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An eco-friendly synthesis of cyclic carbonates through a
Lewis acid catalyzed cyclization of tert-butyl carbonates is
described. These cyclic carbonates are precursors of 1,2- and

1,3-diols, and the developed method was applied to a short
synthesis of a diarylheptanoid, (3S,5S)-alpinikatin.

Introduction

As 1,2- and 1,3-diols are ubiquitous units in biologically
active compounds such as polyketide derivatives, a myriad
of methods allowing the diastereoselective preparation of
1,2- and 1,3-diols has been developed! and utilized in the
synthesis of natural products.”) Among them, the stereo-
selective cyclization of allylic and homoallylic zert-butyl
carbonates has emerged as a powerful strategy relying on
asymmetric induction,®! and the resulting cyclic carb-
onates can easily be converted into the corresponding diols
under basic conditions. Since the pioneering work of Bart-
lett et al. in 1982, halogeno-cyclization providing iodo-
or bromocarbonates has been widely used in total synthesis
to introduce 1,2- as well as 1,3-diol moieties.l%) In contrast,
examples of metal-catalyzed cyclization of allylic and
homoallylic carbonates are still scarce and, to the best of
our knowledge, most of them involve palladium cataly-
sis.L7-?) Thus, an atom-economic and eco-friendly process is
highly desirable to access 1,2- and 1,3-diols via cyclic carb-
onates. Our group has been involved in iron-catalyzed reac-
tions!!? and particularly in the diastereoselective synthesis
of a variety of heterocycles such as piperidines, tetra-
hydropyrans, or isoxazolidines.'®®-19d] Heterocycle forma-
tion implies an iron-induced activation of allylic and/or
benzylic acetate derivatives. Herein, we would like to report
an iron- and/or indium-catalyzed cyclization of tert-butyl
carbonates A providing cyclic carbonates B (Scheme 1).
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Scheme 1. Formation of cyclic carbonates from tert-butyl carb-
onates.

Results and Discussion

The cyclization of 1a was first examined, and a variety
of Bronsted and Lewis acids were screened (Table 1). In the
presence of 10 mol-% PTSA-H,O (PTSA = p-toluene-
sulfonic acid) or HCI (2 M in dioxane) in CH,Cl,, the start-
ing material was completely recovered, whereas upon treat-
ment with 10 mol-% TfOH, degradation was observed with
no trace of the desired product (Table 1, entries 1-3). Lewis
acids appeared more powerful than Brensted acids, as the
use of 10 mol-% FeCly;:6H,O, La(OTf);, Cu(OTf),, or
Zn(OTY), in CH,Cl, yielded the cyclic carbonate 2a in 56—
69% NMR yield with a diastereomeric ratio of 70:30 in
favor of the cis-isomer (Table 1, entries 4-7).1''1 To our de-
light, when CH,Cl, was replaced by CH;CN, upon treat-
ment with 10 mol-% FeCl;-6H,0,['?] 2a was formed in 74 %
isolated yield and in a diastereomeric ratio of 73:27
(Table 1, entry 8). The best result was obtained in the pres-
ence of 10 mol-% InCl; as a 92% yield in cyclic carbonate
2a was reached (Table 1, entry 9).'314 Thus, these two
Lewis acids were selected to evaluate the scope and limita-
tion of the cyclization of fert-butyl carbonates.

The optimized conditions were then applied to the cycli-
zation of homoallylic zerz-butyl carbonates 1b—1o (Table 2).
A phenylallylic substituent (R> = Ph) was found to be
essential to the cyclization, as no conversion was observed
for primary acetate 1b (R?> = H) or for homoallylic
carbonate 1c (R?> = CsH,;), regardless of the catalytic sys-
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Table 1. Optimization of the cyclization conditions.

O
OBoc  OAc cat. (10 mol-%) O)L o
N —_—

c:9H19 Ph rt, 24 h C9H19W Ph

1a 2a
Entry Solvent  Catalyst NMR vyield® cis/trans ratiol
1 CH,Cl, PTSA-H,0 0% -
2 CH,Cl, TfOH 0% -
3 CH,Cl, HCIE 0% -
4 CH,Cl,  FeCly6H,0  56% 70:30
5 CH,Cl, La(OTf;  59% 70:30
6 CH,Cl, Cu(OTf,  63% 70:30
7 CH,Cl, Zn(OTf),  69% 70:30
8 CH:CN  FeCly6H,0  94% (74%)  73:27
9 CH;CN InCl; 100% (92%)  73:27

[a] Isolated yields in parentheses. [b] Determined by "H NMR spec-
troscopy on the crude reaction mixture. [c] 2 M in dioxane.

tem used (Table 2, entries 1 and 2).I'>] When alkyl-substi-
tuted homoallylic fert-butyl carbonates 1d (R! = Cy) and
le (R' = Me) were treated with 10 mol-% FeCl;:6H,0, the
corresponding cyclic carbonates were isolated in good
yields (82 and 89%, respectively), however with moderate
diastereoselectivities (dr = 75:25 and 71:29, respectively)
(Table 2, entries 3 and 4). A phenyl group can also be toler-
ated, as cyclic carbonate 2f was obtained in 76% yield and
in a 75:25 diastereomeric ratio (Table 2, entry 5). Interest-
ingly, when homoallylic carbonate 1g, derived from a terti-
ary alcohol, was treated with FeCl;-6H,O, the expected cy-
clic carbonate was formed with a good yield of 77%, albeit
with low diastereoselectivity (dr = 60:40) (Table 2, entry 6).

Table 2. Synthesis of a variety of six-membered-ring cyclic
carbonates.

(0]
R® OBoc OAc cat. (10 mol-%) O)J\O
R1W R2 > R1W )
rt., 24 h R3 R
1b—10 2b-20

Entry 1 R! R? R3  Catll 2, yield % (dr)®9
1 b Ph H H  [Fel,[In] 2b,0% (n.d.)
2 Ic Ph CH, H  [Fel[n] 2¢ 0% (nd.)
3 1d Cy Ph H [Fe] 2d, 82% (75:25)
4 le Me Ph H [Fe] 2e, 89% (71:29)
5 1f Ph Ph H [Fe] 2f, 76% (75:25)
6 lg C.H, Ph Me [Fe] 28, 77% (60:40)
7 h CGHOH Ph  H [ 2h, 0% (n.d.)
84 1i CHOAr Ph  H [In] 2i, 79% (70:30)
99 1j CHOHetArPh  H  [In] 2, 82% (73:27)
10 1k CHBr Ph H  [In] 2K, 79% (75:25)
11 11 CO,Et Ph H [In] 21, 54% (70:30)
12 1m CHNHPhthPh  H  [In] 2m, 78% (75:25)

[a] [Fe] = FeCl;*6H,0, [In] = InCls. [b] Isolated yields. [c] Deter-
mined by "H NMR spectroscopy on the crude mixture. [d]

[
. N %
Ar= /@2 HetAr= | ~ &
=
MeO,C Br
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The presence of an hydroxy group was found to be detri-
mental to the cyclization, as no trace of the desired product
was observed when 1h was treated with InCl; (Table 2, en-
try 7).['% In contrast, an aryl ether was compatible with the
reaction conditions as the InCls-catalyzed cyclization of 1i
proceeded smoothly, affording the expected carbonate in
79% yield with a 70:30 diastereomeric ratio (Table 2, entry
8).[17I More surprisingly, the presence of a pyridyl ether did
not disrupt the cyclization (Table 2, entry 9). In both pre-
vious examples, it should be highlighted that halogen atoms
were well tolerated, thus offering opportunities for further
functionalization. In addition, an alkyl bromide was also a
suitable substituent, as carbonate 2k was formed in 79%
yield (Table 2, entry 10). Gratifyingly, in the presence of
InCls, cyclic carbonates 11 and 1m, incorporating an ester
and a phthalimide moiety, respectively, were formed in
moderate to good yields of 54 and 78 %, respectively, in a
70:30 and 75:25 cis/trans ratio (Table 2, entries 11 and 12),
respectively.

In order to access 1,2-diols, we then turned our attention
to the formation of five-membered-ring carbonates through
allylic carbonate cyclization (Table 3). Upon treatment with
10 mol-% FeCl;-6H,0, allylic carbonates possessing an
alkyl substituent such as 4a (R! = CyH ) or 4b (R! = Cy)
delivered the corresponding cyclic carbonates with excellent
yields (98 and 81% for 4a and 4b, respectively) but with
moderate diastereoselectivity in favor of the trans-dia-
stereomer (dr = 63:37 and 65:35, respectively) (Table 3, en-
tries 1 and 2). However, the two diastereomers were sepa-
rated by flash chromatography on silica gel. Disappoint-
ingly, the presence of a phenyl substituent (4¢c, R' = Ph) led
to the formation of the deprotected and/or the isomerized
products with no trace of the expected cyclized derivative.
Switching from FeCl;:6H,O0 to InCl; did not bring any im-
provement (Table 3, entry 3). This result could be explained
by the presence of two benzylic positions in 4c¢, both of
which could be activated in the presence of a Lewis acid to
yield a complex mixture of products. When a hydroxy group
was present, such as in 4d, the expected cyclic carbonate
was formed (37%) (Table 3, entry 4) together with tetra-

Table 3. Synthesis of a variety of five-membered-ring cyclic
carbonates.

OBoc o
o _ Ph cat. (10 mol-%) 0
rt,24h = .
OAc
4a-4f 5a-5f Ph
Entry 4  R! Cat.[al 5, yield %o (dr)PHel
1 4a CoHyo [Fe] Sa, 98% (63:37)
2 494 Cy [Fe] 5b, 81% (65:35)
3 4c Ph [Fe], [In] 5¢, 0% (n.d.)
4 44 CHOH [In] 5d, 37% (75:25), 5'd!'8]
5 4e C;H,OPMB [In] Se, 62% (70:30)
6 4  C3;HgNTsBoc [In] 51, 83% (64:36)

[a] [Fe] = FeCl3*6H,0, [In] = InCl;. [b] Isolated yields. [c] Deter-
mined by 'H NMR spectroscopy on the crude mixture.
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hydropyran 5'd resulting from the nucleophilic attack of the
alcohol (25%, dr = 60:40) (Table 3, entry 4).I'8] Protection
of the alcohol as a PMB ether (4e) significantly improved
the yield of the cyclic carbonate (62%) (Table 3, entry 5).
A protected amine is also tolerated under these reaction
conditions, as carbonate 5f was isolated in 83% yield with
a diastereomeric ratio of 64:36 (Table 3, entry 6).

In order to ensure the easy formation of 1,3- and 1,2-
diols from cyclic carbonates, 2a (dr = 70:30) was treated
with K,CO; in MeOH. As expected, the corresponding
1,3-diol 3a was isolated in quantitative yield with no modi-
fication of the diastereomeric ratio (Scheme 2). Similarly,
carbonate cis-5b was easily transformed into 1,2-diol 3b
(Scheme 2).

J KoCO4 OH OH
0o P
At t, MeOH, 14 h Rt Ph
CoHyg Ph rt, MeOH,
quant.
2a (dr = 70:30) 3a (dr = 70:30)
0
0/40 K»COs OH
— S Ph
cy” \_ rt, MeOH, 3h Cy/'\i/\/
9 OH
cis-5b  pp 97 % 3b

Scheme 2. Preparation of 1,3- and 1,2-diols.

Considering our previous mechanistic studies on iron-
catalyzed heterocyclizations,!' we suggest that an allylic
carbocation intermediate is formed during the reaction.
When the InCls-catalyzed cyclization of 1e was monitored
by 'H NMR spectroscopy, no change in the diastereomeric
ratio was observed, which suggests a kinetic control.['” The
diastereoselectivities could be explained by the minimi-
zation of the steric interactions in the transition state

as shown in Scheme 3 for the cyclization of homoallylic
carbonates (TSI vs. TSII). However, the ability of
FeCl;-6H,O to induce the epimerization of 2,6-piperidines
or 2,6-tetrahydropyrans by a re-opening process has already
been highlighted,®! and, as a consequence, the hypothesis
of a thermodynamic control could not be completely ruled
out.

OtBu OtBu
0™=0 0==0
R1 7 Ph versus H 0 Ph
e . e
H R
H ) ( 1,3 steric interaction
TSI TSI
l l Slower
o (@]
oo o

f AN

Major cis-isomer

R1J\)"‘~/\ Ph

Minor trans-isomer

Scheme 3. Hypothetical origin of diastereoselectivity under kinetic
control.

In order to illustrate the potential of our method, we
embarked on a short synthesis of (3S,55)-alpinikatin
(Scheme 4), which was recently extracted from the seeds of
Alpinia katsumadai.**! (3S,5S)-Alpinikatin is part of the di-
arylheptanoid family, which includes more than 300 mol-
ecules exhibiting attractive biological properties.?!l From a
structural point of view, (3.5,5S)-alpinikatin possesses a 1,3-
diol motif that could come from a homoallylic carbonate
through the developed indium-catalyzed cyclization fol-
lowed by methanolysis. The synthesis started with the pro-
tection and subsequent reduction of methyl 3-(4-
hydroxyphenyl)propionate to provide the corresponding

o 1/ TBSCI, imidazole OH
/@/\)‘\OMe r.t, CH,Cl, @/\/\/\
2/ DIBAL-H
HO A= TBSO
—78 °C, CH,Cl, 6 (60 > 90 %)
3/(S,S)-Ti-l
—(78 °)C Et,O 1 -phenylallyl acetate
o 2 57% Gll (2 mol-%)
68 % (3 steps) Cul (3 mol-%)
50 °C, CH,Cl,
OBoc  OAc  B0oc0, EtN OH OAc
N DMAP N
Ph ~ Ph
8 r.t., CHoCly /@/\/7\/\)\
TBSO 1/ lntCI% HON 85% TBSO
o, r.t, 3
9% | (ar="73:27)
2/ K,CO4
r.t., MeOH o
/\/Ti g h MesN _ _NMes

OH OH

HO

(3S,5S)-alpinikatin

Scheme 4. Total synthesis of (35,55)-alpinikatin.
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aldehyde. An enantioselective allyltitanation with the
Duthaler—Hafner complex (S,S)-Ti-I'*?! was then performed
to afford the expected homoallylic alcohol 6 with good yield
and enantiomeric excess (ee > 90%). A cross-metathesis
with 1-phenylallyl acetate in the presence of the Grubbs II
catalyst (GII) and Cul® furnished 7, which was trans-
formed into carbonate 8 upon treatment with Boc,O. When
this homoallylic carbonate was treated with 10 mol-%
InCls, the corresponding cyclic product was isolated with a
good yield of 81% albeit with a moderate diastereoselecti-
vity of 73:27 in favor of the cis-isomer. Flash chroma-
tography on silica gel allowed a partial separation of the
two diastereomers, and a pure sample of the cis-compound
was isolated. Finally, the use of K,CO; in MeOH provided
(35,5S)-alpinikatin through carbonate methanolysis and de-
protection of the phenolic group.

Conclusions

In summary, we have developed a new approach to five-
and six-membered-ring cyclic carbonates by a Lewis acid
catalyzed cyclization of allylic and homoallylic tert-butyl
carbonates. In most examples, the reaction proceeds with
high yields and moderate diastereoselectivities. The cheap
FeCl;-6H,O with its low toxicity can be used as a catalyst
for the cyclization, but InCl; was preferred when functional
groups were present. The synthesized carbonates can easily
be transformed to the corresponding 1,2- and 1,3-diols, and
the method has been successfully applied to the total syn-
thesis of a natural product, (35,5S)-alpinikatin.

Experimental Section

Typical Procedure for Lewis Acid Catalyzed Cyclization of Allylic
and Homoallylic Carbonates: To a solution of the rerz-butyl carb-
onate A (1equiv.) in CH3CN (0.1 M) was added FeCl;:6H,O
(0.1 equiv.) or InCl; (0.1 equiv.). The resulting mixture was stirred
for 24 h at room temp., and the crude mixture was concentrated
under reduced pressure. Flash chromatography on silica gel af-
forded the desired cyclic carbonates B.

Supporting Information (see footnote on the first page of this arti-
cle): Experimental procedures, characterization data and copies of
'H NMR and '3C NMR spectra.
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