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Abstract: A versatile procedure for the synthesis of optically pure
1-amino-3-aryl indanes is presented, exemplified by the synthesis
of the triple uptake inhibitor (+)-indatraline (1).

Key words: indane, indatraline, enzymatic resolution, conjugate
addition, rhodium

The 1-aryl indane motif is a common scaffold, which is
found in several compounds of interest to medicinal
chemists. The scaffold has been used in drug candidates
aiming at modulating a diverse group of target structures,
e.g. the dopamine,' serotonin’ and neurokinin-2 recep-
tors,’ as well as the monoamine transporters.* Among
these drug candidates are (+)-indatraline (Lu 19-005, 1) a
potent reuptake inhibitor of serotonin, noradrenalin and
dopamine that has been investigated as a potential drug
for the treatment of major depressive disorder and cocaine
addiction.*?

In this letter, we report a method for the synthesis of opti-
cally pure 1-amino-3-aryl indanes, illustrated by the syn-
thesis of (+)-indatraline (1). Earlier syntheses of this
scaffold have primarily been based on assembling of the
indane motif by cyclization reactions, e.g. by intramolec-
ular electrophilic aromatic substitution.>® These cycliza-
tion reactions have required harsh, strongly acidic
conditions resulting in limited scope tolerance, especially
of substituents at the C4-C7 positions. Heck cross-cou-
pling,” Claisen-type cyclization®and iodide(III)-mediated
ring contraction’ have also been applied in the syntheses
of 1-amino-3-aryl indanes. To expand the scope of toler-
ated substrates we set out to develop a mild procedure that
would also allow easy variation of the 3-aryl moiety. We
envisaged that this could be achieved by starting from 1-
indanone, where the bicyclic moiety is already formed,
thus circumventing the scope limitations associated with
the ring-closing reactions. Related approaches have previ-
ously been reported by Itoh et al.® and Cossy et al.!°

Scheme 1 outlines our approach to the synthesis of (+)-
indatraline (1). Functional group interconversion of the
amine to the alcohol would result in a secondary alcohol,
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which we envisioned could act as a handle for an enzy-
matic resolution, thus introducing enantioselectivity to
our synthesis. The cis-indanol 2 would be obtained by a
diastereoselective ketone reduction of the racemic 3-aryl-
1-indanone 3. This intermediate would be synthesized by
a rhodium-catalyzed conjugate addition of an arylboronic
acid to 1-indenone (4), which could be obtained from the
commercially available 1-indanone.
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Scheme 1 Retrosynthetic analysis of (+)-indatraline (1)
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The starting point of our synthesis was 3-bromo-1-in-
danone (5), which can be prepared from 1-indanone by a
Wohl-Ziegler bromination.!'! The first steps were an elim-
ination reaction followed by a conjugate addition. Addi-
tion of one equivalent of triethylamine in THF at room
temperature led to complete elimination of hydrogen bro-
mide within an hour. The elimination occurred so cleanly
that the crude 1-indenone (4) could be used directly in the
next step after filtration and evaporation of solvent.
Avoidance of purification of the 1-indenone was desired,
as l-indenones are generally unstable, readily polymeriz-
ing."?

Inspired by the work of Miyaura and Hayashi,'* we devel-
oped a method for transformation of the enone 4 into the
3-aryl-1-indanone 3 using a rhodium-catalyzed conjugate
addition of 3,4-dichlorophenylboronic acid. Enone 4 was
treated with a mixture of 3 mol% of bis(norborna-
diene)rhodium(I) tetrafluoroborate and racemic BINAP,
one equivalent of triethylamine and two equivalents of
arylboronic acid in 1,4-dioxane—water (9:1). Heating at
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100 °C for four hours resulted in 74% of 3 over the two
steps. An excess of boronic acid was required to counter
decomposition of the aryl substrate via protonolysis of ei-
ther the boron—phenyl or rhodium—phenyl bonds.'** To
explore the scope of boronic acids tolerated by this proce-
dure, a simple phenylboronic acid, as well as an electron-
rich 4-methoxyphenylboronic acid, were screened. They
were both tolerated, albeit in lower yields than the 3,4-
dichlorophenylboronic acid (Table 1). In our initial syn-
thetic strategy, we envisioned that this conjugate addition
could be made enantioselective if catalyzed using an
enantiopure chiral catalyst. A related conjugate addition
of a boronic acid to an inden-1-one catalyzed by a chiral
rhodium(I)-chiraphos complex has previously been re-
ported to proceed in 27% yield with an enantiomeric ex-
cess of 8%.% Despite a substantial screening of chiral
ligands only low enantioselectivity was obtained. The best
selectivity was observed when (R)-BINAP was used, as
shown in Table 1. Thus, we decided to introduce enantio-
selectivity later in the synthesis instead.

Table 1 Exploration of the Scope of Tolerated Boronic Acids

ArB(OH), (2 equiv) 0
Q  [Rh(ndb)s] BF (3 mol%)
(+)-BINAP (3 mol%)
’ dioxane—H,0 (9:1)
EtsN, 100 °C, 4 h
Ar
4 (*)-3
Indanone Ar Yield? ee of (R)-BINAP®
3a Ph 43% 34%
3b 3,4-C1,C¢H;4 T4% 25%
3c 3-OMeC¢H, 55% 22%

2Yield of isolated product with (£)-BINAP as ligand.
® Enantiomeric excess from separate experiment with (R)-BINAP as
ligand. Enantiomeric excess was measured using chiral HPLC.

Indanone 3 was subsequently diastereoselectively re-
duced with two equivalents of sodium borohydride in
THF-water (10:1) at —15 °C overnight. The cis isomer of
the 3-aryl-1-indanol 2 was formed with a diastereomeric
excess of 92%. The two diastereomers could be separated
by flash chromatography resulting in pure cis-2 in 91%
yield. The cis configuration was verified using NOESY
spectroscopy.

At this point enantioselectivity was introduced to the syn-
thesis by enzymatic resolution of 2 (Scheme 2).!* No-
vozym 435®, which is a lipase capable of enantioselective
acylation of secondary alcohols, was used. The Kazlaus-
kas’ Model, which states that the lipase distinguishes be-
tween the pair of enantiomers on basis of the relative size
of the aliphatic substituents, was used to predict the selec-
tivity of the acylation.'> Thus, in this case the R-enantio-
mer would be acylated. Vinyl butyrate was chosen as the
acylation reagent, as the aliphatic chain would incorporate
a significant structural difference between the original and
the acylated enantiomer, thus facilitating the following
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chromatographic separation. Acylation in diisopropyl
ether at room temperature overnight resulted in a 45%
yield of the non-acylated S-enantiomer with an enantio-
meric excess of more than 99%.

(0]
0 )]\/\ 0
Z >0
| N Novozym 435®
= -Pry0, r.t., o.n.
2 Ar 45% yield, 99% ee ) Ar

Scheme 2 Enzymatic resolution of ()-2

The synthesis of (+)-indatraline (1), was concluded by a
methylamine substitution of the hydroxyl group with ste-
reoinversion of the benzylic Cl-centre. To obtain com-
plete stereoinversion an azide substitution—reductive
alkylation procedure was tested. The hydroxyl group was
activated as the corresponding phosphate moiety and sub-
stituted by an in situ generated azide nucleophile follow-
ing a protocol reported by Thompson et al.' The azide
was subsequently reductively alkylated in a one-pot reac-
tion using dimethylboron bromide.'” A NOESY experi-
ment verified that the pure trans configuration had been
formed. However, a moderate yield of 60% for the two
steps was obtained.

Thus, a simple one-pot mesylation—nucleophilic substitu-
tion procedure developed by Froimowitz et al. was tested
as well.>® The alcohol was mesylated with three equiva-
lents of mesyl chloride and triethylamine in THF at —20
°C. After one hour the mesylated intermediate was treated
with a large excess (20 equivalents) of methylamine at
—20 °C. Reaction overnight led to a 97:3 (trans/cis) mix-
ture of the 1-amino-3-aryl indane 1. Subsequent separa-
tion of the diastereomers by crystallization in ethyl
acetate—heptane resulted in an 80% yield of the pure trans
(+)-indatraline (1). To verify the absolute configuration of
the product it was recrystallized as the L-(+)-tartaric acid
salt from diethyl ether—methanol; mp 159-162 °C (lit. mp
159-162 °C);% specific rotation: [a]p? +29.5 (¢ = 1.0,
MeOH) {lit. [a]p?® +33.5 (¢ = 1.0, MeOH)}.%

In conclusion we have synthesized enantiopure (+)-inda-
traline (1), in a yield of 24% over five steps starting from
3-bromo-1-indanone (Scheme 3). The two key steps of
the synthesis were a rhodium-catalyzed conjugate addi-
tion of an arylboronic acid, and an enzymatic resolution
introducing enantioselectivity. The main advantage com-
pared to earlier reported syntheses is avoidance of the
scope limitations associated with the ring-closing reac-
tions. Mild conditions and reagents were used throughout
the synthesis, ensuring a broad scope of tolerated sub-
strates. Additionally, the developed conjugate addition
was shown to tolerate simple phenyl groups as well as
electron-poor and electron-rich aryl groups. The enzymat-
ic resolution generates pure samples of both enantiomers,
thus synthesis of both the (+)- and (—)-enantiomers is pos-
sible using this procedure.
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Scheme 3 The complete synthetic pathway
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