Potential Anticonvulsants. IX. Some Isatin Hydrazones and Related Compounds

Frank D. Popp

Department of Chemistry, University of Missouri-Kansas City, Kansas City, Missouri 64110 Received February 24, 1984

A number of hydrazines, hydrazides, and related compounds have been condensed with isatin and substituted isatins. The anticonvulsant activity of these compounds is reported.

J. Heterocyclic Chem., 21, 1641 (1984).

It has been reported [1-7] that a number of compounds derived from isatin (I) exhibit anticonvulsant activity in the maximal electroshock seizure test [8] and/or the pentylenetetrazol seizure threshold test [8]. Several hydrazones of indole-3-carboxaldehyde have also been reported [9] to have anticonvulsant activity in these screens.

Table I Isatin Hydrazones and Related Compounds

R_3 $N-N < R_1 $								
R_1 R_2		$ m R_{3}$	Mp °C [a] Formula		Analysis, % Calcd./Found C H		Anticonvulsant Activity, mg/kg [b] MES Met	
R_1	112	143	Mp C [a]	1 ormana	J	**	MEG	Met
H	Н	Н	222-223 [c]	$C_8H_7N_3O$ [d]	_	_	NA [e]	300
Н	Н	$1 \cdot CH_2C_6H_5$	125-126 [f]	$C_{15}H_{13}N_3O$ [d]	_	_	NA [e]	300
CH ₃	Н	Н -	175-176	$C_9H_9N_3O$	61.70	5.18	100	300 [g]
CH ₃	Н	5-Br	218-219	C ₉ H ₈ BrN ₃ O	61.69 42.53	5.13 3.17	NA [e]	NA [e]
GII3	**	0-B1	210-217	O9118D1113O	42.27	3.15	1111 [0]	1.11 [0]
CH ₃	Н	4-Cl	222-223	C ₉ H ₈ ClN ₃ O	51.55	3.85	600 [g]	NA [e]
0113	11	1 01		49118011130	51.65	3.75	200 [8]	[0]
CH ₃	Н	5-Cl	203-204	C ₉ H ₈ ClN ₃ O	51.55	3.85	600 [g]	NA [e]
G113				-9-63-	51.54	3.89		. ,
CH ₃	Н	7-Cl	195-196	C ₉ H ₈ ClN ₃ O	51.55	3.85	NA [e]	NA [e]
- 3				, , ,	51.37	3.61		
CH ₃	H	1-CH ₃	101-102	$C_{10}H_{11}N_{3}O$	63.47	5.86	300 [g]	NA [e]
ŭ		·			63.19	5.75		
CH ₃	H	5-CH ₃	201-202	$C_{10}H_{11}N_{3}O$	63.47	5.86	300	NA [e]
					63.71	5.65		
CH ₃	H	7-CH ₃	224-225	$C_{10}H_{11}N_3O$	63.47	5.86	300	600 [g]
					63.41	5.79		
CH ₃	H	$5-NO_2$	229-230	$C_9H_8N_4O_3$	49.09	3.66	NA [e]	NA [e]
					49.01	3.79		
CH ₃	H	4,7-Cl ₂	191-192	$C_9H_7Cl_2N_3O$	44.28	2.89	NA [e]	NA [e]
		()		0 H N 0	44.01	3.01	N/ 4 6 3	37.4.5.3
CH ₃	Н	5,7-(CH ₃) ₂	218-219	$C_{11}H_{13}N_3O$	65.00	6.45	NA [e]	NA [e]
CII	7.7	4 CL 7 CH O	176 177	C II CIN O	65.27	6.44	NA (-1	600
CH ₃	Н	4-Cl-7-CH ₃ O	176-177	$C_{10}H_{10}CIN_3O_2$	50.11 50.02	4.21 4.33	NA [e]	600
				:	30.02	4.55		
= N - N - 1		Н	225-226	$C_{10}H_7N_5O$	56.33 56.25	3.31 3.36	300 [h]	NA [e]
= N-N		5-NO ₂	176-177	$C_{10}H_6N_6O_2$ [i]	43.48 43.88	2.92 2.88	NA [e,j]	NA [e,j]

In view of these observations it was decided to prepare a series of isatin-3-hydrazones (II) and related compounds for screening as potential anticonvulsants.

Isatin and a number of substituted isatins were condensed with a variety of mono and 1,1-disubstituted hydrazines, hydrazides, and other related compounds to give, as shown in Table I, compounds such as II and III. the results for these compounds in the maximal electroshock seizure test (MES) [8] and the pentylenetetrazol seizure threshold test (Met) [8] are also shown in Table I.

Compounds derived from isatin and methylhydrazine (II, $R_1 = H$, $R_2 = CH_3$) and from isatin and 1,1-dimethylhydrazine (II, $R_1 = H$, $R_2 = CH_3$) were active at 100 mg/kg in the MES screen and the former compound was also active at 300 mg/kg in the Met screen. In contrast the hydrazone derived from isatin and phenylhydrazine (II, $R_1 = H$, $R_2 = C_6H_5$) was active at 100 mg/kg in the Met screen and inactive in the MES screen. Generally the introduction of a substituent into the isatin portion of the molecule caused a decrease or loss of activity. An exception is the 1,1-diphenylhydrazone of 5-chloroisatin which was very active in the

Table I continued

$\mathbf{R}_{\scriptscriptstyle 1}$	R_2	R_{a}	Mp °C [a]	Formula	Analysis, % Calcd./Found C H		Activity,	Anticonvulsant Activity, mg/kg [b]	
141	112	113	Mp C[a]	rormula	C	п	MES	Met	
СН3	CH ₃	H	124-125	$C_{10}H_{11}N_3O[k]$	63.47	5.86	100 [g,l]	300 [g,l]	
					63.69	6.02		-0.2	
CH ₃	CH ₃	5-Br	199-200	$C_{10}H_{10}BrN_3O$	44.79	3.76	600 [g]	NA [e]	
					44.72	3.69			
CH ₃	CH ₃	4-Cl	273-274	$C_{10}H_{10}ClN_3O$	55.70	4.51	300 [g]	300 [g]	
					53.68	4.31			
CH ₃	CH ₃	5-Cl	183-184	$C_{10}H_{10}CIN_3O$	53.70	4.51	300 [g]	600 [j]	
					53.77	4.54			
CH ₃	CH ₃	6-Cl	146-147	$C_{10}H_{10}ClN_3O$	53.70	4.51	600 [j]	600 [j]	
CII.	arr.	# (1)			53.69	4.49			
СН₃	CH ₃	7-Cl	187-188	$C_{10}H_{10}ClN_3O$	53.70	4.51	NA [e]	600	
CII	CII.	5.011	140.140	0 H N 0	53.91	4.73			
СН₃	CH ₃	5-CH ₃	148-149	$C_{11}H_{13}N_3O$	- 65.00	6.45	300 [g]	NA [e]	
СН₃	CII	2.011	100 101	C II N O	65.06	6.49		***	
Cn ₃	CH ₃	7-CH ₃	190-191	$C_{11}H_{13}N_3O$	65.00	6.45	600	600	
СН₃	CH	5 NO	925 926	CHNO	64.91	6.34	N/A F 1	NIA E 1	
CII3	CH ₃	5-NO ₂	235-236	$C_{10}H_{10}N_4O_3$	51.28	4.30	NA [e]	NA [e]	
CH ₃	CH ₃	4,7-Cl ₂	213-214	C ₁₀ H ₉ Cl ₂ N ₃ O	51.33 46.53	4.27 3.51	600	300	
CII ₃	CII3	4,7-012	213-214	C ₁₀ H ₉ Cl ₂ iV ₃ U	46.72	3.49	900	300	
CH ₃	СН,	5,7-(CH ₃) ₂	207-208	$C_{12}H_{15}N_3O$	66.33	5.49 6.96	NA fal	NA [e]	
GII3	GII3	J, 1 (GII ₃) ₂	201-200	C ₁₂ 11 ₁₅ 1 (₃ C	66.14	6.69	NA [e]	MA [e]	
-0					00.11	0.07			
=N-N O		Н	203-205	$C_{11}H_7N_3S_2O_2$	47.64	2.54	NA [e]	NA [e]	
s/s		**	200-200	0111171130202	47.78	2.64	MA [c]	III [c]	
					41.10	2.01			
COCH ₂ CN	Н	Н	198-199	$C_{11}H_8N_4O_2$	57.89	3.53	NA [e]	NA [e]	
			*/**	J111181 14∨2	01.07	0.00	1774 [C]	[c]	
=N-N		Н	166-168	$C_{11}H_9N_3O_3$ [m]	57.14	3.92	600	NA [e]	
\checkmark					56.77	4.22			

Met screen. None of the compounds derived from hydrazides III showed any appreciable activity.

A number of imines of isatin, obtained from the condensation of isatin and primary amines, IV were screened and found to be, in general, inactive in both screens. Several of these compounds are shown in Table II.

It is of interest to note that the 1,1-dimethylhydrazone of indole-3-carboxaldehyde (V) had the same activity [9] as the corresponding hydrazone (III, $R_1 = H$, $R_2 = CH_3$) in the isatin series. Other correlations between the two series are not as marked and no obvious structure to activity relationships appear to exist.

EXPERIMENTAL [10]

Condensation of Isatin with Hydrazines and Related Compounds.

The compounds in Table I were prepared by heating a mixture of the isatin (0.01 mole) and the hydrazine (0.01 mole) in 30-50 ml of absolute ethanol on the steam bath for 30-60 minutes. After cooling, standing and in a few cases partial evaporation the solid products were collected by filtration and recrystallized from ethanol. A similar condensation of isatin and imines gave the imines shown in Table II.

Table I continued

					Analysis, % Calcd./Found		Anticonvulsant Activity, mg/kg [b]	
R_1	R_2	R_s	Mp °C [a]	Formula	Caled./I	H	MES	Met
-(CH ₂) ₄ -		Н	142-143	$C_{12}H_{13}N_3O$ [n]	66.96 66.78	6.09 6.30	600 [g]	600 [g]
-(CH ₂) ₂ -O-(CH ₂) ₂ -		Н	186-188	$C_{12}H_{13}N_3O_2$	62.32	5.67	300	300
-(CH ₂) ₂ -O-(CH ₂) ₂ -		5-Br	208-209	$C_{12}H_{12}BrN_3O_2$	62.44 46.47	5.68 3.90	NA [e]	NA [e]
-(CH ₂) ₂ -O-(CH ₂) ₂ -		4-Cl	148-149	$C_{12}H_{12}ClN_3O_2$	46.67 54.24	3.92 4.55	300 [h]	NA [e]
-(CH ₂) ₂ -O-(CH ₂) ₂ -		7-Cl	180-181	$C_{12}H_{12}ClN_3O_2$	54.20 54.24	4.50 4.55	NA [e]	NA [e]
-(CH ₂) ₂ -O-(CH ₂) ₂ -		1-CH ₃	116-118	$C_{13}H_{15}N_{3}O_{2}$	54.30 63.66 63.85	4.60 6.17 6.16	NA [e,j]	NA [e,j]
-(CH ₂) ₂ -O-(CH ₂) ₂ -		5-CH ₃	214-215	$C_{18}H_{18}N_3O_2$	63.66 63.67	6.16 6.24	NA [e]	NA [e]
-(CH ₂) ₂ -O-(CH ₂) ₂ -		7-CH ₃	183-184	$C_{13}H_{15}N_3O_2$	63.66 63.73	6.16 6.43	600	600
-(CH ₂) ₂ -O-(CH ₂) ₂ -		5-NO ₂	237-238	$C_{12}H_{12}N_4O_4$	52.17 52.21	4.38 4.41	NA [e]	NA [e]
-(CH ₂) ₂ -O-(CH ₂) ₂ -		4-Cl-7-CH ₃ O	216-217	$C_{13}H_{14}CIN_3O_3$	52.80 52.82	4.77 4.66	NA [e]	600
-(CH ₂) ₂ -O-(CH ₂) ₂ -		5,7-(CH ₃) ₂	184-185	$C_{14}H_{17}N_3O_2$	64.84 64.73	6.61 6.42	600 [j]	300 [g]
(CH ₃)C	H	Н	164-165	$C_{12}H_{15}N_3O$	66.33 66.47	6.96 6.99	600	NA [e]
2-Pyridyl	Н	Н	293-294 [o]	$C_{13}H_{12}N_{4}O$	-	-	NA [e]	NA [e]
-(CH ₂) ₅ -		Н	141-142	$C_{13}H_{15}N_3O$	68.10 68.14	6.59 6.58	600	600
-(CH ₂) ₅ -		5-CH ₃	196-197	$C_{14}H_{17}N_3O$	69.11 69.16	7.04 7.10	NA [e]	NA [e]

F. D. Popp

Table I continued

R_1	D	р	M octi	ъ.,	Analys Calcd.	Found	Activity,	nvulsant mg/kg [b]
\mathbf{n}_1	R_2	R_3	Mp °C [a]	Formula	С	Н	MES	Met
-COCH ₂ -3-Pyridyl	Н	Н	237-238	$\mathrm{C_{15}H_{12}N_4O_2}$	64.28 63.99	4.32 4.45	NA [e]	NA [e]
-C ₆ H ₅	Н	Н	213-214 [p]	$C_{14}H_{11}N_3O$	_	_	NA [e]	100
CH₂CH₂CN	-CH ₂ CH ₂ CN	H	157-158	$C_{14}H_{13}N_5O$	62.91 62.70	4.90 5.01	NA [e,h]	NA [e,h]
-(CH ₂) ₆ -		Н	134-135	$C_{14}H_{17}N_3O$	69.11 69.21	7.04 7.03	600	NA [e]
2-benzothiazolyl	Н	Н	238-239	$C_{15}H_{10}N_{4}SO$	61.20 61.32	3.42 3.40	NA [e]	NA [e]
$2,4\text{-}\mathrm{C_6H_3(NO_2)_2}$	CH ₃	Н	218-219	$C_{15}H_{11}N_5O_5$	52.79 5.273	3.25 3.33	NA [e]	NA [e]
-CO-4-pyridyl	Н	Н	296-297	$C_{14}H_{10}N_4O_2$	63.15 63.15	3.79 3.80	600 [g]	600 [g]
-C ₆ H ₅	CH ₃	Н	172-174	$C_{15}H_{13}N_3O$	71.69 71.93	5.21 5.20	NA [e]	NA [e]
-C ₆ H ₅	CH ₃	5-C1	208-209	$C_{15}H_{12}CIN_3O$	63.05 63.35	4.23 4.13	NA [e]	NA [e]
-C ₆ H ₅	CH ₃	5-CH ₃	186-187	$C_{16}H_{15}N_3O$	72.43 72.53	5.70 5.69	NA [e]	NA [e]
-C ₆ H ₅	CH ₃	5-NO ₂	264-265	$C_{15}H_{12}N_4O_3$	60.80 60.85	4.08 4.02	NA [e]	NA [e]
-CH(CH ₃)-(CH ₂) ₃ -(Cl	H₃)CH-	Н	179-180	$C_{15}H_{19}N_3O$	70.01 69.95	7.44 7.69	NA [e]	NA [e]
= N-N		Н	265-267	$C_{16}H_9N_3O_3$	65.98 65.89	3.11 3.14	NA [e]	NA [e]
= N - N		5-Cl	232-233	$C_{16}H_8CIN_3O_3$	59.00 59.17	2.48 2.00	NA [e]	NA [e]
COC ₆ H ₃ -2-OH-3-CH	3 Н	Н	323-325	$C_{16}H_{13}N_3O_3$	64.08 64.80	4.44 4.37	NA [e]	NA [e]
$-CH_{2}CH_{2}C_{6}H_{5}$	Н	Н	158-159	$C_{16}H_{15}N_3O$	72.43 72.14	5.70 5.79	NA [e]	NA [e]
-CO(CH ₂) ₂ C ₆ H ₄ -4-NO	₂ H	Н	224-227	$C_{17}H_{14}N_{4}O_{4}$	- 60.35 60.25	4.17 4.07	NA [e]	NA [e]
C_6H_5	-CH ₂ CH ₂ CH ₃	Н	162-164	$C_{17}H_{17}N_3O$ [g]	73.09 73.11	6.14 6.07	NA [e]	NA [e]
-COCH ₂ -3-indolyl	Н	Н	252-254 [r]	$C_{18}H_{14}N_4O_2$	_	_	NA [e,s]	NA [e,s]
$-\mathrm{CO}(\mathrm{CH_2})_3\mathrm{C_6H_5}$	Н	Н	199-200	$C_{18}H_{17}N_3O_2$	70.34 70.33	5.58 5.49	NA [e]	NA [e]
-C ₆ H ₅	-C ₆ H ₅	Н	245-246	$C_{20}H_{15}N_3O$	76.66 76.57	4.82 4.87	NA [e]	NA [e]
-C ₆ H ₅	-C ₆ H ₅	5-C1	305-306	$\mathrm{C_{20}H_{15}ClN_3O}$	69.06 68.97	4.06 4.12	600 [g]	30 [h]
$-C_6H_5$	-C ₆ H ₅	6-C1	242-244	$C_{20}H_{14}ClN_3O$	69.06 69.26	4.06 4.17	NA [e,h]	600 [g]
-C ₆ H ₅	⋅C ₆ H ₅	7-CH ₃	239-240	$C_{21}H_{17}N_3O$	77.04 77.21	5.23 5.17	NA [e]	NA [e]
-CH ₂ C ₆ H ₅	-CH ₂ C ₆ H ₅	Н	148-149	$C_{22}H_{19}N_3O$	77.39 77.37	5.61 5.56	NA [e]	NA [e]
√ C-Ń-N								
H	Н	Н	>340	$C_{24}H_{22}N_6O_4$ [t]	62.87 62.52	4.84 4.79	NA [e]	NA [e]

Table I continued

					Analysis, % Calcd./Found		Anticonvulsant Activity, mg/kg [b]	
R_1	R_2	R_3	Mp °C [a]	Formula	С	H	MES	Met
6-Cl-4-quinazolinyl	Н	Н	310-320 [v]	$C_{16}H_{10}ClN_5O[v]$	59.36 59.66	3.11 3.37	NA [e]	NA [e]
7-Cl-4-quinolinyl	Н	Н	298-299	$C_{17}H_{11}CIN_4O$	63.26 63.23	3.44 3.49	NA [e]	NA [e]
SO ₂ C ₆ H ₄ -CH ₃ -4	Н	Н	203-206 [w]	$C_{15}H_{13}N_{3}SO_{3}$	_	_	NA [e]	600
2-quinolinyl	Н	Н	271-272	$C_{17}H_{12}N_4O[x]$	70.82 70.82	4.20 4.26	NA [e]	NA [e]
-COCH ₂ C ₆ H ₄ -NO ₂ -4	Н	Н	256-257	$C_{16}H_{12}N_4O_4$	59.26 59.06	3.73 3.75	NA [e]	NA [e]
$-C_6H_5NO_2-2$	H	Н	293-295 [y]	$C_{14}H_{10}N_4O_3$	_	_	NA [e]	NA [e]
COC ₆ H ₄ NO ₂ -2	Н	Н	250-251 [z]	$C_{15}H_{10}N_4O_4$	_	_	NA [e]	NA [e]
$-C_6H_5NO_2-2$	H	1-COCH ₃	238-239 [aa]	$C_{15}H_{12}N_4O_4$	_	_	NA [e]	NA [e]
-COCH3	Н	Н	234-235 [bb]	$C_{10}H_9N_3O_2$	_	_	NA [e]	NA [e]
COCH,	Н	6,7-(CH ₃) ₂	247-248	$\mathbf{C_{12}H_{13}N_3O_2}$	62.32 62.38	5.66 5.68	NA [e]	NA [e]
-C ₆ F ₅	Н	Н	231-233 [cc]	$\mathrm{C_{14}H_6F_5N_3O}$	_		NA [e]	NA [e]

[a] Recrystallized from ethanol, melting point uncorrected, spectral data consistent with structure. [b] Anticonvulsant screenings were carried out through the Antiepileptic Drug Development Program, National Institute of Health. The standard screening protocal of the group was followed. MES = maximal electroshock seizure screen. Met = pentylenetetrazol seizures threshold test. [c] Literature [11] mp 219°. [d] Prepared by H. Pajouhesh [12]. [e] NA = No activity at 600 mg/kg. [f] Literature [13] mp 124°. [g] Toxic at this dose. [h] Toxic at 600 mg/kg. [i] Analysis for C₁₀H₆N₆O₃·H₂O. [j] Toxic at 300 mg/kg. [k] N, Calcd.: 22.21. Found: 22.14. [l] MES ED₅₀ 59.25, Met ED₅₀ 90.93, TD₅₀ 88.47. [m] N, Calcd.: 18.18. Found: 18.17. [n] N, Calcd: 19.52. Found: 19.44. [o] Literature [14] mp 293-294°. [p] Literature [15] mp 211°. [q] Compound prepared in this laboratory by M. Rajopadhye (unpublished results). [r] Literature [14] mp 251-254°. [s] See reference [9]. [t] N, Calcd.: 18.33. Found: 17.93. [u] Could not be adequately purified. [v] N, Calcd.: 21.63. Found: 20.80. [w] Literature [16] mp 207-209°. [x] N, Calcd.: 19.44. Found: 19.31. [y] Literature [14] mp 294-295°. [z] Literature [14] mp 250-251°. [aa] Literature [14] mp 238-239°. [bb] Literature [17] mp 236-238°. [cc] Literature [14] mp 232-233°.

Table II

Isatin Imines [a]

		H	Analys	is, %	
			Calcd./Found		
R	Mp, °C [c]	Formula	С	H	
3-Pyridyl	227-228	$C_{13}H_9N_3O$	69.44	4.06	
			69.34	3.92	
C ₆ HF ₄ -2,3,4,5	197-198	$C_{14}H_6F_4N_2O$	57.15	2.06	
		_	57.08	1.97	
C ₆ H ₃ (CH ₂) ₃ -2,4	196-197	$C_{16}H_{14}N_{2}O$ [d]	76.78	5.64	
			76.99	5.64	
3-Quinolyl	303-304	$C_{17}H_{11}N_3O$ [e,f,g]	73.12	4.21	
. ,		11 11 3 1 1 102	73.52	4.22	
5-Isoquinolyl	257-258	$C_{17}H_{11}N_3O$	74.71	4.06	
- •			74.50	4.16	

[a] In addition to the imines in this table, imines from isatin and o-aminobenzhydrazide [14], 3-aminocarbazole [14], 3-amino-4-ethylcarbazole [14], cyclopentylamine [14], 2-phenylaniline [14], 4-acetylaniline [1], 4-methoxyaniline [18], 3-(2-aminoethyl)indole [b] [16], and 3,4-dimethylaniline [19] were screened for anticonvulsant activity. Except as noted below none of these imines were active at 600 mg/kg in the MES or Met screen. [b] Active at 600 mg/kg in Met screen. [c] Recrystallized from ethanol. Analyses by Spang Microanalytical Laboratory. [d] Active at 300 mg/kg in Met screen. [e] Analysis for 0.33 H₂O. [f] Active at 600 mg/kg in MES screen. [g] N, Calcd. for C₁₇H₁₁N₃O-0.33H₂O: 15.05. Found: 15.01.

REFERENCES AND NOTES

- [1] F. D. Popp and B. E. Donigan, J. Pharm. Sci., 68, 519 (1979).
- [2] F. D. Popp, R. Parson and B. E. Donigan, J. Pharm. Sci., 69, 1235 (1980).
- [3] F. D. Popp, R. Parson and B. E. Donigan, J. Heterocyclic Chem., 17, 1329 (1980).
 - [4] F. D. Popp and H. Pajouhesh, J. Pharm. Sci., 71, 1052 (1982).
 - [5] F. D. Popp, J. Heterocyclic Chem., 19, 589 (1982).
- [6] H. Pajouhesh, R. Parson and F. D. Popp, J. Pharm. Sci., 72, 318 (1983).
- [7] M. Rajopadhye and F. D. Popp, J. Heterocyclic Chem., 21, 289 (1984).
- [8] Anticonvulsant screenings of the NINCDS, National Institute of Health. The standard screening protocal of that group was followed.
 - [9] F. D. Popp, J. Heterocyclic Chem., 21, 617 (1984).
- [10] All compounds exhibited ir spectra consistent with the structures shown. Melting points are uncorrected, and analyses were carried out by Spang Micro Analytical Laboratory.
- [11] H. Curtins and A. Thun, J. Prakt. Chem., 44, 188 (1981).
- [12] H. Pajouhesh, M. S. Thesis, University of Missouri-KC, 1981.
- [13] G. Palazzo and V. Rosnati, Gazz. Chim. Ital., 83, 211 (1953).
- [14] F. D. Popp, J. Med. Chem., 12, 182 (1969).
- [15] R. V. Auwers and E. Cauer, Ann. Chim., 470, 284 (1929).
- [16] F. D. Popp, J. Med. Chem., 13, 1017 (1970).
- [17] M. E. Kholodadov, Pharm. Yugoslav., 26, 67 (1976).
- [18] G. Jacini, Gazz. Chim. Ital., 73, 85 (1943).
- [19] G. B. Crippa, S. Pietra, A. Vattellina and N. Guarneri, *Gazz. Chim. Ital.*, **81**, 195 (1951).