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ABSTRACT: An electrochemical approach in promoting directed C-H alkynylation with terminal alkyne via iridium catalysis is 
reported.  This work employed anodic oxidation of Ir(III) intermediate (characterized by X-ray crystallography) to promote reductive 
elimination, giving the desired coupling products in good yields (up to 95%) without the addition of any other external oxidants.  This 
transformation is suitable for various directing groups with H2 as the only by-product, which warrants a high atom economy and 
practical oxidative C-C bond formation under mild conditions.

The past two decades have witnessed the fast-growing of 
transition-metal catalyzed C-H functionalization, which is a 
highly efficient approach for complex molecule synthesis 
through direct C-C and C-X bond formation.1  Among the 
reported works, directing group strategy has played a crucial 
role due to the “site-selectivity” when installing new functional 
moieties.2 Our group has focused on developing new synthetic 
methodology with a particular interest in transformations 
involving alkynes.3  The metal-catalyzed C-H alkynylation is an 
efficient strategy to install the alkyne functional group through 
C-C bond construction.4  Currently, two major approaches in 
promoting oxidative C-H alkynylation are A) coupling with 
terminal alkyne using external chemical oxidants (path a), such 
as Cu(OAc)2, AgOAc, and ect.5,6  B) adopting redox-active 
alkynes as both reactant and oxidant (path b), such as 
ethynylbenziodoxolone reagent (EBX) or alkynyl bromide7 
(Scheme 1A).  Despite great progress, there are still limitations 
for practical use in organic synthesis. Therefore, developing 
alternative methods to achieve C-H alkynylation with terminal 
alkyne practically and effectively is highly desirable.  
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Scheme 1. Electrochemical approach for catalytic C-H 
alkynylation

Over the past several years, electrochemical anodic oxidation 
has emerged as an attractive strategy in chemical synthesis.8  
One great advantage of anodic oxidation is the controllable cell 
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potential (Ecell), which enables challenging oxidation of 
transition metal cations to their higher oxidation states without 
external oxidants.9  Although tremendous progress has been 
reported over the past several years, achieving practical 
conditions and good functional group compatibility are 
challenging for some transformations.  For example, it has been 
reported that alkyne could react with corresponding 
metallacycle through migratory insertion, giving annulation 
products under electrochemical conditions (pathway c). 10,11 

Thus, developing a new effective strategy for C-H alkynylation 
will reveal critical mechanistic insights and provide a new 
method for this important chemical transformation.  Herein, we 
report the electrochemical promoted iridium catalyzed C-H 
alkynylation through anodic oxidation induced reductive 
elimination (Scheme 1B).  This strategy allows directed C-H 
alkynylation under mild conditions using terminal alkyne 
without external chemical oxidants.

Our interest in exploring this basic and challenging 
transformation under electrochemical conditions was originated 
from some pioneering works in literature.  Li and coworkers 
reported Rh(III) and Ir(III) catalyzed C-H alkynylation using 
EBX as both reactant and oxidant. The mild reaction condition 
suggested a feasible C-H activation step with Rh(III) and Ir(III) 
complexes, though the atom economy of this transformation is 
poor.12  Recently, Xu and coworkers confirmed the rapid C-H 
activation with Rh(III) complexes and applied it to directed C-
P bond formation under electrochemical oxidation conditions 

(Figure 1A).13  Inspired by these works, we set our goal to 
explore if this chemistry could be extended to the challenging 
C-H alkynylation, especially avoiding the potential competing 
alkyne annulation. 
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Figure 1. Proof of anodic oxidation promoted C-H 
alkynylation.

To start our investigation, we first explored the reaction 
between 1a and Rh(III) or Ir(III) complexes with or without the 
presence of alkynes.  Air stable Cp*Ir(III) complexes 2a was 
obtained from directed C-H activation of 1a, and the complex 
2b was formed by the addition of alkyne to 2a (Figure 1B).  
Structures of these complexes are unambiguously confirmed by 

X-ray single-crystal analysis.  Notably, both C-H activation and 
alkyne addition processes were achieved at room temperature, 
highlighting the efficiency of Ir(III) complexes in promoting 
these transformations.  To the best of our knowledge, this is the 
first example of achieving iridium-acetylene complex through 
directed C-H activation.  
Table 1. Screening conditions for Ir-catalyzed C-H 
alkynylationa,b

Entry variation from “standard conditions” conv. yield

1 none 100% 95% (92%)c

2 under air 85% 75%

3 C as anode 74% 65%

4 C as cathode 20% 18%

5 KOAc 95% 88%

6 NaOPiv.H2O 40% 35%

7 Cp*Ir(DMSO)Cl2 5% 100% 90%

8 Cp*Ir(DMSO) (OAc)2 5% 100% 89%

9 [Cp*RhCl2]2 40% 35%

10 EtOH 45% 30%

11 CF3CH2OH 20% 10%

12 3 mA (1.7-1.8 V) 80% 75%

13 7 mA (3.0-3.3 V) 100% 80%

14 constant V at 2.5 V 68% 64%

15 no Ir - n.r.

16 no current - n.r.

17 IKA ElectroSyn 2.0 100% 91%

18 Cp*Rh(OAc)2 5% , KPF6 1 eq. 50% 45%

19 other metals, Pd, Cu, Ni, Au <20% <10%

a Conditions: 1b (0.30 mmol), alkyne (0.45 mmol), Ir cat. (2.5 mol%), base 
(0.90 mmol in MeOH (5.0 mL). b 19F NMR yields using benzotrifluoride as 
an internal standard. c Isolated yield.

With the C-H activation and alkyne addition structures 
confirmed, we explored the condition of C-C bond forming step 
for reductive elimination.  Interestingly, Ir(III) complex 2b 
remained unreactive in DCE at 80 oC for 3 h, indicating that 
reductive elimination of 2b to Ir(I) is challenging, likely due to 
a high kinetic barrier.14 Inspired by Chang and coworkers’ 
pioneering work on studying oxidatively induced reductive 
elimination for Ir-catalyzed C-H arylation,15 we wondered 
whether anodic oxidation could assistant this process.16  
Complex 2b was charged into a typical electrochemical 
condition (nBu4NBF4 as electrolyte in MeOH, constant current 
at 5 mA, undivided cell).  The corresponding C-H alkynylation 
product 3a was obtained in 70% yield.  This result is promising 
because it suggests that electrochemical anodic oxidation 
induced reductive elimination is the key to overcome the energy 
barrier associated with Ir(III) complexes in C-C reductive 
elimination process.  It is worth noticing that no alkyne 
annulation product was observed, suggesting the excellent 
chemoselectivity via Ir-acetylene complex 2b under the 
electrochemical approach.  This also highlighted the distinctive 
process of this transformation from previously reported 
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electrochemical prompted C-H annulations, in which anodic 
oxidation facilitates the product dissociation from the Ir 
complex to reenter the catalytic cycle.10a,17  Encouraged by these 
results, we explored catalytic reaction under the 
electrochemical settings using Cp*Ir(III) complex as the 
catalyst.  The optimal condition of the reaction is revealed with 
2.5% [Cp*IrCl2]2, 3 eq. of KOPiv as both base and electrolyte 
in MeOH under Ar.  Some variations to the optimal condition 
were revealed in Table 1.

The reaction was performed using RVC as anode and Pt as 
cathode under constant current at 5 mA for 8 h at room 
temperature, giving the desired product 4b in 92% isolated yield 
(entry 1).  Conducting the reaction under air led to lower 
conversion associated with Ir catalyst decomposition, likely 
caused by the reaction with the O2 reduction products (peroxide 
radicals) on the cathode. Also, C-H methoxylation product was 
detected as a major side product, while no diyne product (Hay-
Glaser type product) was observed.  Lower conversion and 
yields were also observed when switching the electrodes to 
other materials.  Comparing with the C anode, the porous nature 
of RVC anode with a larger surface area will greatly increase 
the efficiency to Ir(III) oxidation (entry 3), which is likely to be 
the turnover limiting step in the catalytic cycle.  The Pt cathode 
works much better than C cathode (entry 4), due to a better 
ability in H2 evolution process on the cathode surface.  
Switching KOPiv to KOAc provided a similar result.  However, 
NaOPiv gave a significantly lower conversion, due to both poor 
solubility and low conductivity.  Both Cp*Ir(DMSO)Cl2 and 
Cp*Ir(DMSO)OAc2 are suitable catalysts for this 
transformation (entries 7 and 8).  Rh complex was also tested 
for this C-C forming transformation under the optimal 
conditions, giving much lower conversion and yield (entry 9).  
Notably, MeOH as solvent is critical for this reaction.  The 
combination of other alcohols (CF3CHOH and EtOH) with 
KOPiv resulted in much lower conversion and yields due to the 
observed reduce of conductivity. Under the optimal conditions 
(constant 5 mA current), the overall potential was maintained 
between 2.0-2.8 V depending on different substrates.  Reducing 
the current to 3 mA caused poor conversion (not high enough 
potential for the sufficient oxidation).  In contrast, raising the 
current to 7 mA also led to reduced yield of 4b to 80%, though 
with 100% 3a conversion (~3.0 V).  In absence of either Ir 
catalyst or current, no reaction occurred as expected (entry 15 
and 16).  Under the optimal condition of Rh catalyzed C-H 
phosphorylation, the reaction cannot reach the completion 
(entry 18).  Other metal ions, including Au(I), Cu(II), Ni(II), 
and Pd(II), all failed to produce the desired product 4b with 
metal reduction observed on the cathode.  No metal reduction 
was found on the cathode when using Cp*Ir(III) or Cp*Rh(III).  
These results confirmed the stability and high reduction 
potential of these piano-stool conformation d9 metal complexes.  
Other alkynes evaluated were unsuccessful under this condition 
(see SI).  With the optimal condition revealed, we tested C-H 
alkynylation with various N-based directing groups, as shown 
in Table 2.

Using this newly developed electrochemical method, both 
electron-donating group (EDG) and electron-withdrawing 
group (EWG) substituted arenes worked well.  Generally, EDG 
substituted substrates ran smoothly at room temperature, giving 
the desired product in excellent yields (>90%).  In some cases, 
substrates with EWG modified aromatic rings required a high 
temperature (50 oC) to reach the full conversion (4d, 4e).  Good 
regioselectivity (> 10: 1) was obtained for benzene with a large 

meta-substituent (4k), and alkynylation occurred on the less 
hindered C-H.  In other cases, the selectivity between mono- 
and di-alkynylation was poor (4l-4w).  Nevertheless, complete 
di-alkynylation products could be achieved with good to 
excellent yields with an excess amount of alkyne.  This strategy 
was also suitable for di-alkynylation for more sterically 
hindered meta-substituted benzene (4l-4o).  The linkage 
containing functional groups, such as pyridine (4v) and alkene 
(4w), were also found to be compatible.

The scope of the pyridine directing group was also evaluated.  
Both EDG and EWG modified pyridine rings (4aa- 4ad) could 
serve as directing groups, giving the desired products in 
excellent yields.  Pyrazole (4af), quinoline (4ag), and purine 
(4ah, 4ai) could also be utilized as directing groups to 

Table 2. Substrate scope for N-based heterocyclic 
derivativesa,b  

a General reaction conditions: substrate (0.30 mmol), alkyne (0.45 mmol), 
KOPiv (0.90 mmol), and [Cp*IrCl2]2 (2.5 mol%) was added into MeOH (5.0 
mL) under Ar. The mixture was performed under constant current (5.0 mA) 
at r.t. b Isolated yield. c at 50 oC. d alkyne (0.60 mmol) e alkyne (0.90 mmol) 
f alkyne (0.90 mmol), at 50 oC. g

 12% mono-alkynylation product was also 
obtained.
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accomplish this transformation.  Notably, the success of 
installing alkyne on diazepam derivatives (4aj, 4ak) 
highlighted the potential application as late-stage 
functionalization of these drug molecules.

Table 3. Substrate scope for O-(2-pyridyl)phenol 
derivativesa,b

+ TIPS

Cp*Ir(DMSO)OAc2 (7.5 mol%)
nBu4NOAc (0.5 M)

CF3CH2OH

RVC(+)-Pt(-)
5 mA, 70 oC, Ar, 12 h
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TIPS

5b, 30%(85%, brsm)

OPy

O

H

H
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TIPS
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OPy
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5m, R = OMe, 87% m:d = 5:1
5n, R = Br, 92% m:d = 3:1
5o, R = Ph, 93% m:d = 4:1
5p, R = OCF3, 60% (88% brsm)TIPS

OPy

R
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5g, R = OCF3, 75%
5h, R = F, 86%
5i, R = Cl, 83%R

TIPS
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R

a General reaction conditions: substrate (0.30 mmol), alkyne (0.60 mmol), 
and Cp*Ir(DMSO)(OAc)2 (7.5 mol%) was added into nBu4NOAc (0.5 M) 
solution of CF3CH2OH (5.0 mL) under Ar. The mixture was performed 
under constant current (5.0 mA) at 70 oC. bIsolated yield.

Encouraged by the high efficiency and mild reaction 
conditions of this C-C bond forming transformation, we 
explored substrates with “removable” directing groups.18  After 
several failed attempts (see SI of all tested removable directing 
groups), we finally discovered O-(2-pyridyl)phenol derivatives 
as valid substrates for this C-H alkynylation under our newly 
developed electrochemical conditions.  Using 
Cp*Ir(DMSO)(OAc)2 as catalyst (7.5%) and nBu4NOAc (0.50 
M) as the electrolyte in CF3CH2OH at 70 oC under constant 
current of 5 mA, the desired product 5a was obtained in 75% 
isolated yield.  With this new optimal condition, various O-(2-
pyridyl)phenol derivatives were tested, as summarized in Table 
3.

For these substrates with this removable directing group, the 
position of substituents plays a crucial role.  Slightly reduced 
conversions were observed for substrates with ortho-
substituents (5b, 5j).  For benzenes containing large meta-
substituted groups (5c-5e), the desired alkynylation products 
were obtained in good yields on less hindered C-H.  
Interestingly, a reversed regioselectivity was obtained (5f-5i, 
5r), leading to C-H alkynylation at a more hindered C-H bond 
(confirmed by X-ray crystallography structure analysis). The 
detailed reasoning for this regioselectivity is currently under 
investigation.  Notably, mono-alkynylation became the 
dominant product for para-substituted aromatic rings (5l-5p), 
highlighting the good chemoselectivity of this particular class 
of substrates.  Also, bromo-group was tolerated under this 
condition (5n).  Finally, substrates containing Estrone (5q) and 
Coumarin (5r) moieties worked well with sensitive functional 

groups, including ketone and ,-unsaturated ester, which 
highlighted the excellent functional group tolerability and good 
potential for practical synthesis of this newly developed 
electrochemical promoted transformation.

Figure 2. Competition experiment and synthetic utility.

To further explore the reaction mechanism, we first 
performed the deuterium labeling experiments.  Unlike 
previously reported Rh catalysis13, no H-D exchange was 
observed when mixing 1a with Cp*Ir(OAc)2 in CD3OD.  This 
result suggested the excellent stability of C-Ir bond, which 
might lead to a different reactivity between Ir and Rh 
metallacycle (Figure 2A).  The competition experiment 
between substrates containing electron-rich and electron-
deficient aromatic rings was also conducted.  The electron-rich 
aromatic ring was more favored, suggesting an acetate-assisted 
C-H activation pathway (CMD, concerted metalation 
deprotonation), followed by the formation of a stable Ir-C 
bond.19  The detailed mechanistic investigation is current 
undergoing in our lab and will benefit future development of 
new transformation.  Following the literature reported protocol, 
the pyridine protection group could be easily removed, giving 
alkynyl substituted phenols.20 To further demonstrate its 
synthetic utility, gold catalyzed oxidative coupling of 6 with 
amino acid modified alkynes was performed, providing 
modified amino acid derivative 7 in 75% yield (Figure 2B).3b  
Overall, the capability of C-H alkynylation under mild 
conditions with good functional group tolerability makes this 
electrochemical method a practical late-stage functionalization 
strategy for complex molecule synthesis.

In summary, we report herein Ir(III) catalyzed directed C-H 
alkynylation with terminal alkynes via electrochemical anodic 
oxidation induced reductive elimination.  The desired C-C bond 
coupling products were successfully achieved with a broad 
substrate scope, excellent functional group tolerance under mild 
conditions.  This reaction protocol not only represents a new 
atom economic approach to install alkyne functional group with 
no need of external oxidants but also offers mechanistic insights 
on Ir(III) promoted C-H activation, which would lead to the 
discovery of new synthetic utility.
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