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Structure based design of a novel class of aminopyrimidine MTH1 (MutT homolog 1) inhibitors is
described. Optimization led to identification of IACS-4759 (compound 5), a sub-nanomolar inhibitor of
MTH1 with excellent cell permeability and good metabolic stability in microsomes. This compound
robustly inhibited MTH1 activity in cells and proved to be an excellent tool for interrogation of the utility
of MTH1 inhibition in the context of oncology.

� 2016 Elsevier Ltd. All rights reserved.
Reactive oxygen species (ROS), such as hydroxyl radical (�OH),
hydrogen peroxide (H2O2), and superoxide anion (�O2

�), are cellular
metabolism by-products that can react with and damage cellular
components like proteins, lipids and DNA. The deoxynucleotide
triphosphates (dNTPs) are particularly sensitive to oxidative dam-
age, and incorporation of oxidized nucleotides into DNA can cause
mutations and DNA damage.1 MTH1 (MutT homolog 1) is an
enzyme that prevents the incorporation of oxidized purines into
DNA by preferentially hydrolyzing 8-oxo-dGTP (8-O-G) and 2-
OH-dATP, two of the most abundant oxidative nucleotide lesions,
to their corresponding monophosphates.2

In normal cells, ROS levels are tightly controlled in order to
maintain intracellular redox homeostasis. On the contrary, altered
redox regulation, oxidative stress and increased ROS levels are
commonly observed in cancer cells.3,4 Recent publications suggest
that MTH1 inhibition can specifically kill cancer cells.5 It has been
proposed that blockade of MTH1 in cancer cells results in abnor-
mally high levels of oxidized bases incorporated into DNA, with a
concomitantly increased mutational burden; resulting in genetic
instability, and ultimately triggering of cell death mechanisms.5,6

Since normal cells have lower ROS levels, MTH1 inhibition would
not be expected to result in excessive and toxic incorporation of
oxidized bases into their DNA.6,7 Therefore MTH1 inhibitors might
represent a novel class of anticancer agents with a favorable ther-
apeutic index.7–9

A class of MTH1 inhibitors, as exemplified by TH287 and cyclo-
propyl analog TH588 with nanomolar potency (Fig. 1) against the
recombinant enzyme has been recently described, and reported
to inhibit cancer cells proliferation at micromolar concentrations.9

Here we describe the design and optimization of a novel series
of MTH1 inhibitors with sub-nanomolar inhibitory potency, with
excellent selectivity (with respect to kinase activity), good phy-
sico-chemical properties (including solubility and cell permeabil-
ity), and excellent microsomal stability. These compounds have
been instrumental in allowing us to independently evaluate
MTH1 as an oncology target.

An examination of the binding modes of TH287 and of enzyme
substrate 8-O-G (Scheme 1), led us to hypothesize that a 2-amino
pyrimidine motif would enable successful engagement of the key
interactions made by the guanine motif of the natural substrate.
Molecular modeling, using Schrödinger GLIDE XP docking10 and a
docking grid based on the MTH1 protein crystal structure 3ZR0,
predicted that the pyrimidine core may participate in p–p interac-
tions with Trp117 and Phe72. The aminopyrimidine would satisfy a
hydrogen bonding network with Asp119, Asp120, and Asn33, obvi-
ating the need for the additional aminoalkyl substituent present in
TH287.11 We also noted that the amino alkyl substituent of TH287
appears to be a metabolic soft spot;9 avoiding the need for this sub-
stituent might also be advantageous from a metabolic stability
standpoint. The 4-hydroxy substituent of the 8-O-G sugar appears
to be within H-bonding distance of the backbone carbonyl of Thr8,
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Figure 1. Chemical structure of the MTH1 inhibitors TH287 and TH588.

Table 1
Effect on MTH1 inhibition of substituents at 5 or 6 position of the 2-aminopyrimidine

Entry Structure MTH1 IC50 (nM)12

3
N

NH2N O
53 ± 10

4 (IACS-4619)
N

NH2N O
0.2 ± 0.04

5 (IACS-4759)
N

NH2N O OH
0.6 ± 0.16

6
N

NH2N O
112 ± 21

7
N

NH2N O OH
302 ± 44

12Data are an average of >2 independent determinations.
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offering a potential additional interaction to engage. These consid-
erations led us to design compound 1 (IC50 = 4 lM), which inhib-
ited MTH1 in the single-digit micromolar range (Scheme 1).

The addition of a gem-dimethyl group in the middle of the
chain, designed to mitigate the desolvation penalty of the ligand
and engage with the lipophilic cavity (exploited by the dichloro-
phenyl motif of TH287), increased the enzymatic potency 26-fold
(compound 2, IC50 = 0.14 lM).

Removing the terminal hydroxyl group (3, Table 1) resulted in
increased potency (IC50 = 53 nM), suggesting that the hydroxyl
group is not a net contributor to the in vitro potency of the
molecule.

A significant boost in potency came from the substitution of the
aminopyrimidine ring with a methyl group in position 5: com-
pound 4 (IACS-4619) was identified as a picomolar inhibitor of
MTH1 (IC50 = 0.2 nM). The same outcome was observed for 5
(IACS-4759 (IC50 = 0.6 nM)), an analog of compound 2.

A model of the binding mode of 5 (Fig. 2) docked into MTH1
(derived from PDB: 3ZR0) indicates that the methyl group effec-
tively fills a lipophilic pocket formed by the side-chains of residues
Phe27, Phe72, Phe74, Trp117, and Met81. It is possible that the
substantial increase in potency results in part from displacement
of one or more energetically disfavored water molecules from this
region of the protein. Water network analysis using 3D-RISM (as
implemented in MOE 2015.10, Chemical Computing Group) was
used to examine differences in the positions and energetics of
putative water molecules in binding models of compounds 2 and
5. For compound 2, there is a poorly bound, or energetically unfa-
vorable, water site adjacent to position 5. This water site is not evi-
dent when the analysis is run for compound 5, suggesting the
addition of the methyl group at position 5 has displaced this water
molecule. Furthermore, the inclusion of the methyl group might
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beneficially impact alignment of the aminopyrimidine with
Asp119 and Asp120.10

Examination of substituents at the adjacent 6-position did not
provide the same boost in potency (e.g., compounds 6 (IC50 =
112 nM) and 7 (IC50 = 302 nM)). It is apparent that the 5-position
offers the optimal trajectory for exploiting this pocket.

Additional exploration of a range of small substituents at the
5-position revealed the methyl to be optimal (Table 2). Chloride
8 (IC50 = 22 nM) and the methyl ether 9 (IC50 = 10 nM) conferred
no advantage. Fused cyclopentane 10 (IC50 = 4.5 nM) displayed a
10-fold loss in intrinsic potency compared with 5.

Intrigued by the influence of the linking atom on preferred con-
formation of the 4-substituent (and on the pKa of the pyrimidine
core), we also explored 4-substituents linked through nitrogen
and carbon (Table 3). Replacement of the alkoxy chain with an
alkyl amine afforded 11 (IC50 = 2980 nM), 12 (IC50 = 332 nM), 13
(IC50 = 120 nM) and 14 (IC50 = 84 nM) which confirmed that the
amino group was tolerated. The SAR of chain modifications in the
diaminopyrimidine series paralleled that of their alkoxy-linked
counterparts. Introducing a methyl group in the 5-position
X R O
H

NHR

OX=NH,O
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a novel class of MTH1 inhibitors.
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Figure 2. Model of compound 5 docked into the crystal structure of MTH1 (PDB:
3ZR0). Ligand binding surface is represented by gray mesh. Interatomic distances in
Å are marked in yellow. The 5-methyl substituent effectively fills a lipophilic pocket
formed by the side-chains of residues Phe27, Phe72, Phe74, Trp117, and Met81. The
aminopyrimidine engages Asp119, Asp120, and Asn33.

Table 2
Replacing the methyl group at position 5 of the 2-aminopyrimidine

Entry Structure MTH1 IC50 (nM)12

8
N

NH2N O

Cl

OH
22 ± 4

9
N

NH2N O

O

OH
10 ± 1

10
N

NH2N O OH
4.5 ± 0.9

12Data are an average of >2 independent determinations.

Table 3
Influence of the heteroatom linker at position 4 of the 2-aminopyrimidine

Entry Structure MTH1 IC50 (nM)12

11

N

NH2N N
H

OH
2980 ± 497

12

N

NH2N N
H

OH
332 ± 42

13

N

NH2N N
H

O
120 ± 20

14

N

NH2N N
H

84 ± 17

15

N

NH2N N
H

OH
3.1 ± 1.5

16

N

NH2N N
H

0.5 ± 0.15

17

N

NH2N N OH
0.5 ± 0.12

18

N

NH2N N
0.2 ± 0.06

19
N

NH2N
1.8 ± 0.8

12Data are an average of >2 independent determinations.
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Scheme 2. General synthetic pathway to afford 2-aminopyrimidine.
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generated pyrimidines 15 (IC50 = 3.1 nM) and 16 (IC50 = 0.5 nM) of
comparable potency to the alkoxy derivatives. Interestingly, the
tertiary amines 17 (IC50 = 0.5 nM) and 18 (IC50 = 0.2 nM) were sim-
ilarly potent. Furthermore, the introduction of a pyrrolidine, piper-
idine or a morpholine ring, as alternative replacements for the
alkoxy chain, generated compounds with inhibitory activities in
the low nanomolar range (data not shown).

A carbon-linked chain in the 4-position of the aminopyrimidine
was similarly tolerated (e.g., 19 (IC50 = 1.8 nM)).

Further SAR exploration of the alkoxy chain indicated signifi-
cant tolerance for steric bulk and lipophilicity in this region, but
conferred no additional advantage to the compounds.

Scheme 2 outlines the synthesis of the aminopyrimidines.
Starting with the appropriate 2-amino-4-chloropyrimidine, the
alkoxy or the amino moieties were installed via nucleophilic
aromatic substitution under basic conditions. The appropriately
substituted pyrimidines could also be obtained by reaction of the
readily available 2,4-dichloropyrimidines, under conditions A or
B and subsequently heating at reflux in ammoniacal ethanol, to
Please cite this article in press as: Petrocchi, A.; et al. Bioorg. Med. Chem
install the 2-amino functionality. The route to compound 5 shown
in Scheme 3 was found to be more operationally convenient on a
larger scale.

Due to their high enzymatic potency, 4 and 5 were further eval-
uated (Table 4). Compound 5 showed good cell permeability
(assessed in a confluent MDCK cell monolayer), solubility
(75.6 lM in sodium phosphate buffer (pH = 7.0)), and a high free
fraction (46%) in human plasma. It was also found to be stable in
rat and human plasma and liver microsomes. In contrast, 4 showed
good permeability but high turnover in liver microsomes. The
hydroxyl functionality clearly confers significantly improved meta-
bolic stability.
. Lett. (2016), http://dx.doi.org/10.1016/j.bmcl.2016.02.026

http://dx.doi.org/10.1016/j.bmcl.2016.02.026


N

NH2N Cl

N

NN
H

O

N

NN
H

O

O

O

OPMB

O
F

F
F

5

O

NaOH, THF/H2O

TFA, DCM

a) NaH, dioxane, 60 

HO OPMB

b) EtOAc, H2O

°C

Scheme 3. Synthesis of compound 5.13

Table 4
Comparison between TH287, IACS-4759 (compound 5) and IACS-4619 (compound 4)

Compound IACS-4619 IACS-4759 TH287

Enzyme IC50 (nM) 0.2 0.6 1.6
LipE (pIC50 � cLogD) 6.9 8.0 5.9
Permeability* (10�6 cm/s) (efflux ratio) 37 (0.8) 32 (0.8) 30 (0.8)
Human plasma protein binding (%) 94 54 929

Human Clint (mL min�1 mg�1/T1/2 h) 82/0.5 7.5/5.5 549/—
Mouse Clint (mL min�1 mg�1/T1/2 h) 280/0.3 60/1.5
Plasma stability T1/2 h (rat/human) 20/19 86/58

* Assessed in a confluent monolayer of MDCK cells.
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Isothermal Titration Calorimetry (ITC),14 showed a 1:1 stoi-
chiometry of binding for compound 5 with MTH1, with a signifi-
cant enthalpic component (DH = �16.8 kcal mol�1) to the binding
free energy (DG < �11.2 kcal mol�1), attesting to the efficiency of
the molecular recognition event.

Compound 5 was profiled against a panel of 97 kinases
(KinomeEdge panel; DiscoveRxTM) at 1 lM test concentration. No
off-target kinase activity was evident in this panel.

Specific assessment of endogenous MTH1 target engagement in
intact cells has proved to be challenging.9,15 As a surrogate, U2OS
cells were modified to overexpress human MTH1 and treated in
culture with increasing concentrations of test compounds. After
1 h treatment, cells were extensively washed, lysed, and the
remaining MTH1 activity in the lysate was measured by monitor-
ing the hydrolysis of 8-O-G (Fig. 3). MTH1 activity was found to
be significantly inhibited by compounds 4 and 5, indicating that
these inhibitors penetrate intact cells, inhibit MTH1, and display
a prolonged residency time. The durability of the cellular target
engagement, despite the extensive washing protocol, is a testa-
ment to the high enthalpy driven MTH1-binding that characterizes
these compounds. We did not observe MTH1 inhibition in samples
from cells treated with a weaker analog 2016 (IC50 = 850 nM); with
TH287 and TH588 some inhibition was observed only at the high-
est concentrations (data not shown), indicating a potentially faster
rate of dissociation from MTH1 in comparison with compounds 4
and 5.

As a control, lysates of MTH1-overexpressing cells were pre-
pared, and then treated with increasing concentrations of com-
pounds. As shown in Figure 4, all the compounds inhibited MTH1
when added directly to the lysates; we observed an excellent cor-
relation between the IC50 measured in the isolated recombinant
enzyme assay and the potency in cell lysates.

Having established high potency of MTH1 inhibition, excellent
cell penetration, and durability of MTH1 target engagement in
the cellular context, we then evaluated the anti-proliferative
Please cite this article in press as: Petrocchi, A.; et al. Bioorg. Med. Chem
effects of our compounds 4 and 5, in comparison with TH287
and TH588, using a panel of human cancer and normal cell lines.17

We were not able to observe the expected phenotypic responses
for compounds 4 and 5 in any of the tested cells at compound con-
centrations up to 50 lM, even upon prolonged drug treatments
and different assay formats (data not shown). In particular, cell
lines characterized by high levels of intrinsic ROS actually tolerated
these compounds very well, and no cytotoxicity or antiproliferative
. Lett. (2016), http://dx.doi.org/10.1016/j.bmcl.2016.02.026
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phenotype was apparent. In contrast, we were able to observe a
cytotoxic phenotype for TH287 and TH588 at micromolar concen-
trations in these contexts, consistent with the observations previ-
ously reported for these compounds.9

We conclude that selective inhibition of MTH1 by compounds 4
and 5 appears to be insufficient to confer a robust anti-proliferative
phenotype in the contexts we have examined thus far. These
results also suggest that the mode of action of TH287 and TH588
appears to be distinctly different from our compounds, and may
involve other factors.

In summary, we have developed a novel series of potent and cell
penetrant MTH1 inhibitors with a pharmacological profile that is
distinctively different from those already in the public domain.
We disclose our compounds as additional tools to further elucidate
the biology and pharmacology of MTH1 inhibition.18
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