 

without epimerization.22 

BIOLOGICAL EVALUATION    

All biological screening was performed via government grants and contracts to external and 

independent academic laboratories through the MLPCN program, and all results can be readily 

accessed by a specific assay name in PubChem Assay  or through the compound database via  

www.ncbi.nlm.nih.gov/pcsubstance (search term Robert Reynolds). Certain nucleosides (see 

Table 1) afforded a variety of modest activities in the primary screens.

Table 1: Selected Results from PubChem Bioactivity Analysis

Compound Assay Title in PubChem Biological results
54, 59, 65, 97, 101, 
103, 107 and 112

“High-Throughput-Screening (HTS) to 
identify inhibitors against Sialic Acid 
Acetyl Esterase (SIAE)”

26%, 52%, 26% 45%, 
17%, 47%, 45% and 23%, 
respectively at 9.6 µM

28 “Discovery of small molecule inhibitors 
of the oncogenic and cytokinetic protein 
MgcRacGAP.”

34% inhibition at 40 µM

35 “HTS to identify agonists of the mouse 5-
hydroxytryptamine (serotonin) receptor 
2A (HTR2A)”

29% inhibition at 7.6 µM

39 “HTS to identify inhibitors of 
phospholipase C isozymes (PLC-
gamma1).”

10% inhibition at 12.2 µM

42 “Small Molecule Inhibitors of FGF22-
Mediated Excitatory Synaptogenesis & 
Epilepsy Measured in Biochemical 
System Using RT-PCR.”

43% inhibition at 9.9 µM

54 “HTS to identify positive allosteric 
modulators (PAMs) of the human 
cholinergic receptor, muscarinic 4 
(CHRM4).”

20% activation at 3 µM

59 and 85 “THS to identify modulators of 
interaction between CendR and NRP-1.”

40% inhibition at 25 µM

65 “Counterscreen for inhibitors of 5-
meCpG-binding domain protein 2 
(MBD2).”

43% inhibition at 4.4 µM
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57 and 71 “DENV2 CPE-Based HTS Measured in 
Cell-Based and Microorganism 
Combination System”

70% and 87 inhibition, 
respectively, at 9.99  µM

80 “HTS to identify D3 Dopamine Receptor 
Antagonist.”

40% inhibition at 2.3 µM

90 “HTS to identify inhibitors of the 
interaction of nucleotide-binding 
oligomerization domain containing 2 
(NOD2) and the receptor-interacting 
serine-threonine kinase 2 (RIPK2).”

28% inhibition at 5 µM

102 “HTS to identify inhibitors of protein 
arginine methyltransferase 1 (PRMT1).”

21% inhibition at 2.8 µM

For example: 5’-carboxamide nucleoside analogs 54, 59 and 65, and di-peptidyl compounds 97, 

103, 107 and 112 showed modest, lead-like inhibitory activity against Sialic Acid Acetyl Esterase 

(SIAE) (Table 1). This enzyme could serve as a target for the pharmacological induction of 

immune activation to empower B cells that are specific for weak epitopes and to enhance T cell 

memory responses. 

It has been shown that excitatory and inhibitory synapses can be organized in the brain by two 

fibroblast growth factor (FGF) family members, FGF22 (excitatory) and FGF7 (inhibitory).  . 

Remarkably, FGF22-deficient mice are resistant to epileptic seizures, and FGF7-deficient mice are 

prone to them.22 These results indicate that the identification of small molecules that inhibit 

FGF22-mediated excitatory synapse formation or those that can activate FGF7-mediated 

inhibitory synapse formation may lead to new treatment approaches for epilepsy. Analog 42 

showed modest inhibition (43%) against FGF22 at 9.9 µM (Table 1) and may be used as a lead for 

developing potent FGF inhibitors due to its unique structure. 

In addition, protein arginine methyltransferase 1 (PRMT1) activity has been linked with a number 

of human health conditions including cardiovascular disease, cancer, infectious disorders and 

autoimmune conditions.23 Di-peptidyl analog 102 showed modest activity against PRMT1 with 
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21% inhibition at 2.8 µM (Table 1) and may warrant further investigation as this structure is unique 

from other reported inhibitors.23

CONCLUSION 

Preparation and initial screening of a unique library of 109 cytidine-based compounds is reported.   

Application of newer higher throughput equipment and technologies were utilized in the 

preparation of this small-sized diversity set.    Targets were sent to the MLPCN for screening, and 

early assay results showed modest activities against the targets SIAE, FGF, and PRMT1. The 

PRMT1 hit, while only modestly active, is unique relative to reported PRMT1 inhibitors, and we 

are currently preparing more material as well as analogs for confirmation of activity in advanced 

assays.  All assay data and protocols can be viewed by visiting PubChem Substance.
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