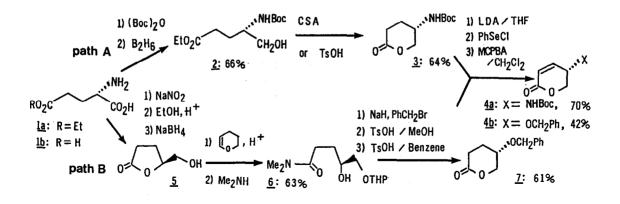
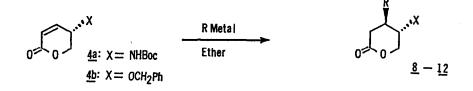
CONJUGATE ADDITION TO CHIRAL γ -HETEROSUBSTITUTED δ -LACTONES AS PIVOTAL SYNTHONS FROM L-GLUTAMIC ACID. SYNTHESIS OF AN OPTICALLY ACTIVE LIGNAN LACTONE; (-)-HINOKININ


Hidemi Yoda,^{*} Satoshi Naito, Kunihiko Takabe,^{*} Nobuo Tanaka,[†] and Ken Hosoya[†] Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, Hamamatsu 432, Japan [†]Faculty of Textile Science, Kyoto Institute of Technology, Kyoto 606, Japan

Summary: Asymmetric induction in conjugate addition of new chiral γ -heterosubstituted- α , β -unsaturated δ -lactones from L-glutamic acid was accomplished in high diastereoselectivity with the formation of trans-(R,S)-adducts and was disclosed to serve as a versatile procedure for the asymmetric synthesis of antileukemic lignan lactones.

Stereoselective conjugate addition to α , β -unsaturated carbonyl compounds has been receiving considerable interest¹⁾ in the synthesis of naturally occurring compounds possessing sequences of consecutive and highly functionalized carbon atoms.²⁾ Thus, a great deal of effort has been expended in the development of methods for new asymmetric induction employing chiral Michael acceptors.³⁾ Recently, Fleming has revealed that silylcuprate reagents undergo the conjugate addition with γ -substituted- α , β -unsaturated δ -lactones to afford the products bearing trans-relationship at β -position with respect to the γ -substituent.⁴⁾ In the preceding paper,⁵⁾ we reported that the Gilman reagents added to γ -amino- α , β -unsaturated carbonyl compounds to furnish trans-adducts predominantly. In this communication we describe Michael reactions of S- γ -heterosubstituted- α , β unsaturated δ -lactones (4) with organometallic reagents and demonstrate the δ -lactone (4a) to be a useful chiral unit for the asymmetric synthesis of lignan lactones.

Chiral γ -aminosubstituted- α , β -unsaturated δ -lactone (<u>4a</u>; $[\alpha]_D^{22}$ +112°(c 2.10, CHCl₃)), one of the crucial intermediates, was synthesized from γ ethyl L-glutamate (<u>1a</u>) through the olefination of saturated δ -lactone (<u>3</u>; $[\alpha]_D^{21}$ -38.4°(c 2.28, CHCl₃))^{5,6}) as shown in path A in Scheme 1. Preparation of the chiral S- γ -benzyloxy δ -lactone (<u>4b</u>; $[\alpha]_D^{21}$ +135.0°(c 1.04, MeOH))⁷) was also performed by sequential treatment of the known hydroxy lactone (<u>5</u>)⁸) with several reagents followed by the same type of olefination of saturated δ -lactone (<u>7</u>; $[\alpha]_D^{21}$ -33.3°(c 1.19, MeOH)) as indicated in path B.


7623

Scheme 1

Reactions of <u>4</u> with various organometallic reagents were examined and the results are listed in Table 1. With Grignard reagents <u>4a</u> afforded the trans-(β R, γ S)-adducts with extremely high diastereoselectivity⁹ in ether (entry 1) compared with <u>4b</u> (entry 2), although the ratio was improved by the addition of the excess of TMSCl in the latter case (entry 8). The cuprate reagents were proved to give excellent trans-selectivity for both chiral substrates (entry 3-6).¹¹⁾ When the reactions of cuprate addition were carried out in the presence of Me₃SiCl,^{12,13)} the rate of reactions was greatly enhanced (entry 9-11). Analogous results were obtained for the reactions^{6a)} of <u>4a</u> with the anions of phenylthioethers prepared with lithium diisopropylamide in THF and the trans-products were produced predominantly after desulfurization reaction (entry 12,13).

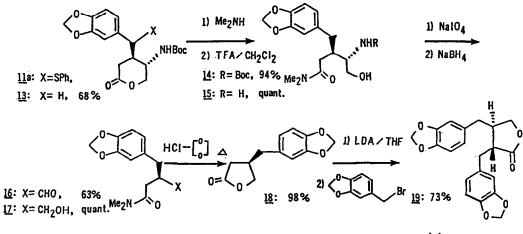

As an application of the reaction described herein, synthesis of (-)hinokinin $(\underline{19})^{14}$ known to exhibit antileukemic and cytotoxic activities was achieved as shown in Scheme 2. Thus, treatment of <u>11a</u> with Bu₃SnH afforded (<u>13</u>; 68%, $[\alpha]_D^{22}-26.1^{\circ}(c 2.03, CHCl_3)$), which was subjected to a ring-opening and deprotection reaction to give unstable aminoalcohol (<u>15</u>) in high yield. Conversion of <u>15</u> into (-)-hinokinin (<u>19</u>) was accomplished by the following sequence of reactions: (1) oxidative cleavage of <u>15</u> with NaIO₄, (2) reduction of the resulting aldehyde <u>16</u> to the alcohol <u>17</u> ($[\alpha]_D^{19}-28.0^{\circ}(c 2.15, CHCl_3)$), (3) cyclization of <u>17</u> to the Y-lactone <u>18</u> ($[\alpha]_D^{22}+5.02^{\circ}(c 1.07, CHCl_3)$, lit.^{14a}) $[\alpha]_D^{20}+5.22^{\circ}(c 1.13, CHCl_3)$), and (4) stereoselective introduction of piperonyl group at α -position of the lactone ring. The spectral data of <u>19</u> ($[\alpha]_D^{22}-35.0^{\circ}(c 1.72, CHCl_3)$) obtained was identical in all respects with those of reported (-)-hinokinin.¹⁴)

Table	1.	Conjugate Addition of Organometallic Reagents
		Conjugate Addition of Organometallic Reagents to Chiral δ -Lactones (<u>4</u>)

Entry	S			b) Yield of (<u>8)-(12</u>)/%	trans:cis	c) [α] _D ,deg ,S]) (Temp([●] C),c)
1	<u>4a</u>	PrMgBr(cat.CuI)	-78(3)	41 (<u>8a</u>)	>99:1	-69.9(21,2.60) ^d)
2	<u>4b</u>	PrMgBr(cat.Cul)	-78(3)	43(<u>8b</u>)	64:36	-41.1(22,2.42) ^{e)}
3	<u>4a</u>	(CH ₃) ₂ CuLi ^f	-78(2)	42(<u>9a</u>)	>99:1	-46.8(23,1.56) ^{e)}
4	<u>4b</u>	(CH ₃) ₂ CuLi ^f) Bu ₂ CuLi ^f)	-78-0(7) 26(<u>9b</u>)	95:5	+58.2(21,0.66) ^{d)}
5	<u>4a</u>	Bu ₂ CuLi ^f)	-78(2)	52(<u>10a</u>)	>99:1	-50.0(20,0.93) ^{d)}
6	<u>4a</u> 4b	Bu ₂ CuLi ^{f)}	-78(1)	14(<u>10b</u>)	>99:1	-45.6(20,1.20) ^{e)}
7	<u>4a</u>	PrMgBr(cat.Cul)	g) _78(2)	42(<u>8a</u>)	>99:1	-69.4(21,1.23) ^d)
8	<u>4b</u>	PrMgBr(cat.CuI)	g) _78(6)	44(<u>8b</u>)	71:29	-54.6(21,2.70) ^{e)}
9	<u>4a</u>	(CH ₃) ₂ CuLi ^{f,g})	-78(2)	73(<u>9a</u>)	>99:1	-46.6(22,0.87) ^{e)}
10	<u>4a</u>	Bu ₂ CuLi ^{f,g)}	-78(2)	75(10a)	>99:1	-51.2(19,1.03) ^{e)}
11	<u>4b</u>	$Bu_{CuLi}^{f,g)}$	-78(1)	54(<u>10b</u>)	>99:1	-44.3(20,1.43) ^{e)}
12	<u>4a</u>	PhS-CH-	-78(1.		>99:1	-26.1(22,2.03) ^{e,1}
13	<u>4a</u>	PhS-CH-CH-OCH3	-78(1.	5) 70(<u>12a</u>)	94:6	-21.7(21,1.46) ^{e,1}

a) 2-5 equiv. of reagents was used. b) Isolated yield. c) Determined by ¹³C NMR and HPLC analyses.¹⁰) d) Measured in MeOH. e) Measured in CHCl₃. f) Prepared from RLi and CuI. g) In the presence of TMSCl (5 equiv.). h) Measured after desulfurization reaction with Bu₃SnH.

Acknowledgment: This work was partly supported by a Grant-in-Aid from the Ministry of Education, Culture and Science (No. 63740282).

References and notes

- H. O. House and W. F. Fisher, J. Org. Chem., <u>33</u>, 949(1968); G. H. Posner, Org. React., <u>19</u>, 1(1972); R. J. K. Taylor, Synthesis, <u>1985</u>, 365; Y. Yamamoto, Angew. Chem., Int. Ed. Engl., <u>25</u>, 947(1986) and references cited therein; M. T. Reetz and D. Röhrig, Angew. Chem., Int. Ed. Engl., 28, 1706(1989).
- 2) See, for example: I. Paterson and M. M. Mansuri, Tetrahedron, <u>41</u>, 3569 (1985); R. K. Boeckman Jr. and S. W. Goldstein, "Total Synthesis of Natural Products" ed by J. ApSimon, New York, 1988, Vol.7, p1.
- 3) Y. Yokoyama and M. Yunokihara, Chem. Lett., <u>1983</u>, 1245; R. M. Ortuño, R. Mercé, and J. Font, Tetrahedron Lett., <u>27</u>, 2519(1986); M. Asaoka, K. Shima, N. Fujii, and H. Takei, Tetrahedron, <u>44</u>, 4757(1988); S. Hanessian and P. T. Murray, J. Org. Chem., <u>52</u>, 1170(1987).
- 4) I. Fleming, N. L. Reddy, and A. C. Ware, J. Chem. Soc., Chem. Commun., <u>1987</u>, 1472 and references quoted therein.
- 5) H. Yoda, S. Naito, K. Takabe, N. Tanaka, and K. Hosoya, Chem. Express, 4, 585(1989).
- 6) a) M. Yanagida, K. Hashimoto, M. Ishida, H. Shinozaki, and H. Shirahama, Tetrahedron Lett., <u>30</u>, 3799(1989); b) K. Shimamoto and Y. Ohfune, ibid., 30, 3803(1989).
- 7) V. Jäger and V. Wehner, Angew. Chem., Int. Ed. Engl., <u>28</u>, 469(1989).
- 8) M. Taniguchi, K. Koga, and S. Yamada, Tetrahedron, 30, 3547(1974).
- 9) The cis diastereomer was not detected by ¹³C NMR and HPLC analyses.
- 10) The 13 C NMR spectra were recorded on a JEOL JNM-EX90 or a Varian XL-200 instrument and HPLC runs were conducted in the reversed-phase mode on Nacalai Tesque COSMOSIL 5PYE or 5C₁₈ and in the normal phase mode on DAICEL CHIRALCEL OB or Pirkle Type columns.
- 11) Y. Honda, S. Hirai, and G. Tsuchihashi, Chem. Lett., <u>1989</u>, 255 and references cited therein.
- 12) Y. Horiguchi, S. Matsuzawa, E. Nakamura, and I. Kuwajima, Tetrahedron Lett., <u>27</u>, 4025(1986).
- 13) E. J. Corey and N. W. Boaz, Tetrahedron Lett., <u>26</u>, 6015(1985); A. Alexakis, J. Berlan, and Y. Besace, ibid., <u>27</u>, 1047(1986); Y. Horiguchi, S. Matsuzawa, E. Nakamura, and I. Kuwajima, ibid., <u>27</u>, 4029(1986).
- 14) a) K. Tomioka and K. Koga, Tetrahedron lett. <u>1979</u>, 3315; b) N. Rehnberg and G. Magnusson, ibid., <u>29</u>, 3599(1988) and references cited therein.