Tetrahedron Letters 53 (2012) 6916-6918

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

A highly stereoselective synthesis of (-)-dihydrotetrabenazine has been accomplished using (R)-tert-

butanesulfinamide as a chiral source. The synthesis involves the allylation of chiral N-sulfinyl imine

followed by ring closure of the resulting secondary amide with a tethered halide and the Evans-Aldol

© 2012 Elsevier Ltd. All rights reserved.

The stereoselective total synthesis of (-)-dihydrotetrabenazine

N. Siva Senkar Reddy, A. Srinivas Reddy, J. S. Yadav, B. V. Subba Reddy*

Natural Product Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 607, India

ARTICLE INFO

ABSTRACT

reaction as key steps.

Article history: Received 16 August 2012 Revised 2 October 2012 Accepted 4 October 2012 Available online 12 October 2012

Keywords:

Asymmetric synthesis (*R*)-*tert*-Butanesulfinamide Allylation of *N*-sulfinyl imine Asymmetric *syn*-Aldol reaction Natural product synthesis

In 1950s, the ipecac alkaloids such as emetine, dihydrotetrabenazine (**1**, DTBZ), and tetrabenazine (**2**, TBZ) were first isolated as racemic mixtures (Fig. 1)¹ Of these, dihydrotetrabenazine is an active metabolite of tetrabenazine. The racemic tetrabenazine has recently been approved as a drug candidate by FDA for the treatment of Chorea, which represents a major advancement of Huntington's disease (HD).² The clinical research test reveals that TBZ dramatically decreases the Chorea when compared to the patients treated with placebo.³ TBZ and DTBZ are useful as vesicular monoamine transporter 2 (VMAT2) inhibitors. The radio labeled TBZ and DTBZ are used as radiotracers in Positron Emission Tomography (PET) for imaging the dopamine neuron degeneration diseases and recently the beta-cell mass related to diabetes.⁴

Due to its promising biological activity, DTBZ has attracted many synthetic chemists to take up its total synthesis. As a result, various approaches have appeared in the literature.⁵

The chiral *N-tert*-butanesulfinamide is a versatile chiral auxiliary for the asymmetric induction in the preparation of synthetically useful chiral amines.⁶ Addition of an organometallic reagent to C=N bond of an enantiopure sulfinimine is one of the most elegant methods for the synthesis of chiral amines. The electron-withdrawing sulfinyl group is highly stereodirecting and activates the C=N bond effectively in nucleophilic addition reactions, and can easily be removed to provide the enantiopure amine derivatives.⁷ However, the use of this useful chiral auxiliary in the total synthesis of complex natural products is still unexplored to a great extent. Inspired by its potential application in natural products synthesis,

* Corresponding author. E-mail address: basireddy@iict.res.in (B.V. Subba Reddy). we attempted the total synthesis of dihydrotetrabenazine using *N*-tert-butanesulfinamide as a source of chirality.

Herein, we report a highly efficient total synthesis of (-)-dihydrotetrabenazine (1) via the allylation of an enantiopure sulfinimine. Our retrosynthetic approach for the synthesis of (-)-dihydrotetrabenazine (1) is outlined in Scheme 1. Accordingly, we envisioned that (-)-dihydrotetrabenazine could be accessed from lactam **15** which in turn could be prepared by an intramolecular amidation of ester **14**. The compound **13** was proposed to be obtained from enantiopure *N*-sulfinyl imine **5** by two consecutive reactions viz allylation and Evans aldol reaction. The aldimine **5** could be prepared by the condensation of (R)-tert-butanesulfinamide with an aldehyde **4** which was prepared by a known procedure from 2-(3,4-dimethoxyphenyl)ethanol **3**.

The construction of fragment **9** of dihydrotetrabenazine is outlined in Scheme 2. Accordingly, we began the synthesis of **9** from a commercially available 2-(3,4-dimethoxyphenyl)ethanol **3**, which was converted into the corresponding aldehyde **4** in 70% yield using a known procedure.⁸ The condensation of an aldehyde **4** with (*R*)-*tert*-butanesulfinamide in the presence of CuSO₄ afforded the respective *N*-sulfinyl imine **5** in 81% yield.⁹ Addition of

Figure 1. Examples of tetrahydroisoquinoline alkaloids, (-)-dihydrotetrabenazine (1) and (-)-tetrabenazine (2).

Scheme 1. Retrosynthetic approach of (-)-dihydrotetrabenazine.

Scheme 2. Synthesis of aldehyde **9.** Reagents and conditions: (a) (*R*)-*tert*-butane-sulfinamide, CuSO₄, CH₂Cl₂, 25 °C, 24 h, 81%; (b) AllylMgBr, CH₂Cl₂, -78 °C, 1 h, 80%; (c) NaH, DMF, 0 °C to rt, 6 h, 76%; (d) (i) EtOH/HCl, 1,4-dioxane, 5 h, 0 °C; (ii) Boc₂O, Et₃N, CH₂Cl₂, rt, 1 h, 75% (over two steps); (e) OsO₄, 2,6-lutidine, NalO₄, 1,4-dioxane, 2 h, 78%.

allylmagnesium bromide onto aldimine **5** at -78 °C in dichloromethane gave the homoallylic sulfinamide **6** in 80% yield with 9:1 ratio of diastereomers.¹⁰ The diastereomeric mixtures could easily be separated by column chromatography. An intramolecular cyclization of a major isomer **6** in the presence of NaH in DMF at room temperature gave the cyclized product **7** in 76% yield.¹¹ Removal of the sulfinyl group with ethanolic HCl gave the tetrahydroisoquinoline in 85% yield.¹² The resulting free amine was then protected as a Boc derivative **8** in 80% yield by treatment with an excess of TEA in dichloromethane followed by the addition of Boc anhydride.⁹ Oxidative cleavage of the terminal olefin of **8** using OSO₄, 2,6-lutidine, and NaIO₄ gave the aldehyde **9** in 78% yield in a single step (Scheme 2).¹³

Next we attempted the preparation of (R)-acyloxazolidinone **12** by acylation of the (R)-oxazolidinone **10** with 4-methyl-pentanoic acid **11** using a known experimental procedure.¹⁴ Asymmetric aldol reaction of boron enolate, derived from acyloxazolidinone **12** with an aldehyde **9** gave the *syn* aldol adduct **13** in 80% yield.¹⁵ The chiral auxiliary was then removed using sodium methoxide in

Scheme 3. Coupling of aldehyde **9** with **12**. Reagents and conditions: (a) Et₃N, pivalolyl chloride, LiCl, THF, 0 °C; 78% (b) (*R*)-4-benzyl-3-(4-methylpentanoyl) oxazolidin-2-one, Bu₂BOTf, Et₃N, CH₂Cl₂, -78 °C-0 °C; 80% (c) NaOMe, MeOH/ CH₂Cl₂, -25 °C, 1 h, 63%; (d) (i) TMSOTf, CH₂Cl₂, rt, 5 h; (ii) K₂CO₃, 18-crown-6, MeOH, rt, 1d, 80%; (over two steps); (e) LAH, THF, 70 °C, 2 h, 76%.

methanol (63%) to afford the ester 14.¹⁶ Removal of the Boc group from compound 14 with TMSOTf in CH₂Cl₂ followed by cyclization of the resulting secondary amine with a tethered ester in the presence of K₂CO₃ and 18-crown-6 in methanol gave the lactam 15 in 80% yield (over two steps).¹⁷ The reduction of lactam 15 with LAH in THF afforded the (–)-dihydrotetrabenazine (1) in 76% yield [$\alpha_D = -54.5$, c = 0.6, MeOH] (Scheme 3).¹⁸ The optical rotation and spectral data of the (–)-dihydrotetrabenazine (1) are in good agreement with the data reported in the literature.^{19,20}

In summary, we have demonstrated a highly efficient total synthesis of (-)-dihydrotetrabenazine using (R)-*tert*-butanesulfinamide as a chiral source. The use of asymmetric Evans-Aldol reaction establishes the stereochemistry of another two chiral centers which makes this synthesis more simple, quite efficient, and attractive.

Acknowledgement

A.S.R. thanks CSIR, New Delhi, India for the financial support in the form of fellowship.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2012.10. 017.

References and notes

- (a) Pletscher, A. Science **1957**, *126*, 507; (b) Brossi, A.; Chopard-dit-Jean, L. H.; Schnider, O. Helv. Chim. Acta **1958**, *16*, 1793; (c) Brossi, A.; Chopard-dit-Jean, L. H.; Wursch, J.; Schnider, O. Helv. Chim. Acta **1960**, *18*, 583; (d) Beke, D.; Szantay, C. Chem. Ber. **1962**, *95*, 2132.
- (a) Bernhardt, C.; Schwan, A.-M.; Kraus, P.; Epplen, J. T.; Kunstmann, E. Eur. J. Hum. Genet. 2008, 16, 1; (b) Walker, F. O. Lancet 2007, 369, 218.
- (a) Kenney, C.; Jankovic, J. Expert Rev. Neurother. 2006, 6, 7; (b) Huntington study group Neurology 2006, 66, 366.
- (a) Toomey, J. S.; Bhatia, S.; Moon, L. T.; Orchard, E. A.; Tainter, K. H.; Lokitz, S. J.; Terry, T.; Mathis, J. M.; Penman, A. D. *PLoS ONE* 2012, 7, e39041; (b) Normandin, M. D.; Petersen, K. F.; Ding, Y. S.; Lin, S. F.; Naik, S.; Fowles, K.; Skovronsky, D. M.; Herold, K. C.; McCarthy, T. J.; Calle, R. A.; Carson, R. E.; Treadway, J. L.; Cline, G. W. J. Nucl. Med. 2012, 53, 908.
- (a) Rishel, M. J.; Amarasinghe, K. D.; Dinn, S. R.; Johnson, B. F. J. Org. Chem. 2009, 74, 4001; (b) Son, Y. W.; Kwon, T. H.; Lee, J. K.; Pae, A. N.; Lee, J. Y.; Cho, Y. S.; Min, S. Org. Lett. 2011, 13, 6500; (c) Johannes, M.; Altmann, K. Org. Lett. 2012, 14, 3752.

- (a) Ellman, J. A.; Owens, T. D.; Tang, T. P. Acc. Chem. Res. 2002, 35, 984; (b) Sun, X. W.; Xu, M. H.; Lin, G. Q. Org. Lett. 2006, 8, 4979; (c) Lin, G. Q.; Xu, M. H.; Zhong, Y. W.; Sun, X. W. Acc. Chem. Res. 2008, 41, 831.
- (a) Robak, M. T.; Herbage, M. A.; Ellman, J. A. Chem. Rev. 2010, 110, 3600; (b) Davis, F. A.; Yang, B.; Deng, J.; Zhang, J. ARKIVOC 2006, 7, 120; (c) Bosque, I.; González-Gómez, J. C.; Foubelo, F.; Yus, M. J. Org. Chem. 2012, 77, 4190.
- (a) Yamato, M.; Washigaki, K.; Qais, N.; Ishikawa, S. *Tetrahedron* **1990**, *46*, 5909;
 (b) Coldham, I.; Jana, S.; Watson, L.; Martin, N. G. Org. Biomol. Chem. **2009**, *7*, 1674.
- (a) Liu, G.; Cogan, D. A.; Owens, T. D.; Tang, T. P.; Ellman, J. A. J. Org. Chem. 1999, 64, 1278; (b) Harried, S. S.; Croghan, M. D.; Kaller, M. R.; Lopez, P.; Zhong, W.; Hungate, R.; Reider, P. J. J. Org. Chem. 2009, 74, 5975.
- 10. (a) Nishikawa, Y.; Kitajima, M.; Kogure, N.; Takayama, H. *Tetrahedron* **2009**, *65*, 1608; (b) Lin, S.; Zhao, G. *Eur. J. Org. Chem.* **2010**, 1660.
- (a) Natsume, M.; Wada, M. Chem. Pharm. Bull. **1972**, 20, 1589; (b) Reddy, L. R.; Das, S. G.; Liu, Y.; Prashad, M. J. Org. Chem. **2010**, 75, 2236.
- (a) Liu, M.; Sun, X.; Xu, M.; Lin, G. *Chem. Eur. J.* **2009**, *15*, 10217; (b) Sun, X.; Liu, M.; Xu, M.; Lin, G. Org. Lett. **2008**, *10*, 1259.
- 13. Chandrasekhar, S.; Mahipal, M.; Kavitha, M. J. Org. Chem. 2009, 74, 9531.
- Peddie, V.; Butcher, R. J.; Robinson, W. T.; Wilce, M. C. J.; Traore, D. A. K.; Abell, A. D. Chem. Eur. J. 2012, 18, 6655.
- (a) Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, 103, 2127; (b) Evans, D. A.; Ng, H. P.; Clark, J. S.; Rieger, D. L. Tetrahedron 1992, 48, 2127.
- (a) Kanomata, N.; Maruyama, S.; Tomonoa, K.; Anadaa, S. Tetrahedron Lett. 2003, 44, 3599; (b) Baker, R.; Castro, J. L. J. Chem. Soc., Perkin Trans. 1 1990, 47.
- Miyazaki, M.; Ando, N.; Sugai, K.; Seito, Y.; Fukuoka, H.; Kanemitsu, T.; Nagata, K.; Odanaka, Y.; Nakamura, K. T.; Itoh, T. J. Org. Chem. 2011, 76, 534.
- Paek, S.; Kim, N.; Shin, D.; Jung, J.; Jung, J.; Chang, D.; Moon, H.; Suh, Y. Chem. Eur. J. 2010, 16, 4623.
- Yao, Z.; Wei, X.; Wu, X.; Katz, J. L.; Kopajtic, T.; Greig, N. H.; Sun, H. Eur. J. Med. Chem. 1841, 2011, 46.
- 20. Spectral data for selected compounds Spectra data joi selected companies (-)-*Dihydrotetrabenzine* (1): $[x]_D^{28}$ −54 (*c* = 0.6, MeOH); ¹H NMR (CDCl₃, 500 MHz): δ 6.67 (1H, s), 6.58 (1H, s), 3.84 (6H, s), 3.45–3.32 (1H, m), 3.20– 2.97 (4H, m), 2.69-2.53 (2H, m), 2.51-2.39 (1H, m), 2.04-1.95 (1H,m), 1.80-1.65 (2H, m), 1.63-1.47 (2H, m), 1.11-1.01 (1H, m), 0.96-0.70 (6H, m); ¹³C NMR (75 MHz, CDCl₃): δ 147.6, 147.3, 129.1, 126.3, 111.6, 108.1, 74.5, 60.9, 59.9, 56.0, 55.9, 51.7, 41.4, 40.4, 39.7, 29.0, 25.4, 24.1, 21.7. IR (KBr): v_{max} 3396, 2925, 1566, 1409, 1259, 760 cm⁻¹; ESIMS: *m/z* 320 [M+H]^{*}. Compound (**15**): $-102 (c = 0.5, CHCl_3);$ ¹H NMR (300 MHz, CDCl₃): δ 6.66 (1H, s), 6.61 (1H, s), 4.81–4.73 (1H, m), 4.60 (1H, dd, J = 4.0, 11.3 Hz), 3.87–3.85 (6H, m), 2.94– 2,58 (4H, m), 2,36–2,26 (1H, m), 2,11–1,95 (2H, m), 1,93–1,69 (2H, m), 1,67– 1,55 (1H, m), 0,98 (3H, d, J = 6.6 Hz), 0,92 (3H, d, J = 6.4 Hz); ¹³C NMR (75 MHz, CDCl₃): 8 171.2, 147.7, 128.2, 127.1, 111.4, 107.9, 68.9, 55.9, 55.8, 53.2, 48.6, 39.9, 39.8, 38.8, 29.6, 28.3, 26.5, 23.1, 22.3; IR(KBr): v_{max} 3410, 2924, 2854, 1616, 1515, 1460, 1256, 1222, 1078, 757, 701 cm⁻¹; ESIMS: m/z 334 [M+H]*. Compound (**13**): $[\alpha]_D^{28}$ +15 (c = 1.9, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ 7.40– 7.16 (5H, m), 6.65 (1H, s), 6.58 (1H, s), 5.28-5.18 (1H, m), 4.76-4.64 (1H, m), 4.26-3.99 (3H, m), 3.87 (3H, s), 3.85 (3H, s), 3.82-3.70 (1H, m), 3.33 (1H, dd, J = 3.2, 13.0 Hz), 3.18-3.05 (1H, m), 2.96-2.79 (1H, m), 2.75-2.52 (2H, m), 2.04-1.70 (4H, m), 1.60–1.52 (2H, m), 1.47 (9H, s), 0.95 (3H, d, *J* = 2.4 Hz), 0.92 (3H, d, *J* = 2.4 Hz); ¹³C NMR (75 MHz, CDCl₃): *δ* 175.0, 156.3, 153.1, 147.5, 135.2, 129.2, 128.7, 127.1, 125.6, 111.1, 109.7, 80.5, 68.8, 65.7, 56.0, 55.8, 55.5, 50.5, 45.5, 40.3, 38.0, 37.8, 37.2, 28.2, 26.3, 23.5, 22.0; IR (KBr): v_{max} 3421, 2958, 1780, 1692, 1659, 1517, 1254, 1006, 701 cm⁻¹; ESIMS: *m*/*z* 611 [M+H]⁺. Compound (**6**): [α]_D²⁸ 3 -29 (c = 0.7, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 6.8 (1H, s), 6.61 (1H, s), 5.73–5.60 (1H, m), 5.19–5.06 (2H, m), 4.60–4.51 (1H, m), 3.81 (3H, s), 3.76 (3H, s), 3.73-3.66 (1H, m), 3.64-3.55 (1H, m), 3.10-2.99 (2H, m), 2.53-2.44 (1H, m), 2.43–2.32 (1H, m), 1.13 (9H, s); ¹³C NMR (75 MHz, CDCl₃): δ 148.2, 148.1 134.1, 131.2, 128.7, 119.2, 112.9, 110.3, 55.8, 55.4, 51.8, 44.6, 43.1, 35.7, 22.5; IR (KBr): v_{max} 3425, 2927, 1518, 1213, 1030 cm⁻¹; ESIMS: m/z 374 [M+H]⁺