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The catalytic diastereoselective Oshima —Utimoto reaction was employed for the construction of fraxinellone and related members of this
limonoid family of natural products. After formation of the five-membered lactone, a stereoselective aldol reaction and olefin metathesis
established the bicyclic ring system in the natural products.

Fraxinellone 1 and isofraxinellone2 are the simplest as an opportunity to examine the utility of the Pd-catalyzed
examples of degraded limonoids and have been isolated fromOshima-Utimoto reaction for the assembly of sterically
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this transformation can be accomplished in an efficient
catalytic and stereoselective fashion with acyclic substrates, tpie 1. Survey of the Catalytic OshimeUtimoto Reaction
and that it can provide a useful tool for the synthesis of \yin Alcohol 72

interesting natural products, such as){11a,13-dihydrox-

0
anthatin?1® To further probe the utility of this reaction, we 7S cat. PA(OAC), @
. . = v
have begun to focus our attention on the synthesis of more + Aoy tebe! Mez
: U 3
challenging targets such as those that bear quaternary centers Me” X" OH 0
and considered fraxinellorfeand isofraxinellon&, as well Me oiBu
as @- and P-hydroxyfraxinellone  and4)** and fraxinel- 7 8
lonone5%243(Figure 1).
(Fig ) entry equiv oxidant solvent  temp.(°C) %8
Z>0tBu
/0 /=0 16 8 none neat 25 77
— — 2 2 Cu(OAc)2 CH3;CN 55 25
Me = Me & 3¢ 2 Cu(OAc);  CH3CN 55 25
o] 0 4 2 BQ CH3CN 55 39
2 5d 2 BQAcOH CH3;CN 55 16
Me O Me O 6 2 BQ/AcOH CH3CN 45 42
fraxinellone isofraxinellone 7 5 BQ/AcOH CH3;CN 45 48
1 2 8 8 BQ/AcOH  neat 45 55
co CO CO 9 4 BQAcOH CH3;CN 25 60
= = = 10¢ 4 BQ/AcOH CH3CN 25 55
Me = Me £ Me ¢
> < y aReaction conditions: 10 mol % of Pd(OA¢R.5 equiv of Cu(OAQ)
o 0 0 0o or 3 equiv of BQ, and 1.1 equiv of AcOH (if any)7] = 1.0 M, 16 h of
HO HO Y reaction time; BQ= benzoquinone? 100 mol % of Pd(OAg) was used.
Me O Me O Me O ¢30 mol % of Pd(OAc) was used?[7] = 0.2 M in CHCN. €uW = 300
9-a-hydroxyfraxinellone 9-B-hydroxyfraxinellone fraxinellonone W, 2 h ofreaction time.
3 4 5

Figure 1.

ether instead ofi-butyl vinyl ether (Table 1). This strategy
was adopted since we expected that, under acidic conditions
of the Jones oxidation, cleavage of thee-butyl group might
facilitate oxidation. In an initial experiment, stoichiometric

While previous total syntheses of fraxinelldh®& and
isofraxinelloné? involved formation of the lactone moiety

followed by late stage addition of the furan ring, we felt the palladium(ll) acetate was employed in néatt-butyl viny!

Oshima-Utimoto reaction would enable an alternate ret- giher at room temperature according to the original conditions
rosynthetic analysis. In this sense, we anticipated generatinggq by Oshima and Utimoto, and acealvas generated in
a key intermediate lactone, with the furan ring already in 7794 yield (entry 1). Using catalytic palladium (10 or 30 mol
place, by executing a catalytic Oshimdtimoto reaction o4y and copper(ll) acetate as the reoxidant in acetonitrile at
followed by Jones oxidation. _ 55 °C, low yields of desired product were obtained (entries
Synthesis of fraxinellond and isofraxinellon& began 2 and 3). When benzoquinone was used as the oxidant, the
with the preparation of the secondary allylic alcofoby — yie|q of product was slightly improved to 39% (entry 3).
treatment of E)-2-bromo-2-butene with-BuLi in THF at  Aqggition of acetic acid was found to be inefficient at first
—78°C followed by addition of 3-furaldehydé (Scheme  (gntry 4), but lowering the temperature of reaction and raising

1). Next, the OshimaUtimoto reaction was examined using  the amount ofert-butyl vinyl ether provided a cleaner higher
conditions established in our previous reffolicohol 7was  yie|ding reaction (entries 610). The most efficient reac-

submitted to 10 mol % of Pd(OAg)2.5 equiv of CU(OAG)  tion was observed with 4 equiv eért-butyl vinyl ether, 10

as the stoichiometric oxidant, andbutyl vinyl ether in mol % of Pd(OAc), 3 equiv of benzoquinone, and 1.1 equiv

acetonitrile at 55°C for 15 h. Unfortunately, the reaction ot acetic acid in acetonitrile at room temperature. Under these
was plagued with decomposition of starting material and low conditions, a 60% vyield of desired acefwas obtained

yield of desired product (12%). Furthermore, oxidation of ager 16 h with>20:1 stereoinduction at the quaternary center
the newly formed acetal to the lactone with Jones reagent,nq with a 2.6:1 ratio of anomers. It is noteworthy that

was also inefficient (20% yield, data not shown). performing the reaction in a microwave oven at 300/

To improve both the OshimeUtimoto reaction with jccelerated the reaction, giving acedh 55% yield after
substraté’ and the subsequent Jones oxidation, we investi- 5 (entry 10).

gated a series of reaction conditions withrt-butyl vinyl Deprotection and oxidation ¢ért-butyl acetaB with Jones

reagent affordeg-butyrolactoned in good yield (Scheme

(9) Evans, M. A.; Morken, J. P. @r Lett.2005 7, 3367.

(10) Evans, M. A.; Morken, J. P. @r Lett. 2005 7, 3371. 2). To prepare for construction of the six-membered ring,
(11) Tokoroyama, T.; Fukuyama, Y.; Kubota, T.; Yokotani,JKChem. lactone9 was deprotonated with LDA and the enolate trapped
Soc., Perkin Trans. 1981, 1557. with 4-penten-2-one1().1® This aldol reaction furnished
(12) Okamura, H.; Yamauchi, K.; Miyawaki, K.; lwagawa, T.; Nakatani, p ) : ) . -
M. Tetrahedron Lett1997, 38, 263. alcohol11 with complete control of the relative configuration
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1 12 13 in a 1:1 ratio of fraxinellonel and isofraxinellon& in a

combined yield of 79%. This difference in product distribu-
tion can be explained by the fact that the protorio the
at theo-carbon but little control of the newly formed hy- lactone carbonyl in compountb is antiperiplanar with re-
droxyl stereocenter. While the relative stereochemistry at the spect to the departing oxygen atom and can easily participate
newly formed tertiary alcohol was not controlled, both dia- in dehydration to afford fraxinellond. The methylene
stereomers could be separated following ring-closing meta- protons vicinal to the alcohol can also participate and afford
thesis with Grubbs’ 2nd generation catalyst to provide tri- isofraxinellone2. In contrast, thex-hydrogen in compound
cycles12 and 13 in 95% yield. Additionally, both diaster-  14is likely orthogonal to the alcohol, and elimination occurs
eomers ultimately converge upon the natural product (vide to provide exclusively isofraxinellon€ by loss of a
infra). methylene proton. Finally, migration of the double bond in
Tricycles12and13were hydrogenated with 5% palladium isofraxinellone can be performed with DBU in benzene to
on carbon to provide alcoholstand15in 84 and 91% vyield,  give fraxinellonel in 88% yield.
respectively (Scheme 3). The structure and relative config- To access natural produc8-5, isofraxinellone2 was
treated withm-CPBA in dichloromethane. In this reaction,
the electron-rich trisubstituted alkene reacts with the peracid

Scheme 3 faster than the furan ring to produce a 1:1.6 mixture of
epoxidesl6 and 17 in 65% yield (Scheme 4% While the
5% PA/C / o / o epoxidation reaction proceeded with poor stereocontrol, both
H, (100 psi) 'V'e S _s0Cl

12 ——— ¢
EtOH O pyridine, O°C O PhH
84%  \e”r ,1, 89% S 88% Scheme 4
OH

14

/ (] C <; 2 mCPBA
5% Pd/C e CH,Cl,

Hz (1 atm) -‘ SOCI2

- 89% Ao F "z
“EoH O pyridine, 0 °C o 116 (16:47)° Me' O Ol 0
91% 78% 16 17
1mEy o Me
DBU \/ TPAP
PhH 16 —DBY 2 NMO
88% PhH CHCly "\ @
91% HO" 86% Me ¥
Me O s A
3 0
uration of alcoholl5was confirmed by single-crystal X-ray 0
crystallography (Figure 2Y. It is noteworthy that tricycle C') Me ©
. - — 5
12 requweq 100 psi of hydrogen pressure to perform . Me © w\g
hydrogenation of the double bond versus 1 atm for compound 17 —— = —
13. Completion of the synthesis was accomplished by PhH O CHLCl
. . . . . . 86% HO 96%
dehydration of tertiary alcohol with thionyl chloride in Me O
pyridine. Alcohol14 provided exclusively isofraxinellon2 4

in 89% yield upon dehydration, while alcohbb afforded
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9a-hydroxyfraxinellone 8) and $-hydroxyfraxinellone 4) reaction in order to improve yield and ease of utilization,
could be isolated after DBU-induced epoxide opening. notably by performing the reaction with milder conditions
Compoundd 6 and17yielded3in 91% yield and4 in 86% at room temperature. Current efforts in our laboratories are
yield, respectively. Fraxinellonond was synthesized by  now directed at the synthesis of other natural product targets.
oxidation with TPAP/NMO of either hydroxyfraxinellori Developments regarding these efforts will be reported in due
or 4 in 86 and 96% vyield, respectively. time.
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