
 Letters in Organic Chemistry, 2010, 7, 203-207 203 

 

 1570-1786/10 $55.00+.00 © 2010 Bentham Science Publishers Ltd. 

Design, Synthesis and Optical Response of Pyridine-Cored V-Shaped 

Stilbenoid Dendrimers 

Debabrata Jana and Binay K. Ghorai* 

Department of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, India 

Received October 28, 2009: Revised January 19, 2010: Accepted January 28, 2010 

Abstract: Design, synthesis and characterization of new series of first-generation V-shaped dendrimers bearing 

phenylenevinylene dendritic branches in periphery and pyridine as a core is described. A preliminary study of the optical 

properties of the resulting compounds was conducted by UV/vis and fluorescence spectroscopy. 
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INTRODUCTION 

The interest in dendrimers was mainly focused on 
discovering synthetic routes toward novel members of 
unique family of macromolecule. Today, however, scientists 
working in this field have increasingly shifted their attention 
to the modification of existing dendrimers in order to explore 
the material properties of these regular highly branched 
molecules. Such modifications of the core molecule of 
dendrimers can tune the photophysical properties. Recently, 
conjugated oligomers are subjected to important 
investigations from both academic and industrial laboratories 
[1] due to their promising applications, such as organic light 
emitting diodes (OLEDs) [2], solar cell [3], field-effect 
transistors (FETs) [4], and models [5] to understand the 
fundamental properties of their analogous polydiverse 
polymers. Among these oligomers, molecules with a D- -A 
or D- -A- -D structure (where D is an electron-donating 
group, A an electron accepting group, and  a conjugating 
moiety) are of high interest due to their fluorescence 
properties with internal charge transfer (ICT) and as 
chromophores for second and third-order nonlinear optics 
(NLO) [6]. 

The pyridine ring is an excellent candidate to be 
incorporated in such structures. Indeed, this heterocyclic 
moiety has a moderate electron-withdrawing character, 
significant aromaticity that can lead to highly conjugated 
molecules, as well as basic and potential ligand properties 
that can also be used to modulate the optoelectronic 
properties of molecules. On the other hand, dendritic 
poly(phenylenevinylenes) [7], also called stilbenoid 
dendrimers, represent an important group within this class of 
material. Several studies have been published to date 
concerning the synthesis and properties of these materials 
[8]. For example, such compounds have been used 
successfully as charge transporting [9], light-emitting [10], 
and electron transfer materials [11]. It has also been 
demonstrated that phenylenevinylene dendrite arms can 
function as light-harvesting antennae [10b]. 
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While the photophysical properties of several dendrimers 

with electron deficient cores have been investigated and well 

characterized [12], stilbenoid dendrimers with pyridine as a 

core is not well known. Our interest is in the synthesis of 

novel conjugated V-shaped 1
st
 generation dendrimer with 

pyridine core for optoelectronic applications. In this paper, 

we wish to present a convergent synthesis of stilbenoid 

dendrimers via the strategic use of multifold Heck reactions 

and the influence of the length and orientation of linkage in 

phenylenevinylene skeleton on the optical absorption and 

emission properties with the fluorosolvatochromism and pH 
sensitivity.  

Wittig or Horner-Emmons reactions have been mostly 

used for the synthesis of stilbenoid dendrimers [13]. For such 

strategies, special bifunctional synthons are usually required, 

both for dendron preparation as well as for the core-coupling 

reactions. Syntheses of stilbenoid dendrimers via a 

sequential Heck reaction (for dendron propagation) and 

Horner–Emmons condensation (for core-coupling) have also 

been reported. However, stilbene synthesis via Wittig or 

Horner–Emmons reactions usually gives rise to a cis-trans 

mixture of products, necessitating an extra isomerization step 

to produce the desired trans-stilbene linkages. It must be 

mentioned that lack of stereochemical homogeneity in the 

dendrimer structure can severely affect its optoelectronic 

property. We decided to use the Heck arylation reaction to 

construct all the stilbenoid linkages (both at the core and in 
the periphery). 

RESULTS AND DISCUSSION 

Requisite 1-vinyl(4-tert-butylstyrene)benzene (1) [14] 

required for our study was synthesized from the readily 

available methyl 4-bromobenzoate (2) in good yield as 

outlined in Scheme 1. At first Heck reaction on 2 with 4-t-

butylstyrene under Jeffery’s conditions [15] provided 3 

(76%), and subsequent treatment of 3 with lithium 

aluminium hydride in THF gave the alcohol 4 (79%) and the 

later was oxidized (PDC, CH2Cl2, rt) to produce the styryl-

benzaldehyde 5 (86%). Wittig reaction of 5 (Ph3P
+
MeI

-
, n-

BuLi, THF) at -20 °C afforded compound 1 in 72% yield.  
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Dendron 6 was synthesized from methyl anthranilate (7) 
according to the literature method depicted in Scheme 2 [8c]. 
Dibromination of methyl anthranilate (7) followed by 
deamination (

t
BuONO, DMF) gave methyl 3,5-

dibromobenzoate (8) in 65% yield [16]. Two-fold Heck 
reaction on 8 with 4-t-butylstyrene under Jeffery’s 
conditions gave 9, which on treatment with lithium 
aluminium hydride in THF afforded the alcohol 10. PDC 
oxidation of 10 followed by Wittig reaction yielded the 
desired dendron 6.  

Generally, multifold Heck coupling reaction for 
stilbenoid dendrimer preparation afforded low yields due to 
the insolubility of partially coupled intermediates, which 
were observed to precipitate from solution during early 
reaction times [14]. We have chosen 2,6-dibromopyridine as 
a core molecule to prepare stilbenoid dendrimer because it 
has a -acceptor property, which control the absorption and 
emission spectra in different solvents and also the nitrogen 

atom of pyridine ring enhances the solubility of the mono- 
and bis-coupled products, which lead to the complete 
conversions with a considerable easy isolation and 
purification process.  

Thus, two-fold Heck reaction of 2,6-dibromopyridine 
(11) with 4-tert-butylvinyl styrene derivative under Jeffery’s 
phase transfer conditions [10% Pd(OAc)2, n-Bu4NBr, KOAc, 
DMF, 90 °C] give rise to the first generation dendrimer 12 

[17] in 45% yield (Scheme 3). Under the same conditions, 
two-fold Heck reaction of 11 with excess of styrene 
derivative 6 led to the fluorescent meta-branched V-shaped 
pyridine-cored dendrimer 13 [18] was formed in 30% yield. 
An additional example using the same two-fold Heck 
reaction strategy with dendron 1 led to the formation of a 
highly fluorescent compound 14 [19] in low yield (15%).  

We investigated the absorption and emission behaviors of 
12, 13 and 14 in different solvents. The results of these 
investigations are summarized in Table 1. The absorption 
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Scheme 1. Reagents and conditions: (a) 4-t-Butylstyrene, Pd(OAc)2, n-Bu4NBr, KOAc, DMF, 90 °C, 24 h; (b) LiAlH4, THF, rt; (c) PDC, 

CH2Cl2, rt; (d) Ph3P
+
MeI

-
, n-BuLi, THF, -20 °C.  
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Scheme 2. Reagents and conditions: (a) (i) Br2, HOAc; (ii) 
t
BuONO, DMF, 60 °C; (b) 4-t-Butylstyrene (2.5 equiv.), Pd(OAc)2, n-Bu4NBr, 

KOAc, DMF, 90 °C, 36 h; (c) LiAlH4, THF, rt; (d) (i) PDC, CH2Cl2, rt; (ii) Ph3P
+
MeI

-
, n-BuLi, THF, -20 °C.  
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Scheme 3. Synthesis of stilbenoid dendritic molecules. Reagents and conditions: (a) 4-t-Butylstyrene, Pd(OAc)2, n-Bu4NBr, KOAc, DMF, 90 

°C, 24 h, 45%; (b) 6 (4.0 equiv), Pd(OAc)2, n-Bu4NBr, KOAc, DMF, 90 °C, 48 h, 30%; (c) 1 (4.0 equiv), Pd(OAc)2, n-Bu4NBr, KOAc, DMF, 

90 °C, 48 h, 15%. 

 

Table 1. Spectroscopic Data of 12-14 
 

Compd Solvent 
UV/Vis 

max [nm] 

Excitation 

max [nm] 

Fluorescence 

max [nm] 

12 

Toluene 

Chloroform 

Tetrahydrofuran 

Methanol 

313 

316,339 

318,340 

- 

338 

341 

342 

342 

399 

415 

409 

465 

13 

Toluene 

Chloroform 

Tetrahydrofuran 

Methanol 

313,335 

318 

317 

317 

338 

344 

342 

342 

392 

400 

397 

409 

14 

Toluene 

Chloroform 

Tetrahydrofuran 

Methanol 

348 

351 

350 

350 

372 

375 

375 

375 

421 

445 

437 

492 

All spectra were recorded at room temperature at C = (1.0 x 10-6 M to 1.2 x 10-6 M). 

spectra are nearly independent of solvent polarity, except for 
a slight, insignificant red shift indicates a negligible 

intramolecular interaction between solvent molecule and 
pyridine system in the ground state. In contrast, the emission 
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spectra exhibit distinct solvent dependence behavior. Broad 
structure less emission and large maximum fluorescence 
wave length shifts were observed on increasing the solvent 
polarity along with a successive decrease in the fluorescence 
intensity. This solvatochromic behavior, which results from 
the stabilization of the highly polar emitting state by polar 
solvents, is typical for compounds that undergo an internal 
charge transfer upon excitation and has been fully 
documented for numerous fluorophores or cores containing 
donor-acceptor units [6a]. As an example, the 
photoluminescence (PL) spectra of compound 12 (Fig. 1) 
shows broad and strong red shift in more polar solvent (e.g. 
methanol) with a max of 465 nm, compare to the max of 399 
nm in less polar solvent (e.g. toluene). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Emission spectra of compound 12 (1.2 x 10
-6 

M) in various 

solvents. 

It is well known that meta-substituted systems are weaker 
light emitters than the corresponding para isomers; exactly 
same phenomenon is observed for our V-shaped pyridine-
cored dendrimer. The emission spectra of compound 13 
shows lower max than that of compound 14 which implies 
that extended conjugation in para position is more efficient 
for red shift than in meta position. The PL ( max) of 
compound 13 in chloroform appears in 400 nm where as for 
compound 14 in same solvent appears in 445 nm.  

The PL spectrum of compound 12 in toluene (excitation 
at 338 nm) showed an emission band at 399 nm whereas for 
compound 14 in same solvent (excited at 372 nm) showed at 
421 nm, this change probably attributed to the length of the 
peripheral vinylphenylene arms. 

The nitrogen atoms of all prepared pyridines are basic 
centers that can be protonated. Thus, the effect of 
protonation on the UV-vis absorption spectra of CHCl3 
solutions of compound 12 is illustrated in Fig. (2). The 
spectra show a new similar intensity red-shifted band at 402 
nm corresponding to the protonated species 15. It may be 
noted that the absorption band for the neutral compound on 
increasing the concentration of TFA from 10

-5
 to 10

-2
 M 

remains more or less same [12b]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). UV/vis absorption changes of 12 (1.05 x 10
-5 

M) in CHCl3 

with TFA (10
-2 

M) addition.  
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H
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In conclusion, we have successfully synthesized and 
characterized a series of new 2,6-bis(arylvinyl)pyridines in a 
straightforward manner by two-fold Heck coupling reaction 
between 2,6-dibromopyridine and appropriate vinylphenyl-
ene moiety. This well known protocol permits highly 
stereoselective trans coupling. The material exhibits 
moderate emission solvatochromism and red shifted broad 
structureless bands are obtained in polar solvents, an 
observation characteristic of intramolecular charge transfer 
at excited state. The pH sensing properties of absorption 
spectra were also studied particularly. Further work in this 
area is currently underway in this laboratory.  
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