Accepted Manuscript

Chemical Cleavage of Fucoxanthin from *Undaria pinnatifida* and Formation of Apo-fucoxanthinones and Apo-fucoxanthinals Identified Using LC-DAD-AP-CI-MS/MS

Junxiang Zhu, Xiaowen Sun, Xiaoli Chen, Shuhui Wang, Dongfeng Wang

PII:	\$0308-8146(16)30744-0
DOI:	http://dx.doi.org/10.1016/j.foodchem.2016.05.064
Reference:	FOCH 19213
To appear in:	Food Chemistry
Received Date:	11 September 2015
Revised Date:	5 May 2016
Accepted Date:	11 May 2016

Please cite this article as: Zhu, J., Sun, X., Chen, X., Wang, S., Wang, D., Chemical Cleavage of Fucoxanthin from *Undaria pinnatifida* and Formation of Apo-fucoxanthinones and Apo-fucoxanthinals Identified Using LC-DAD-APCI-MS/MS, *Food Chemistry* (2016), doi: http://dx.doi.org/10.1016/j.foodchem.2016.05.064

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

- 1 Chemical Cleavage of Fucoxanthin from Undaria pinnatifida and
- 2 Formation of Apo-fucoxanthinones and Apo-fucoxanthinals
- 3 Identified Using LC-DAD-APCI-MS/MS
- 4
- 5
- 6 Junxiang Zhu¹, Xiaowen Sun¹, Xiaoli Chen¹, Shuhui Wang², Dongfeng Wang¹*
- ⁷ ¹ College of Food Science and Engineering, Ocean University of China, Qingdao
- 8 266003, the People's Republic of China
- ⁹ ² Qingdao Municipal Center for Disease Control & Prevention, Qingdao 266033, the
- 10 People's Republic of China
- 11
- ¹² * Corresponding author. Tel.: +86 0532 82031575; fax: +86 0532 82032468; E-mail:
- 13 wangdf@ouc.edu.cn
- 14

15 Acknowledgments

This work was supported by the contribution of the Specialized Research Fund for the
Doctoral Program of Higher Education (Grant No. 20110132110007); the National
Natural Science Foundation of China (Grant No. 31371731); and the Independent
Innovation Major Project of Huangdao District Qingdao City (Grant No. 2014-3-11).

20 We acknowledge the Drs. Xu, Fan, and Cong for their technical assistance.

21	Abstract: As the most abundant carotenoid in nature, fucoxanthin is susceptible to
22	oxidation under some conditions, forming cleavage products that possibly exhibit
23	both positive and negative health effects in vitro and in vivo. Thus, to produce
24	relatively high amounts of cleavage products, chemical oxidation of fucoxanthin was
25	performed. Kinetic models for oxidation were probed and reaction products were
26	identified. The results indicated that both potassium permanganate (KMnO ₄) and
27	hypochlorous acid/hypochlorite (HClO/ClO ⁻) treatment fitted a first-order kinetic
28	model, while oxidation promoted by hydroxyl radical (OH) followed second-order
29	kinetics. With the help of liquid chromatography-tandem mass spectrometry, a total of
30	14 apo-fucoxanthins were detected as predominant cleavage products, with structural
31	and geometric isomers identified among them. Three apo-fucoxanthinones and eleven
32	apo-fucoxanthinals, of which five were cis-apo-fucoxanthinals, were detected upon
33	oxidation by the three oxidizing agents (KMnO ₄ , HClO/ClO ^{$-$} , and OH ^{$-$}).
34	Keywords: fucoxanthin, apo-fucoxanthins, chemical cleavage, reaction kinetics,

- 35 LC-DAD-APCI-MS/MS
- 36 Chemical compounds studied in this article
- 37 Fucoxanthin (PubChem CID: 5281239)

38 **1. Introduction**

Fucoxanthin is the principal carotenoid present in the chloroplasts of brown seaweed. 39 40 It is the most abundant of all carotenoids, accounting for more than 10% of their estimated total natural production (Miyashita et al., 2011). Numerous beneficial 41 nutritional and medicinal properties of fucoxanthin have been reported, including 42 excellent antioxidant (Fung, Hamid, & Lu, 2013; Takashima, Shichiri, Hagihara, 43 Yoshida, & Niki, 2012), anti-cancer (Satomi, 2012; Ye et al., 2014), anti-obesity 44 (Maeda, Hosokawa, Sashima, Funayama, & Miyashita, 2005; Kang et al., 2012), 45 anti-inflammatory (Heo et al., 2010) and anti-angiogenic (Sugawara, Matsubara, 46 Akagi, Mori, & Hirata, 2006) activity. Furthermore, fucoxanthin can help prevent 47 bone diseases, such as osteoporosis and rheumatoid arthritis (Das, Ren, Hashimoto, & 48 49 Kanazawa, 2010). These findings indicate that fucoxanthin can be used as a nutritional supplement in diet or functional food, with a potential to lower the 50 51 incidence of obesity, cardiovascular disease, diabetes and cancer.

52 The distinct structure of fucoxanthin includes an unusual allenic bond, epoxy group, and conjugated double bond in the polyene chain (Fig. 1). This structure is highly 53 unstable under some external conditions. In the previous study (Zhao, Kim, Pan, & 54 Chung, 2014), the decrease of total fucoxanthin and increase of *cis*-fucoxanthins, 55 owing to thermal processing, air exposure, and illumination, can be observed in 56 canola oil. Besides the isomerization, carotenoids are also susceptible to oxidation, 57 generating a great diversity of short-chain carbonyl compounds and, in some cases, 58 59 some volatile compounds (de Jesus Benevides, da Cunha Veloso, de Paula Pereira, &

60	de Andrade, 2011). However, these compounds are not investigated in the relatively
61	few fucoxanthin stability studies (Kawee-ai, Kuntiya, & Kim, 2013; Sugimura et al.,
62	2012; Zhao, Kim, Pan, & Chung, 2014).
63	Besides the color fading, the products of carotenoid degradation are also supposed to
64	exhibit both positive and negative effects in vitro and in vivo. Taking lutein as an
65	example, its breakdown products have been reported to induce cytotoxic and
66	genotoxic effects in human retinal pigment epithelial cells (Kalariya, Ramana,
67	Srivastava, & van Kuijk, 2008; Kalariya, Ramana, Srivastava, & van Kuijk, 2009).
68	However, Nidhi, Sharavana, Ramaprasad and Vallikannan (2015) appraised the
69	anti-inflammatory efficacy of lutein UV-mediated cleavage products in counteracting
70	inflammation caused by lipopolysaccharide in rats. The results suggested that lutein
71	oxidation/photolysis produced fragments that exhibited higher antioxidant and
72	anti-inflammatory effects than the parent lutein molecule. Thus, an in-depth
73	understanding of carotenoid oxidative cleavage is significant not only for avoiding the
74	deterioration of fucoxanthin-enriched food quality during processing and storage, but
75	also for predicting possible effects on human health.
76	Normally, a trace amount of degradation products is formed in a complex food matrix,

which makes their detection and identification difficult (Rodriguez, &
Rodriguez-Amaya, 2009). So in some previous studies, carotenoid cleavage was
performed with chemical methods to produce relatively high amounts of derivatives
with explicit structure (Caris-Veyrat, Schmid, Carail, & Böhm, 2003; Pennathur et al.,
2010; Sy, Dangles, Borel, & Caris-Veyrat, 2013). In addition, chemical oxidation can

82	be used to investigate the stability of carotenoids under simulated food processing
83	conditions. For instance, de Jesus Benevides, da Cunha Veloso, de Paula Pereira and
84	de Andrade (2011) studied the ozonolysis of β -carotene, where solutions of this
85	compound were exposed to ozone concentrations similar to those used in the food
86	sanitization process.
87	Therefore, this work is dedicated to the investigation of chemical (KMnO ₄ ,
88	HClO/ClO ⁻ and OH ⁻) oxidation of fucoxanthin, probing the corresponding kinetic
89	models and identifying cleavage products, which could possibly underpin a further
90	study on bioactivity and safety evaluation of these products in vivo.
91	2. Materials and methods
92	2.1. Materials and Chemicals
93	Dried seaweed (Undaria pinnatifida) was purchased from Rongcheng Jiayi Aquatic
94	Food Co., Ltd., Weihai, China. All dried samples were pulverized using a micro plant
95	grinder and sieved (200 μ m sieves) to obtain a fine powder. The dried seaweed
96	powders were stored in the dark at room temperature until used.
97	The standard of all-trans fucoxanthin was acquired from Sigma Chemical Company
98	(St. Louis, MO, USA). Solvents for HPLC including acetonitrile and methyl tert-butyl
99	ether (MTBE) were provided by Merck (Darmstadt, Germany). KMnO ₄ , iron(II)
100	chloride tetrahydrate (FeCl ₂ ·4H ₂ O), hydrogen peroxide (H ₂ O ₂), sodium hypochlorite
101	(NaClO) and hydrochloric acid (HCl) were supplied by Sinopharm Chemical Reagent
102	Co., Ltd. (Shanghai, China). All other reagents used were of analytical grade.
103	2.2. Isolation of fucoxanthin from Undaria pinnatifida

104	The extraction process was conducted using the methodology described by Xia et al.
105	(2013) with some modifications. All extractions were carried out in the dark to reduce
106	the possibility of photo-oxidation. Appropriate amounts of seaweed powders were
107	mixed with 80% (v/v) ethanol containing 0.01% (w/v) butylated hydroxytoluene
108	(BHT) to obtain a concentration of 0.25 g/mL. The mixtures were initially stirred by
109	an overhead stirrer for 0.5 h at room temperature, followed by static extraction, which
110	was conducted at 40 °C for 11.5 h and repeated three times. The extracts were
111	centrifuged at 5000 × g for 15 min and concentrated in vacuo. 95% (v/v)
112	methanol/hexane (1:1, v/v) was added to the ethanolic extract to isolate fucoxanthin.
113	After stirring for 1 min, mixtures separated into two distinct layers in a separation
114	funnel. The upper phase was discarded, and the lower one was concentrated for use in
115	subsequent experiments.
116	According to the modified methodology of fucoxanthin purification described by
117	Maeda, Hosokawa, Sashima, Funayama and Miyashita (2005), methanolic extracts
118	were subjected to silica gel adsorption chromatography. Silica gel (200-300 meshes,
119	Qingdao, China) was slurry-packed into a glass column and equilibrated with
120	petroleum ether/ethyl acetate (1:1, v/v). Extracts were adsorbed by portions of silica
121	gel of the same weight, loaded on the top of the column, and eluted in the dark using a
122	linear gradient of petroleum ether/ethyl acetate from 1:1 to 1:9 (v/v) for 60 min.
123	Fractions with different colors, i.e., green, reddish-orange, chartreuse, emerald and
124	yellow (from the top down), were collected in test tubes for HPLC analysis.

125 2.3. HPLC-VWD analysis

126	To determine whether the fractions collected during the purification process contained
127	fucoxanthin, each portion eluted from the column was analyzed by an HPLC system
128	(1100, Agilent Technologies Inc., Santa Clara, CA, USA) equipped with an
129	autosampler, a column oven, and a variable wavelength detector (VWD). A
130	ZORBAX SB-C18 column (4.6 \times 250 mm, 5 μm , Agilent Technologies Inc., Palo
131	Alto, CA, USA) was used at 25 °C, with the detection wavelength was set to 450 nm.
132	A gradient system based on a slight modification of a previous study (Zhao, Kim, Pan,
133	& Chung, 2014) was used. Elution was performed at a flow rate of 0.8 mL/min with
134	linear gradients of solvents A and B (A: acetonitrile/water 80/20, v/v; B: MTBE). The
135	solvent gradient used was 100% A at the start, with B linearly increased from 0 to 10%
136	in 10 min and held constant for 10 min before returning to initial conditions in 5 min.
137	At the end of the run, the system was equilibrated with 100% solvent A for 7 min.
138	After HPLC analysis, the fractions containing fucoxanthin were collected and
139	concentrated to a small volume, dried under nitrogen, and then stored in ethanol at
140	-20 °C until used.

141 2.4. *Chemical oxidation procedure*

Modified oxidation methodologies from previous studies (Gurak, Mercadante, González-Miret, Heredia, & Meléndez-Martínez, 2014; Sommerburg et al., 2003; Woodall, Lee, Weesie, Jackson, & Britton, 1997) utilizing KMnO₄, HClO/ClO⁻, and OH were used, and the optical spectra were recorded on a Unico UV2102-PC UV-visible spectrophotometer (Shanghai, China). The prepared fucoxanthin diluted with dichloromethane (1.5 mL, 0.13 mM) was treated with 1 mL of 0.8 mM KMnO₄,

148	1 mL of 2.3 M NaClO containing 0.1 mL HCl (1 M), or 1 mL of 9.9 M H_2O_2
149	containing 0.2 mL FeCl ₂ solution (10 mM). The reaction mixtures were continuously
150	vortexed (4-32 min) in the dark, then washed five times using distilled water. After
151	centrifuging at 7000 \times g for 2 min, the organic layer was separated under a steam of
152	nitrogen and re-dissolved in 1.5 mL dichloromethane for spectral analysis, The
153	UV-vis spectra were recorded from 200 to 700 nm, with the absorbance at 449 nm
154	used as a measure of fucoxanthin concentration in the following rate equation:
155	$\frac{dA}{dt} = -kA^n \tag{1}$
156	Here A, t, k and n represent the absorbance at 449 nm, the reaction time (min), the
157	reaction rate constant (\min^{-1}) and the kinetic order of the reaction, respectively.
158	Equation 1 can be integrated to obtain concentration as a function of time. For a
159	degradation reaction, integration of Equation 1 for $n = 0, 1$ and 2 (for zero-, first- and
160	second-order kinetics) leads to Equations 2, 3 and 4, which have been widely used to
161	model quality changes in carotenoid-rich foods owing to its simplicity and

$$A = A_0 - kt \tag{2}$$

$$164 \qquad A = A_0 e^{-kt} \tag{3}$$

$$65 A = \frac{A_0}{1 + kA_0 t} (4)$$

Where, A_0 is the initial absorbance of fucoxanthin at 449 nm. The best fit was determined based on the respective coefficients of determination (R^2), and the kinetic parameters were estimated by non-linear regression using Origin 8 (Microcal Origin,

169	USA).

170 2.5. LC-DAD-APCI-MS/MS analysis

171 The oxidation and control groups were analyzed using an HPLC system (1260, Agilent Technologies Inc., USA) equipped with an autosampler, a column oven, a 172 173 diode array detector (DAD) and a triple quadrupole mass spectrometer with 174 atmospheric pressure chemical ionization (APCI) interface operated in positive 175 ionization mode. Samples were injected onto a ZORBAX Eclipse XDB-C18 column 176 $(4.6 \times 250 \text{ mm}, 5 \mu\text{m}, \text{Agilent Technologies Inc., USA})$. The mobile phase used a gradient of solvent A (acetonitrile/water 80/20, v/v) and B (acetonitrile/water/MTBE 177 178 68/17/15, v/v/v). The flow was maintained at 0.8 mL/min, and the sample injection volume was 10 μ L. Detection wavelengths for UV-vis were set at 300, 350, and 400 179 180 nm. The following gradient flow program was used: mobile phase B increased from 0 181 to 60% in 10 min and kept constant for 10 min, then changed back to 0% in 7 min. 182 The MS operation parameters were adapted from Pennathur et al. (2010): capillary 183 voltage 2500 V, drying gas flow 5 L/min, drying gas temperature 350 °C, vaporizer 184 temperature 450 °C, and nebulizer pressure 20 psi. The mass range between m/z 200 185 and 800 was used for full scan mass spectra. The optimal fragmentor voltage for 186 fucoxanthin was 10 V, with a mass range of m/z 100 to 700 for MS/MS scan modes 187 containing product and precursor ion scans. The Agilent MassHunter (version 3.1) 188 software package was used for data acquisition and analysis (Agilent Technologies 189 Inc., USA).

190 **3. Results and discussion**

191 3.1. Preparation of unoxidized fucoxanthin from Undaria pinnatifida

192	The fucoxanthin used in the chemical oxidation procedure was initially isolated from
193	Undaria pinnatifida by conventional solvent extraction, and the various purified
194	fractions were collected after silica gel column chromatography. The results of HPLC
195	analysis indicated the presence of fucoxanthin in both the crude extracts and the
196	reddish-orange pigment fraction. As shown in Fig. S1, peak I with a retention time of
197	11.48 min corresponded to the all-trans fucoxanthin as compared with the standard.
198	Similarly, previous research on color profiles of carotenoids separated by thin-layer
199	chromatography illustrated that fucoxanthin was a characteristic orange pigment
200	present in Undaria pinnatifida and Ectocarpus siliculosus (Mikami, & Hosokawa,
201	2013). In the LC-DAD-APCI-MS spectrum of the purified sample (Fig. S2), peak I
202	with a retention time of 12.49 min and a characteristic spectral signal of all-trans
203	fucoxanthin (λ_{max} : 449 and 466 nm) was detected, with a relative content of up to
204	84.39%. Moreover, peaks II, III and IV with respective relative contents of 0.60%,
205	2.83% and 12.18% were identified as three cis-fucoxanthin isomers based on their
206	UV-vis spectra (Fig. S2B) and mass-spectrometric behavior (Fig. S2C). In the latter
207	analysis, the base peak in the full MS of all three isomers corresponded to dehydrated
208	protonated analyte with m/z 641. Specifically, compounds eluted at 13.16, 16.57, and
209	18.27 min were identified as 13,13'-cis-, 9'-cis-, and 13'-cis-fucoxanthin respectively,
210	in line with their hypsochromic shift peculiarity and the intensity of the cis peak
211	(DB/DII: 23.8, 10.2, 47.5%) according to prior research of Haugan, Englert, Glinz
212	and Liaacn-Jensen (1992). Since almost no other peaks were present in the

213 chromatogram of the isolates from Undaria pinnatifida, the purified seaweed extracts

214 could be used as an unoxidized fucoxanthin sample for subsequent experiments.

215 *3.2. Spectrum and kinetic analysis of fucoxanthin oxidation*

Chemical oxidants, including KMnO₄, HClO/ClO⁻ and OH⁻ are versatile reagents that 216 217 can react with carbon-carbon double bonds in carotenoids via diverse mechanisms to produce different types of products. As a result of chemical oxidation, the pigment in 218 219 the model system faded, while its absorption peak flattened, shifted and finally 220 disappeared (Figs. 2A–2C). The spectral changes observed for the three reactions 221 indicated that the generated products were similar, based on the shift of λ_{max} values 222 from 400-500 nm to 300-400 nm after oxidation for 30 min. The structure of fucoxanthin features an unsaturated chain with seven conjugated double bonds, and 223 224 its characteristic UV-visible spectra exhibit a hyperconjugative effect (Fig. 1). The 225 disappearance of the fucoxanthin signal could be attributed to hyperconjugation loss 226 after oxidation (Pennathur et al., 2010). Furthermore, the kinetics of fucoxanthin color 227 loss in the reaction with chemical oxidants was investigated. After 30 min of 228 oxidation using KMnO₄ and HClO/ClO⁻, a 60 and 87% decrease of fucoxanthin 229 concentration was observed (Fig. 2D), respectively. Similarly, when fucoxanthin was 230 oxidized by OH, increasing the reaction time from 0 to 32 min caused a continued reduction (0 to 77%) of absorption at 449 nm. The respective R^2 of 0.976 and 0.990 231 232 indicated that both KMnO₄ and HClO/ClO⁻ showed a good fit to a first-order kinetic model (n = 1), with the rate constants of 3.12×10^{-2} and 7.65×10^{-2} min⁻¹, 233 234 respectively. Nevertheless, the reaction with OH followed the second-order kinetics

235	$(R^2 = 0.966, n = 2)$, with $k = 1.69 \times 10^{-1} \text{ min}^{-1}$. The observed difference illustrated
236	that the mechanism of fucoxanthin with $KMnO_4$ and $HClO/ClO^-$ was different to that
237	with OH. Variation of kinetic order may be attributed to the complexity of carotenoid
238	behavior in radical-scavenging reactions, which includes the formation of
239	carotenoid/hydroxyl adducts and carotenoids radicals (Car). In the field of
240	non-thermal food processing, the second-order kinetic model was used to describe
241	ultrasonic degradation of β -carotene in dichloromethane (Sun, Ma, Ye, Kakuda, &
242	Meng, 2010), which was also related to the reaction between carotenoids and free
243	radicals produced by ultrasound (Riesz, Berdahl, & Christman, 1985).
244	3.3. MS scan of fucoxanthin cleavage products
245	LC-MS technology has exerted a huge effect on the analysis of carotenoids, including
246	structure elucidation premised on molecular mass and fragmentation pattern. APCI
247	has become the most commonly used ionization technique for carotenoids, showing
248	high analytical sensitivity and being suitable for the ionization of carotenoids with
249	different polarities (Rivera, & Canela-Garayoa, 2012). Thus, LC-APCI-MS was
250	utilized to determine whether the observed reaction products were indeed due to the
251	oxidation and fragmentation of the parent fucoxanthin molecule.
252	The maximum absorbance of carotenoid cleavage products is dependent on the
253	number of conjugated double bonds present (Weesepoel, Gruppen, de Bruijn, &
254	Vincken, 2014). To detect the widest possible array of oxidation products using DAD,
255	detection wavelengths were set at 300, 350 and 400 nm based on the results of

spectral analysis (Figs. 2A-2C). Using these three wavelengths, a plethora of peaks

257 generated by KMnO₄-accelerated oxidation were detected, of which 17 could be tentatively assigned (Fig. S3A). Some previous studies on carotenoid oxidation with 258 potassium permanganate (Caris-Veyrat, Schmid, Carail, & Böhm, 2003; Rodriguez, 259 & Rodriguez-Amaya, 2009; Gurak, Mercadante, González-Miret, Heredia, & 260 Meléndez-Martínez, 2014) indicated that oxygenated products found in the reaction 261 262 mixtures were apo-carotenoids. For example, potassium permanganate used by 263 Rodriguez and Rodriguez-Amaya (2009) could cleave the double bonds of lycopene 264 and generate apo-lycopenals without further oxidation to carboxylic acid. In this 265 reaction, a [3+2] electrocyclic addition of permanganate ion to the π -bond may be a 266 part of the initial step, leading to the formation of a cyclic Mn(V) ester. Intramolecular electron transfer subsequently occurs to give the oxidized cyclic 267 268 Mn(VI) ester, which, in turn, produces final products bearing aldehyde groups by rearrangement and fragmentation (Fatiadi, 1987). 269 270 Compared with the KMnO₄-accelerated oxidation, the reaction with HClO/ClO⁻ 271 produced similar products based on the resemblance of two chromatogram profiles. 272 As shown in Fig. S3B, 19 peaks found using different detection wavelengths and 273 eluted approximately between 2 and 8 min could be tentatively assigned. These 274 oxidation products were likewise identified as apo-carotenoids in a previous study on 275 astaxanthin (Weesepoel, Gruppen, de Bruijn, & Vincken, 2014). In this reaction, the

277 chloride atom of HClO/ClO⁻ acting as an electrophile. After the formation of a

electron-rich olefin moiety in fucoxanthin initially acts as a nucleophile, with the

276

transformable carbonium ion, followed by the opening of the chloronium ion ring and

279	an intramolecular S_N 2-type reaction of the formed chlorohydrin, fucoxanthin epoxides
280	are formed. When the epoxides encounter a second HClO molecule, the cleavage of
281	the carbon-carbon bond proceeds to generate two aldehydes (Pennathur et al., 2010).
282	When compared with the reactions of KMnO ₄ and HClO/ClO ⁻ , the retention time of
283	various peaks observed in the OH -promoted oxidation was also in the range from 2 to
284	8 min, as shown in Fig. S3C. Scavenging of OH generated in the Fenton reaction had
285	been investigated in the studies of carotenoids in vitro antioxidant activity.
286	Fucoxanthin and its stereoisomers were chosen as targets for the evaluation of their
287	OH scavenging activity using chemiluminescence and electron spin-resonance
288	spectroscopy (D'Orazio et al., 2012; Zhang et al., 2014). When it comes to
289	carotenoid-radical interaction, the primary products of hydrogen abstraction from
290	carotenoids by OH ⁻ are the corresponding radicals (Car ⁻), with the final degradation
291	products frequently being carbonyls and epoxides (Krinsky, & Yeum, 2003). One of
292	the reasons for their formation is the generation of carotenoids oxy-radicals (Car-O ⁻),
293	comparable to the alkoxyl radicals (LO [*]) produced during lipid peroxidation, leading
294	to the cleavage of the polyene chain. A conceivable reaction sequence to generate the
295	Car–O [°] is as follows: Car + OH [°] \rightarrow Car [°] + H ₂ O; Car [°] + O ₂ \rightarrow Car–OO [°] ; Car–OO [°] +
296	Car \rightarrow Car–OOH + Car ⁻ ; Car–OOH + Fe ²⁺ \rightarrow Car–O ⁻ + Fe ³⁺ + OH ⁻ . The
297	Car-O' radical is more reactive than either Car' or carotenoid peroxy radicals
298	(Car-OO') and is able to abstract an electron from adjacent carbon-carbon bonds to
299	form two products. The latter reaction is known as β -scission. Additionally,
300	Car-O' can also lose an electron to become a ketone, or bond to an adjacent carbon to

form an epoxide (Damodaran, Parkin, & Fennema, 2007).

302 In view of the above-mentioned studies, oxidation products obtained with the three 303 chemicals listed above were normally identified as apo- and epoxy-carotenoids. 304 Therefore, ion chromatograms of various degradation compounds with different predicted m/z, including apo- and epoxy-fucoxanthins, were extracted from the total 305 306 ion chromatograms (TICs) of the mass spectra. The retention time in respective 307 extracted ion chromatograms (EICs) was compared with the values shown in Fig. S3. 308 Similarly to preceding research, the results showed the presence of 309 apo-fucoxanthinals and apo-fucoxanthinones, whereas apo-fucoxanthinoic acids and 310 epoxy-fucoxanthins were not detected in the reactions of fucoxanthin with KMnO₄, 311 HCIO/CIO⁻ and OH⁻ in this study. Some predominant fucoxanthin cleavage products 312 with m/z 267, 293, 307, 333, 359, 399, and 425 had different retention time in the 313 APCI positive mode. Although only oxidative modification was applied, the 314 compounds with m/z 267, 333, 359, and 425 were difficult to identify, since they can 315 exhibit structural or configurational isomerism, which was the main distinction 316 between fucoxanthin and other common carotenoids upon oxidative cleavage of the 317 polyene chain.

318 *3.4. MS/MS fragments of fucoxanthin cleavage products*

Since most carotenoids showed little fragmentation during APCI mass spectrometry, collision-induced dissociation with product ion tandem mass spectrometry could be helpful for structural characterization and elucidation of whether the observed reaction products are indeed attributable to oxidation (van Breemen, Dong, &

323	Pajkovic, 2012). Then identification was further verified by analyzing MS/MS
324	fragmentation of all [M+H] ⁺ parent ions assigned. To optimize the MS/MS
325	parameters the prepared fucoxanthin was first analyzed in APCI positive ionization
326	mode. Protonated fucoxanthin with m/z 659, $[M+H]^+$, was detected as the base peak
327	corresponded to the loss of water at m/z 641, $[M+H-18]^+$, which is characteristic for a
328	compound with a hydroxyl group. The molecular ion peak with second-highest
329	relative abundance was observed at m/z 581 corresponding to the elimination of water
330	and acetic acid, [M+H-18-60] ⁺ , from protonated fucoxanthin (Fig. S2C). The
331	three molecular ions, $[M+H]^+$, $[M+H-18]^+$ and $[M+H-18-60]^+$, were fragmented at
332	various voltages. The optimal voltage to obtain maximal structural information in the
333	MS/MS scan mode was determined to be 10 V.
334	Fig. S4 showed the EICs for m/z 293 (apo-11'-fucoxanthinal), which was located with
335	the full scan MS data accompanying a chromatographic peak in Fig. S3. As shown in
336	Fig. 3A, this compound fragmented to form a daughter ion with m/z 233,
337	corresponding to the loss of acetic acid, [M+H-60] ⁺ , which further ascertained the
338	structure of apo-11'-fucoxanthinal. Another fragment ion of m/z 125,
339	[M+H-18-56-94] ⁺ , was produced from the protonated molecule by cleavage the
340	C6'-C7' bond of the polyene chain, with a loss of 56 amu previously observed in
341	APCI mass spectra of carotenoids containing an ɛ-ring (Rivera, Christou, &
342	Canela-Garayoa, 2014).

A product with m/z 307 was detected in the oxidation reactions with HClO/ClO⁻ and OH, but not with KMnO₄. Similarly to apo-11'-fucoxanthinal, it was situated with the

345	full scan MS data accompanying only a chromatographic peak labeled as 2 in Figs.
346	S3B and S3C. As shown in Fig. 3B, an ion with m/z 289, $[M+H-18]^+$, and its
347	derivative at m/z 207, $[M+H-18-82]^+$, were observed, which indicated that the
348	dehydrated molecule underwent further bond cleavage between C9 and C10. Another
349	ion with m/z 109 was detected, attributable to bond cleavage between carbons 6, 7 and
350	12, 13.

351 As mentioned earlier, two structures were plausible for the compound at m/z 267: apo-11-fucoxanthinal and apo-9'-fucoxanthinone. However, when comparing its EIC 352 353 (Fig. S4) with the chromatograms (Fig. S3), it located with the full scan MS data was 354 accompanied by only one chromatographic peak, denoted as 16, 18 and 19 in Figs. 355 S3A, S3B and S3C, respectively. MS/MS spectra were helpful for the structural 356 characterization. As shown in Fig. 3C, the fragmentation of peak 16 in Fig. S3A was 357 explained by consecutive cleavage of the end ring and the double bond between C7' 358 and C8', yielding two fragment ions with m/z 211 ([M+H-56]⁺) and m/z 155 359 ([M+H-56-56]⁺), which suggested that the structure of the compound with m/z 267 360 corresponded to apo-9'-fucoxanthinone rather than to apo-11-fucoxanthinal.

Analogous to apo-9'-fucoxanthinone (m/z 267), fragmentation patterns of the two possible structural isomers of m/z 333 were studied using tandem mass spectrometry to facilitate the distinction. To be exact, isomers with m/z 333 could have either apo-15-fucoxanthinal or apo-13'-fucoxanthinone structures. When scrutinizing the chromatograms and EICs in the MS scan mode, the compounds with m/z 333 were found to take up two chromatographic peaks (Fig. S3). When fucoxanthin was

	367	subjected to KMnO ₄ -promoted oxidation, one isomer of m/z 333 with a retention time
	368	of 3.307 min was identified as apo-13'-fucoxanthinone based on the presence of two
	369	fragment ions of m/z 135 and 161, as presented in Fig. 4A. The former was generated
	370	from the protonated molecule by bond cleavage between C6' and C7' carbons of the
	371	polyene chain, and the latter was produced by cleaving the double bond between C11'
	372	and C12', combined with the elimination of acetic acid and fragmentation of the end
	373	ring. Another isomer of m/z 333 eluted at 3.460 min was identified as
	374	apo-15-fucoxanthinal, showing a characteristic ion with m/z 287, produced by loss of
	375	the terminal hydroxyl and carbonyl (Fig. 4B). In addition, both isomers shared a
	376	common ion with m/z 109, ascribed to fragmentation patterns related to the various
	377	splitting sites between conjugated double bonds.
	378	Peak 4 and 6 in Fig. S3A belonging to the compounds with m/z 359 were identified as
	379	apo-14'-fucoxanthinal and apo-15'-fucoxanthinal, respectively, based on their tandem
	380	mass spectra. As shown in Fig. 4D, an iconic ion produced from ionized compound of
	381	peak 4 was detected at m/z 205 and corresponded to the demethylated and dehydrated
	382	terminal ring with cleavage of the double bond between C10 and C11, which verified
	383	the structure of apo-14'-fucoxanthinal. Besides, the presence of the representative ion
384 385	384	with m/z 227 (Fig. 4C), $[M+H-60-30-42]^+$, corresponding to the elimination of
	385	acetic acid and two methyl groups combined with bond rupture between C13' and
	386	C14', demonstrated that the compound of peak 6 was apo-15'-fucoxanthinal.
	387	Similarly to the mass spectrometric behavior of isomers with m/z 333, a common ion
	388	peak for apo-14'-fucoxanthinal and apo-15'-fucoxanthinal had m/z 109. Another

389	common ion of the two isomers was m/z 161, corresponding to carbon-carbon bond					
390	cleavage at positions 7, 8 and 14', 15' for the former, and at the 6', 7' double bond for					
391	the latter.					
392	When matching the Fig. S4 with the Fig. S3, it could be observed that compounds					
393	with m/z 425 were ascribed to multiple chromatographic peaks, i.e., 10, 14 and 15 in					
394	Fig. S3A. Although two constitutional isomers with a relative molecular mass of 424					
395	existed (i.e., apo-12-fucoxanthinal and apo-10'-fucoxanthinal), the MS/MS result					
396	suggested that the structure corresponded to apo-12-fucoxanthinal, due to the					
397	presence of characteristic ions with m/z 425 in all cases. As depicted in Figs. 5A–5C,					
398	the loss of toluene observed for most of the carotenoids was involved in the					
399	production of fragment ions with m/z 255. This fragmentation indicated the presence					
400	of extensive conjugation within the molecule (Rivera, Christou, & Canela-Garayoa,					
401	2014). Additional ions were generated by cleavage of various carbon-carbon single or					
402	double bonds as discussed above. Probably, the three peaks corresponded to the					
403	different geometrical isomers of apo-12-fucoxanthinal. Since cis-isomers, including					
404	13,13'-cis-, 9'-cis- and 13'-cis-fucoxanthin, were also formed from					
405	all-trans-fucoxanthin in our unoxidized samples isolated from Undaria pinnatifida,					
406	this conclusion seemed plausible. Based on the hypsochromic shift in λ_{max} , the <i>cis</i>					
407	absorption peak (Fig. 5D) and the elution order of <i>cis</i> -fucoxanthins, peaks 10, 14 and					
408	15 in Fig. S3A were tentatively identified as all-trans-apo-12-fucoxanthinal,					
409	9'-cis-apo-12-fucoxanthinal, and 13'-cis-apo-12-fucoxanthinal, respectively.					

410 By the same token, *cis-trans* isomers were possible for m/z 399, which had only one

411	possible chemical skeleton (apo-12'-fucoxanthinal). However, they were ascribed to a					
412	number of chromatographic peaks, i.e., 9, 10, 11 and 12 in Fig. S3A. When					
413	fucoxanthin underwent KMnO ₄ -promoted oxidation, the generated peak 10 was					
414	associated with both major and minor compounds with m/z 425 and m/z 399,					
415	respectively. This bore a similarity to a previous study, which showed that the					
416	chromatographic peak representing apo-12-fucoxanthinal was contaminated with					
417	apo-11'-fucoxanthinal and apo-9'-fucoxanthinone, identified using mass spectrometry					
418	and UV absorption spectroscopy, when fucoxanthin was allowed to react with the					
419	zinc permanganate (Bonnett et al., 1969). As shown in Figs. S5A-5D, common ions					
420	including m/z 109, 127, 173, 201, and 381 could be detected, in accordance with the					
421	structure of apo-12'-fucoxanthin. Identification of cis-isomers with m/z 399 was					
422	conducted similarly to above method for apo-12-fucoxanthinal isomers, although the					
423	UV-vis absorbance spectrum of peak 10 was not available. Peak 9, 11 and 12 in Fig.					
424	S3A with m/z 399 were tentatively identified as all-trans-apo-12'-fucoxanthinal,					
425	13,13'-cis-apo-12'-fucoxanthinal, and 13'-cis-apo-12'-fucoxanthinal, respectively.					
426	Finally, all apo-fucoxanthins formed during the chemically accelerated oxidation of					
427	fucoxanthin were listed in Table 1.					

428 **4.** Conclusion

Successful identification of fucoxanthin oxidation products by
LC-DAD-APCI-MS/MS demonstrates that a number of apo-fucoxanthinones and
apo-fucoxanthinals are formed in a relatively high amount when the fucoxanthin
isolated from *Undaria pinnatifida* is subjected to chemical cleavage using KMnO₄,

433	HClO/ClO ⁻ , and OH ⁻ . These compounds may be produced and further transformed
434	under some food processing and stored conditions. In addition to the
435	quantitative analysis of these products in fucoxanthin-enriched food during storage,
436	future studies should fully investigate the nutritional health and toxicity effects of
137	diets or functional foods with sufficient fucovanthin content

<text>

438 Supplementary data

- 439 Additional HPLC-VWD analysis of crude extracts and purified reddish-orange
- 440 fraction of Undaria pinnatifida in Fig. S1, LC-DAD-APCI-MS analysis of purified
- 441 fraction of *Undaria pinnatifida* in Fig. S2, liquid chromatograms of fucoxanthin after
- 442 chemical degradation in Fig. S3, EICs of apo-fucoxanthins produced by reactions of
- 443 fucoxanthin with KMnO₄, HClO/ClO⁻, and OH⁻ in Fig. S4, MS/MS spectra of Peak 9,
- 10, 11, 12 and UV-vis spectra of Peak 9, 11, 12 from KMnO₄-accelerated oxidation in

445 Fig. S5.

446 **References**

- 447 Bonnett, R., Mallams, A. K., Spark, A. A., Tee, J. L., Weedon, B. C. L., & McCormick, A. (1969).
- 448 Carotenoids and related compounds. Part XX. Structure and reactions of fucoxanthin. Journal of
- the Chemical Society C: Organic, 3, 429–454.
- 450 Caris-Veyrat, C., Schmid, A., Carail, M., & Böhm, V. (2003). Cleavage products of lycopene produced
- 451 by in vitro oxidations: characterization and mechanisms of formation. Journal of Agricultural and
- 452 *Food Chemistry*, *51*, 7318–7325.
- 453 Damodaran, S., Parkin, K. L., & Fennema, O. R. (Eds.). (2007). Fennema's food chemistry. CRC press.
- 454 Das, S. K., Ren, R., Hashimoto, T., & Kanazawa, K. (2010). Fucoxanthin induces apoptosis in
- 455 osteoclast-like cells differentiated from RAW264. 7 cells. Journal of Agricultural and Food
- 456 *Chemistry*, 58, 6090–6095.
- 457 de Jesus Benevides, C. M., da Cunha Veloso, M. C., de Paula Pereira, P. A., & de Andrade, J. B.
- 458 (2011). A chemical study of β -carotene oxidation by ozone in an organic model system and the
- 459 identification of the resulting products. *Food Chemistry*, *126*, 927–934.
- 460 D'Orazio, N., Gemello, E., Gammone, M. A., de Girolamo, M., Ficoneri, C., & Riccioni, G. (2012).
- 461 Fucoxantin: A treasure from the sea. *Marine Drugs*, *10*, 604–616.
- 462 Fatiadi, A. J. (1987). The classical permanganate ion: still a novel oxidant in organic chemistry.
- 463 Synthesis, 2, 85–127.
- 464 Fung, A., Hamid, N., & Lu, J. (2013). Fucoxanthin content and antioxidant properties of Undaria
- 465 pinnatifida. Food Chemistry, 136, 1055–1062.
- 466 Gurak, P. D., Mercadante, A. Z., González-Miret, M. L., Heredia, F. J., & Meléndez-Martínez, A. J.
- 467 (2014). Changes in antioxidant capacity and colour associated with the formation of β -carotene

468	epoxides and oxidative cleavage derivatives. Food Chemistry, 147, 160-169.					
469	Haugan, J. A., Englert, G., Glinz, E., & Liaacn-Jensen, S. (1992). Algal carotenoids. 48.* structural					
470	assignments of geometrical. Acta Chemica Scandinavica, 46, 389-395.					
471	Heo, S. J., Yoon, W. J., Kim, K. N., Ahn, G. N., Kang, S. M., Kang, D. H., et al. (2010). Evaluation of					
472	anti-inflammatory effect of fucoxanthin isolated from brown algae in					
473	lipopolysaccharide-stimulated RAW 264.7 macrophages. Food and Chemical Toxicology, 48,					
474	2045–2051.					
475	Kalariya, N. M., Ramana, K. V., Srivastava, S. K., & van Kuijk, F. J. (2008). Carotenoid derived					
476	aldehydes-induced oxidative stress causes apoptotic cell death in human retinal pigment epithelial					
477	cells. Experimental Eye Research, 86, 70–80.					
478	Kalariya, N. M., Ramana, K. V., Srivastava, S. K., & van Kuijk, F. J. (2009). Genotoxic effects of					
479	carotenoid breakdown products in human retinal pigment epithelial cells. Current Eye Research,					
480	34, 737–747.					
481	Kang, S. I., Shin, H. S., Kim, H. M., Yoon, S. A., Kang, S. W., Kim, J. H., et al. (2012). Petalonia					
482	binghamiae extract and its constituent fucoxanthin ameliorate high-fat diet-induced obesity by					
483	activating AMP-activated protein kinase. Journal of Agricultural and Food Chemistry, 60,					
484	3389–3395.					
485	Kawee-ai, A., Kuntiya, A., & Kim, S. M. (2013). Anticholinesterase and antioxidant activities of					
486	fucoxanthin purified from the microalga Phaeodactylum tricornutum. Natural Product					

- 487 *Communications*, 8, 1381–1386.
- 488 Krinsky, N. I., & Yeum, K. J. (2003). Carotenoid-radical interactions. Biochemical and Biophysical

489 *Research Communications*, 305, 754–760.

- 490 Maeda, H., Hosokawa, M., Sashima, T., Funayama, K., & Miyashita, K. (2005). Fucoxanthin from
- 491 edible seaweed, *Undaria pinnatifida*, shows antiobesity effect through UCP1 expression in white
- 492 adipose tissues. Biochemical and Biophysical Research Communications, 332, 392–397.
- 493 Mikami, K., & Hosokawa, M. (2013). Biosynthetic pathway and health benefits of fucoxanthin, an
- 494 algae-specific xanthophyll in brown seaweeds. International Journal of Molecular Sciences, 14,
- 495 13763–13781.
- 496 Miyashita, K., Nishikawa, S., Beppu, F., Tsukui, T., Abe, M., & Hosokawa, M. (2011). The allenic
- 497 carotenoid fucoxanthin, a novel marine nutraceutical from brown seaweeds. Journal of the
- 498 Science of Food and Agriculture, 91, 1166–1174.
- 499 Nidhi, B., Sharavana, G., Ramaprasad, T. R., & Vallikannan, B. (2015). Lutein derived fragments
- 500 exhibit higher antioxidant and anti-inflammatory properties than lutein in lipopolysaccharide
- 501 induced inflammation in rats. *Food & Function*, 6, 450–460.
- 502 Pennathur, S., Maitra, D., Byun, J., Sliskovic, I., Abdulhamid, I., Saed, G. M., et al. (2010). Potent
- 503 antioxidative activity of lycopene: a potential role in scavenging hypochlorous acid. *Free Radical*
- 504 *Biology and Medicine*, 49, 205–213.
- Riesz, P., Berdahl, D., & Christman, C. L. (1985). Free radical generation by ultrasound in aqueous
 and nonaqueous solutions. *Environmental Health Perspectives*, 64, 233.
- Rivera, S. M., & Canela-Garayoa, R. (2012). Analytical tools for the analysis of carotenoids in diverse
 materials. *Journal of Chromatography A*, *1224*, 1–10.
- 509 Rivera, S. M., Christou, P., & Canela-Garayoa, R. (2014). Identification of carotenoids using mass
- 510 spectrometry. *Mass Spectrometry Reviews*, *33*, 353–372.
- 511 Rodriguez, E. B., & Rodriguez-Amaya, D. B. (2009). Lycopene Epoxides and Apo-lycopenals formed

512	by chemical reactions and autoxidation in model systems and processed foods. Journal of Food
513	Science, 74, C674–C682.
514	Satomi, Y. (2012). Fucoxanthin induces GADD45A expression and G1 arrest with SAPK/JNK
515	activation in LNCap human prostate cancer cells. <i>Anticancer Research</i> , 32, 807–813.
516	Sommerburg, O., Langhans, C. D., Arnhold, J., Leichsenring, M., Salerno, C., Crifò, C., et al. (2003).
517	β -carotene cleavage products after oxidation mediated by hypochlorous acid-a model for
518	neutrophil-derived degradation. Free Radical Biology and Medicine, 35, 1480–1490.
519	Sugawara, T., Matsubara, K., Akagi, R., Mori, M., & Hirata, T. (2006). Antiangiogenic activity of
520	brown algae fucoxanthin and its deacetylated product, fucoxanthinol. Journal of Agricultural and
521	Food Chemistry, 54, 9805–9810.
522	Sugimura, R., Suda, M., Sho, A., Takahashi, T., Sashima, T., Abe, M., et al. (2012). Stability of
523	fucoxanthin in dried Undaria pinnatifida (wakame) and baked products (scones) containing
524	wakame powder. Food Science and Technology Research, 18, 687-693.
525	Sun, Y., Ma, G., Ye, X., Kakuda, Y., & Meng, R. (2010). Stability of all-trans-β-carotene under
526	ultrasound treatment in a model system: Effects of different factors, kinetics and newly formed
527	compounds. Ultrasonics Sonochemistry, 17, 654–661.
528	Sy, C., Dangles, O., Borel, P., & Caris-Veyrat, C. (2013). Iron-induced oxidation of (all-E)-β-carotene
529	under model gastric conditions: kinetics, products, and mechanism. Free Radical Biology and
530	Medicine, 63, 195–206.
531	Takashima, M., Shichiri, M., Hagihara, Y., Yoshida, Y., & Niki, E. (2012). Capacity of fucoxanthin for
532	scavenging peroxyl radicals and inhibition of lipid peroxidation in model systems. Free Radical
533	Research, 46, 1406–1412.

- 534 Van Boekel, M. A. (2008). Kinetic modeling of food quality: a critical review. *Comprehensive Reviews*
- 535 *in Food Science and Food Safety*, 7, 144–158.
- 536 Van Breemen, R. B., Dong, L., & Pajkovic, N. D. (2012). Atmospheric pressure chemical ionization
- 537 tandem mass spectrometry of carotenoids. International Journal of Mass Spectrometry, 312,
- 538 163–172.
- 539 Weesepoel, Y., Gruppen, H., de Bruijn, W., & Vincken, J. P. (2014). Analysis of palmitoyl
- 540 apo-astaxanthinals, apo-astaxanthinones, and their epoxides by UHPLC-PDA-ESI-MS. Journal of
- 541 Agricultural and Food Chemistry, 62, 10254–10263.
- 542 Woodall, A. A., Lee, S. W. M., Weesie, R. J., Jackson, M. J., & Britton, G. (1997). Oxidation of
- 543 carotenoids by free radicals: relationship between structure and reactivity. *Biochimica et*
- 544 Biophysica Acta (BBA)-General Subjects, 1336, 33–42.
- 545 Xia, S., Wang, K., Wan, L., Li, A., Hu, Q., & Zhang, C. (2013). Production, characterization, and
- antioxidant activity of fucoxanthin from the marine diatom *Odontella aurita*. *Marine Drugs*, *11*,
 2667–2681.
- 548 Ye, G., Lu, Q., Zhao, W., Du, D., Jin, L., & Liu, Y. (2014). Fucoxanthin induces apoptosis in human
- 549 cervical cancer cell line HeLa via PI3K/Akt pathway. *Tumor Biology*, 35, 11261–11267.
- 550 Zhao, D., Kim, S. M., Pan, C. H., & Chung, D. (2014). Effects of heating, aerial exposure and

551 illumination on stability of fucoxanthin in canola oil. *Food Chemistry*, *145*, 505–513.

- 552 Zhang, Y. P., Fang, H., Xie, Q. L., Sun, J. P., Liu, R., Hong, Z., et al. (2014). Comparative evaluation
- 553 of the radical-scavenging activities of fucoxanthin and its stereoisomers. *Molecules*, 19,
- 554 2100–2113.

555 Figure Captions

- 556 **Fig. 1.** Chemical structure of all-*trans* fucoxanthin.
- 557 Fig. 2. Spectral changes observed for reactions of fucoxanthin with (A) KMnO₄, (B)
- 558 OH, (C) HClO/ClO⁻ and their kinetic analysis (D). *n*, kinetic order of reaction; R^2
- 559 coefficient of determination.
- Fig. 3. MS/MS spectra of (A) apo-11'-fucoxanthinal with m/z 293 (Peak 6) and (C)
- apo-9'-fucoxanthinone with m/z 267 (Peak 16) produced by KMnO₄-accelerated
- oxidation; MS/MS spectra of (B) apo-13-fucoxanthinone with m/z 307 (Peak 2)
- 563 produced by HCl/ClO⁻-accelerated oxidation.
- Fig. 4. MS/MS spectra of (A) apo-13'-fucoxanthinone with m/z 333 (Peak 2), (B)
- apo-15-fucoxanthinal with m/z 333 (Peak 3), (C) apo-15'-fucoxanthinal with m/z 359
- 566 (Peak 6) and (D) apo-14'-fucoxanthinal with m/z 359 (Peak 4) produced by
- 567 KMnO₄-accelerated oxidation.
- 568 **Fig. 5.** MS/MS spectra of (A) all-*trans*-apo-12-fucoxanthinal with *m*/*z* 425 (Peak 10),
- 569 (B) 9'-cis-apo-12-fucoxanthinal with m/z 425 (Peak 14), (C)
- 570 13'-cis-apo-12-fucoxanthinal with m/z 425 (Peak 15) produced by
- 571 KMnO₄-accelerated oxidation and their UV-vis spectra (D).

574 Figures

575 **Fig. 1**

- 585
- 586

Fig. 3

Fig. 4 592 B 21 109 |[M+H-134-60-30]⁺ A 224 -----60 18 Relative abundance Relative abundance [M+H]+ [M+H]⁺ 333 15 333 н 40 0 OF 12 ٥ [M+H-17-29]⁺ 287 [M+H-198]⁺ 109 [M+H-224]+ 135 [M+H-56-60-56]+ 9 20 [M+H-18]+ 161 315 6 04 350 150 250 300 200 350 150 200 250 300 100 100 m/zm/zС D 109 |M+H-250|+ 10 (M+H)⁺ 359 ---- 60 18-[M+H-250]⁺ 90 250 -----HO -29 15 8 42 148 Relative abundance 72 Relative abundance no? -> 121 6. 160-169 54. [M+H]⁺ 359 18 н, ... > 250 [M+H-160-18-60]+ н, HO |M+H-148-18-60|⁺ |M+H-198|⁺ 4. 36. -198]⁺ |M+H-160-30]⁺ |M+H-42-60-30]⁺ 227 [M+H-18] 341 18 [M+H-169-29]⁺ 161 |M+H-18-15-121|⁺ 205 2 0_ 0_ 350 150 100 250 350 150 100 200 300 200 300 250 m/zm/z

Identity	$\left[\mathrm{M}+\mathrm{H}\right]^{+}m/z$	LC-APCI-MS/MS ^c	KMnO ₄ reaction		HClO/ClO ⁻ reaction		OH ^[•] reaction	
		m/z	Peak ^a	Rt ^b (min)	Peak ^a	Rt ^b (min)	Peak ^a	Rt ^b (min)
apo-13-fucoxanthinone	307	[307]: 289, 207, 109	ND ^e	ND ^e	2	3.140	2	3.133
apo-13'-fucoxanthinone	333	[333]: 315, 189, 163, 161, 135, 127, 109	2	3.307	3	3.313	3	3.307
apo-15-fucoxanthinal	333	[333]: 287, 109	3	3.460	4	3.445	4	3.440
apo-14'-fucoxanthinal	359	[359]: 205, 161, 145, 143, 109	4	3.560	5	3.560	5	3.547
apo-11'-fucoxanthinal	293	[293]: 233, 149, 125, 111, 107	5	3.727	6	3.725	6	3.720
apo-15'-fucoxanthinal	359	[359]: 341, 227, 189, 169, 161, 133, 121, 109	6	3.927	7	3.927	7	3.920
all-trans-apo-12'-fucoxanthinal	399	[399]: 381, 229, 201, 179, 173, 159, 153, 127, 109	9	4.627	11	4.620	11	4.607
all-trans-apo-12-fucoxanthinal	425	[425]: 407, 255, 227, 211, 179, 159, 127, 109	10	5.040	13	5.027	13	5.013
x-cis-apo-12'-fucoxanthinal ^d	399	[399]: 381, 229, 211, 201, 173, 133, 127, 109						
13,13'-cis-apo-12'-fucoxanthinal ^d	399	[399]: 381, 243, 173, 127, 109	11	5.253	14	5.267	15	5.247
13'-cis-apo-12'-fucoxanthinal ^d	399	[399]: 399, 229, 211, 201, 173, 127, 123, 109	12	5.540	15	5.547	16	5.540
9'-cis-apo-12-fucoxanthinal ^d	425	[425]: 407, 255, 227, 199, 179, 159, 109	14	6.047	16	6.060	17	6.033
13'-cis-apo-12-fucoxanthinal ^d	425	[425]: 407, 303, 255, 227, 173, 109	15	6.333	17	6.347	18	6.321
apo-9'-fucoxanthinone	267	[267]: 211, 155	16	6.880	18	6.898	19	6.920

597 Table 1. Chromatographic and Mass Spectroscopic Properties of the Apo-fucoxanthins formed during Chemical Oxidation of Fucoxanthin

- ^aPeak assignments based on Fig. S3. ^bRetention time (Rt) refer to analytical runs on a XDB-C18 column. ^cSpecific fragments of degradation products detected in the three 598
- chemical reactions. ^dFive *cis*-apo-fuconxanthinals were temporarily identified according to Fig. 5, Fig. S5 and eluting order of *cis*-fucoxanthin. ^eND, not detected. st cis-. 599

-

601 Highlights

- 602 1. Chemical oxidation of fucoxanthin using KMnO₄, HClO/ClO⁻ and OH⁻ displays a good fit to the first- or second-order kinetic models.
- 603 2. Apo-fucoxanthinones and apo-fucoxanthinals are detected as the predominant fucoxanthin cleavage products.

CER

604 3. Three apo-fucoxanthinones and eleven apo-fucoxanthinals containing five cis-apo-fucoxanthinals are detected upon oxidation by KMnO₄,

NA

- 605 HClO/ClO⁻ and OH⁻.
- 606
- 607