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ABSTRACT: The pressure to deliver new medicines to the patient continues to grow along with increases in compound 
failure rate; thus, putting the current R&D model at risk. Analysis has shown that increasing the three-dimensionality of 
potential drug candidates decreases the risk of failure and improves binding selectivity and frequency. For this reason many 
workers have taken a new look at the power of photochemistry, as a means to generate novel sp3 rich scaffolds for use in 
drug discovery programs. Here we report the design, synthesis and computational structural analysis of a series of 2,4-
methanoprolines having inherent 3D character (PMI and PBF Scores) significantly higher than that of the broader AbbVie 
Rule of 3 (Ro3) collection.

In their seminal paper entitled “Escape from Flatland: 
Increasing Saturation as an Approach to Improving Clinical 
Success” Lovering et al hypothesized that the shift to high-
throughput synthetic practices had resulted in more 
achiral, aromatic compounds.1 This was supported by 
Walters et al who analysed the types of molecules that had 
been made by medicinal chemists over the 50 years 
preceding 2009. It showed quite conclusively the dramatic 
rise in the proportion of molecules containing sp2 - sp2 
couplings. The authors attributed this trend away from sp3 
character to the introduction of new methods for sp2 - sp2 
couplings, and the adaptation of these methods to high-
throughput synthesis, utilised widely in optimisation 
programs and in archive “enrichment” campaigns (Figure 
1).2 
Lovering et al focussed on carbon bond saturation as 
defined by fraction sp3 (Fsp3) where Fsp3 = (number of sp3 
hybridized carbons/total carbon count) as a simple and 
interpretable measurement of the complexity of molecules 
prepared as potential drug candidates. They went on to 
demonstrate that complexity (as measured by Fsp3) 
correlates with success as compounds transition from 
discovery, through clinical testing, to drugs (see Figure 2). 
They further demonstrated that saturation correlates with 
solubility, an experimental physical property important to 
success in the drug discovery setting.1 

In a later paper, Lovering described how increasing 
complexity reduces promiscuity and Cyp450 inhibition. 
Increased promiscuity has been linked to toxicity and 
candidate failure.3 

Figure 1. Influence of sp2 – sp2 coupling chemistries on the 
molecules published in the Journal of Medicinal Chemistry 
between 1959 and 2009. Data are shown as the fraction of 
molecules published in each 5-year period containing at least 
one acyclic–aromatic carbon–carbon bond. Reprinted from ref 
(2). Copyright 2011, American Chemical Society.
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Figure 2. Mean Fsp3 for compounds in different stages of 
development. **P value <0.001. Reprinted from ref (1). 
Copyright 2009, American Chemical Society.

Further to the positive impact of increasing fraction sp3 
(Fsp3) on attrition rates, Clemons et al examined 
compounds from different sources (commercial, academic, 
natural) for their protein-binding behaviours and found 
that these behaviours correlate with general trends in 
stereochemical and shape descriptors for these compound 
collections. Increasing the content of sp3-hybridized and 
stereogenic atoms relative to compounds from commercial 
sources, which comprise the majority of current screening 
collections, improved binding selectivity and frequency.4

A well-established approach to the generation of high 
quality small molecular weight leads for drug discovery 
programs is by the application of fragment based methods. 
We were prompted to look at synthetic methodologies that 
could be utilised to efficiently generate novel, complex, sp3 
rich fragments. For a number of years, we have been 
investigating the use of photochemistry, in particular [2+2] 
cycloadditions, as a source of desirable starting points for 
medicinal chemistry.5 We have, like other workers, 
focussed some of our efforts on analogues of 2,4-
methanoproline 1. 2,4-methanoproline 1 was first isolated 
from the seeds of Ateleia herbert smithii Pittier, a tree 
found in Costa Rica,6 and is prepared in a simple sequence 
of reactions from ethyl pyruvate 2 or serine 3 (Scheme 1) 
via intramolecular [2 + 2] olefin photocycloaddition 
reactions.7,8 The utility and conformational properties of 
2,4-methanoproline 1 as a replacement for D- or L-proline 
has been studied, its N-acetyl, methyl ester was found to 
show a large prevalence for a trans-amide conformation 
more akin to primary amino acids than to D- or L-proline.9 
This makes it a potentially interesting amino acid for 
inclusion in therapeutic peptides and the basis for the 
design of fragment libraries. A number of 2-position 
variants of 2,4-methanoproline have been reported 
recently10 and a small number of 4-substituted analogues, 
such as the 4-methyl 4 and 4-fluoro 5 derivatives (Figure 
3).9 We embarked on the synthesis of novel 2-substituted 
and 2,4-substituted analogues of interest in their own right 
but which were further utilised to prepare diverse N-
substituted amide and urea parallel libraries with a view to 
exploring their utility as fragments in a screening library. 
The compounds were designed to examine the three-
dimensional molecular shape and vectors produced by 
extended substituents at the N-1, 2 and 4-postions.
Scheme 1. Synthesis of 2,4-methanoproline 1

Reagents and conditions: (a) Allylamine then AcCl, Et3N, 
benzene (22%); (b) hv, acetone (55%); (c) Aq. KOH (72%); 
(d) PhCOCl, Et3N, DCM, then NaH, allyl Br, DMF (80%); (e) 
hv, acetophenone, MeCN (88%); (f) 6 N HCl (99%).

Figure 3. 4-Substituted 2,4-methanoproline analogues

N-1, 2-substituent variations. The N-benzoyl, ethyl ester 
of 2,4-methanoproline 6 was prepared by the method of 
Malpass et al.11 This compound was used to prepare a 
diverse range of proline derivatives; the 2-hydroxylmethyl 
7, the 2-methoxylmethyl 8 and the 2-carboxamido 9 
analogues (Scheme 2), from which a novel array of N-
substituted amides and ureas were prepared using parallel 
synthesis methods (Table 1).

Scheme 2. Synthesis of 2-substituent variations of 2,4-
methanoproline.

N
O

NH2

N
O

OEt

N
O

OH

6

N
OH

N
OMe

N
H

OH

7

N
H

OMe

8

N
H

OH

OHCl

N
H

NH2

9
O

a b

e

f

d

i j

O

h

O O O O

N
OMe

R1 O

N
OMe

HN O

N

N
NH2

R1 O

N
NH2

HN O

F

O

O

21-27

28

29-40

N
OH

R1 O 10-20

41

c

c

c

g

k

Reagents and conditions: (a) LiAlH4, THF (78%); (b) 
Ammonium formate, Pd/C, EtOH (94%); (c) DIPEA, HATU, 
DCM, R1 amine (See Table 1 for yields) ; (d) 6 N HCl (76%); 
(e) NaH, MeI, THF (81%); (f) Ammonium formate, Pd/C, 
EtOH (92%); (g) 4-Isocyanopyridine, DCM (39%); (h) 
CbzCl, aq. Na2CO3, (80%); (i) Aq. Ammonia, HATU DIPEA, 
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DCM (80%); (j) Ammonium formate, Pd/C, EtOH (90%); 
(k) 2-Flurobenzyl isocyanate, DCM (44%).

Table 1. N-1 Amide derivatives of 2-substituent variations of 
2,4-methanoproline.
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N-1, 2,4-substituent variations. The 4-carboxylic acid 
derivative of 2,4-methanoproline was prepared as its N-
benzoyl, 4-ethyl, 2-methyl diester 42 by the method of 
Esslinger et al.12 This compound was used to prepare the 
4-fluoromethyl derivative 43 and the 4-fluromethyl-2-
hydroxylmethyl derivative 44 (Scheme 3), from which a 
further novel array of N-substituted amides were prepared 
using parallel synthesis methods (Table 2). This sequence 
involved the selective saponification of the 4-ethyl ester in 
the presence of the 2-methyl ester using lithium hydroxide 
in a THF water mixture, followed by selective reduction of 
the carboxylic acid function and fluorination of the alcohol 
product.

Scheme 3. Synthesis of 2,4-substituent variations of 2,4-
methanoproline.

Reagents and conditions: (a) LiOH, THF/H2O (84%); (b) 
BH3THF, THF (84%); (c) DAST, DCM (68%); (d) TFA, H2O 
(43%); (e) DIPEA, HATU, DCM, R1 amine (See Table 2 for 
yields); (f) LiAlH4, THF then Ammonium formate, Pd/C, 
EtOH (40%).

Table 2. N-1 Amide derivatives of 2,4-substituent variations 
of 2,4-methanoproline.
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Computational Analysis
In order to investigate the in-silico properties of these 
molecules, the structures were uploaded into AbbVie’s 
design platform. In addition to a range of physicochemical 
properties, the Principal Moments of Inertia (PMI) and the 
Plane of Best Fit (PBF) scores were calculated using 
methods described in the literature.13,14 These descriptors 

were then used in combination to map the 3-dimensional 
space of these compounds. Plotting the sum of the 
normalized PMIs versus the PBF score, the compounds 
within the region of the graph defined by NPR (Sum of 
the Normalized Principal Moments of Inertia (NPR1 and 
NPR2)) ≥ 1.07 and PBF Score ≥ 0.6 are deemed, by Firth et 
al, to reside in 3D space by virtue of two independent 3D 
descriptors. Figure 4 shows this plot for 54 of the bridged 
pyrrolidines, with the corresponding unfunctionalized 
methanoproline intermediates labelled. Note that the 
shape was assigned using an approximation based on the 
relative values of NPR1 and NPR2.  
    

   
Figure 4. Plot of the normalized PMI versus PBF score for all 
54 fragments.

All but 5 of these fragments sit in 3D space with all of the 
intermediates resting comfortably in this region of space.  
A comparison of the relative level of 3-dimensionality with 
other fragments within the AbbVie Ro3 fragment collection 
is shown in Figure 5. 
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Figure 5. The % of compounds in 3D space for AbbVie’s Ro3 
fragment library vs bridged pyrrolidines. 

Overall the % of 3D character of the bridged pyrrolidines is 
significantly higher (91%) than that of the broader AbbVie 
Rule of 3 (Ro3) collection (58%) which is testament to the 
proclivity of this scaffold to produce compounds with a 
higher degree of 3D character within Ro3 chemical space. 
This is similar to pyrrolidines which are common scaffolds 
in drugs and known to enhance the 3D nature of 
fragments, with enabling chemistries employed to 
maximize both 2 and especially 3D diversity of fragment 
space.15 It is interesting to note that the unsubstituted 
methanoproline intermediates are highly saturated with 
proportionate levels of Fsp3, however for the majority of 
the corresponding substituted amide products, the level of 
3 dimensionality increases as the level of saturation 
decreases.

Figure 6. Comparison of Fsp3 versus PBF score for the 
methanoprolinol (compound 7) derived series.  

As an example, we analysed the series of compounds from 
the methanoprolinol derivative (compound 7) and plotted 
Fsp3 versus PBF score. While the unsubstituted prolinol is 
fully saturated (Fsp3=1), the corresponding amide 
products have lower levels of saturation (Fsp3 <1), 
however in many cases they possess higher degrees of 3-
dimensionality (see Figure 5). The 3D structures of the 
corresponding conformations used to calculate the 3D 
descriptors were visualized using Cresset’s ForgeTM 
platform. It was evident from these 3D structures why 
compound 19 possessed a higher degree of 3D character 
with a sphere-like conformation, while compound 13 is a 
flatter, more rod-like shape. This demonstrates that Fsp3 
should be used with caution when describing the relative 
3-dimensionality of compounds Overall these bridged 
pyrrolidines possess inherent 3D character and allow for 
the addition of fragments with higher degrees of favorable 
3-dimesionality. In addition, this method opens the door to 
prospective tailoring of the 3D character of the fragment 
library prior to synthesis.   

Conclusion. Over the coming 5-10 years the predicted 
positive impact of researchers synthesizing compounds 
with higher Fsp3 in drug discovery programs will become 
further apparent. Photocycloaddition reactions stand to 
play a significant part in generating highly desirable 
templates such as the 2,4-methanoproline derivatives 
covered here. Our computational analysis clearly 
demonstrates that fragments derived from 2,4-
methanoproline have inherent 3D character using two 
independent 3D descriptors (PMI and PBF Score) and that 
the degree of shape and 3D character may be prospectively 
designed and biased towards fragments with enhanced 3D 
character, residing in distinct property space to that 
largely occupied by conventional screening libraries, thus 
enabling the “escape from flatland”. 
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