Tetrahedron Letters 54 (2013) 4189-4192

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Preparation and palladium-mediated cross-coupling of α -benzoyloxyalkylzinc bromides

Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

ARTICLE INFO

Article history: Received 30 April 2013 Accepted 24 May 2013 Available online 4 June 2013

Keywords: Cross-coupling Metalation Synthetic methods Transition metals Organozinc compounds

ABSTRACT

Here we report a two-step preparation protocol of α -benzoyloxyalkylzinc bromides from α -benzoyloxyalkyl selenides, and their application to palladium-catalyzed cross-coupling reactions with aryl and vinyl iodides. The developed method effectively provides a variety of benzoyl-protected benzylic and allylic alcohol derivatives through the formation of C(sp³)–C(sp²) bonds without affecting various polar functional groups.

© 2013 Elsevier Ltd. All rights reserved.

The transition metal-mediated cross-coupling reaction between organozinc compounds and organohalides, known as the Negishi coupling reaction, has been utilized as a mild and powerful C–C bond formation.¹ Effective formation of not only $C(sp^2)-C(sp^2)$ bonds but also $C(sp^3)-C(sp^2)$ and $C(sp^3)-C(sp^3)$ bonds has been achieved over the years.² Accordingly, Negishi coupling reactions have been implemented in synthetic routes to many architecturally complex natural products.³

 α -Oxyalkyl metals are versatile reaction intermediates for the introduction of oxygen-substituted sp³-carbon centers, and their cross-coupling reactions are especially useful for the construction of multiple oxygenated carboskeletons of natural products. Consequently, transition metal-catalyzed reactions of α -oxystannanes⁴ and α -oxyborates⁵ have been developed to connect the α -oxy carbon centers with C(sp²) or C(sp³) centers of the coupling partners. On the other hand, α -oxyalkylzinc reagents are rarely employed for cross-coupling reactions, and only their Cu-mediated reactions have been disclosed.⁶ Here we report a two-step preparation protocol of α -benzoyloxyalkylzinc bromides from α -benzoyloxyalkyl selenides, and their application to the Negishi coupling reaction with aryl and vinyl iodides.

Previously, we developed the intermolecular radical reaction of α -acyloxyalkyl selenide **2**, which was prepared by the seleno-Pummerer reaction of alkyl selenide **1** (Scheme 1). The radical species **A**, generated from **2**, efficiently added to C=C double bonds to de-

Scheme 1. Plan for preparation and cross-coupling of α -benzoyloxyalkylzinc bromides.

liver the adduct **B** via formation of a $C(sp^3)-C(sp^3)$ bond.⁷ Due to the reliability in its preparation and chemical stability in its handling, we planned to use selenide **2** as a precursor to highly reactive α -benzoyloxyalkyl bromide **3**. Specifically, displacement of the phenylselenyl group of **2** with a Br atom would generate bromide **3**.⁸ Next, zincation of **3** would lead to α -benzoyloxyalkylzinc bromide **4**,⁹ which would couple with aryl or vinyl iodide **5** by the action of a palladium catalyst to afford **6** through $C(sp^3)-C(sp^2)$ bond formation. Importantly, product **6** has a characteristic structure that is not accessible by the radical-based methodology. In addition, this reaction sequence would expand the potential utility

CrossMark

^{*} Corresponding author. Tel.: +81 3 5841 1354; fax: +81 3 5841 0568. E-mail address: inoue@mol.f.u-tokyo.ac.jp (M. Inoue).

^{0040-4039/\$ -} see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2013.05.114

Table 1

Syntheses of α -benzoyloxyalkyl bromides 3^{a}

^a Conditions for bromination: **2**, PhSeBr (1.5 equiv), CH₂Cl₂ (0.1 M).

 $^{\rm b}$ Conditions for bromination: **2b**, PhSeBr (1.0 equiv), NaHCO_3 (1.0 equiv), CH_2Cl_2 (0.1 M), 0 °C.

of α -acyloxyalkyl selenide **2** as a stable synthetic intermediate for transition metal catalyzed reactions.

First, the structurally distinct α -benzovloxvalkyl selenides **2a**-**f** were synthesized from the corresponding selenides **1a-f** (Table 1), demonstrating the high applicability of the seleno-Pummerer reaction.^{7,10} The selenoxides, which were produced by m-CPBA oxidation of selenides **1a-f** at -78 °C, were heated to 100 °C in toluene with Bz₂O and BzONa, leading to the rearranged products 2a-f. Exchange of the phenyl selenide with the bromide was realized by the action of PhSeBr.¹¹ When **2a** was treated with PhSeBr at $-45 \,^{\circ}\text{C}$ in CH₂Cl₂, α -benzoyloxyalkyl bromide **3a** was smoothly formed (entry 1). The acid-labile TBDPS protective group was retained during the conversion of **2b** into **3b** (entry 2), although the addition of NaHCO₃ as an acid scavenger was necessary. The acetyl and ethoxycarbonyl groups of 2c and 2d were compatible with the bromination conditions, affording **3c** and **3d**, respectively (entries 3 and 4). Furthermore, more sterically congested 2e and 2f bearing cycloalkane moieties were transformed to 3e and 3f, respectively, under the same conditions (entries 5 and 6).

Having established the procedure for syntheses of α -benzoyloxyalkyl bromides **3a–f**, we explored their zincation and subsequent Negishi coupling reactions with aryl iodide **5a** (Table 2). After screening the reagents and conditions, Rieke's protocol¹² was adopted for zincation in a 1:1 mixed solvent of THF and 1,3-dimethyl-2-imidazolidinone (DMI),^{13,14} and Pd(OAc)/SPhos¹⁵ was applied as the catalyst for the cross-coupling. Namely, organozinc species **4a** was first generated from 2 equiv of **3a** in THF/DMI at room temperature, and then coupled with 1 equiv of aryl iodide **5a** in the presence of Pd(OAc)₂ (5 mol %) and SPhos (10 mol %) to afford the adduct **6a** (entry 1). This coupling procedure enabled to the production of **6b–d** without affecting the TBDPS (entry 2),

Table 2

Coupling reactions of various α -benzoyloxyalkyl bromides **3** with aryl iodide **5a**^a

^a Reagents and conditions: **3** (2.0 equiv), Li (8.0 equiv), naphthalene (8.0 equiv), $ZnBr_2$ (4.0 equiv), TMSBr (0.1 equiv), THF/DMI = 1/1 (0.1–0.2 M), rt; **5a** (1.0 equiv), Pd(OAc)₂ (5 mol %), SPhos (10 mol %), rt.

Ac (entry 3), and ethoxycarbonyl (entry 4) groups. The alkylzinc compounds **4e** and **4f** with branched carboskeletons were also coupled with **5a** to provide **6e** and **6f**, respectively (entries 5 and 6).

The broad scope of the cross-coupling was demonstrated using aromatic iodides **5b-k** having various functional groups on the benzene rings (Table 3). Aryl iodides bearing electron-withdrawing groups at the para-position efficiently functioned as the coupling partners of α -benzoyloxyalkylzinc bromide **4a** to provide products **6g-k** (entries 1–5). The yields of nitrile **6j** (entry 4) and aldehyde 6k (entry 5) were modest, but were increased when Pd(dba)₂ (10 mol %) and TFP (20 mol %)^{16,17} were used as the catalyst instead of Pd(OAc)₂/SPhos. The intact aldehyde moiety of the coupled product 6k highlighted the high chemoselectivity of the present C-C bond formation. While the electron-donating *para*-methoxy group caused *B*-elimination of the benzoate group of **6** after the coupling to afford 7 (entry 6), the *meta*-methoxy group induced no elimination, and the adduct 6m was obtained (entry 7). In contrast to the high-yielding transformations of methyl para-iodobenzoate 5a (79%, entry 1, Table 2) and methyl meta-iodobenzoate 5i (85%, entry 8), the yield of methyl ortho-iodobenzoate 5j was lower (27%, entry 9), suggesting that the methoxycarbonyl group adjacent to the reacting carbon negatively affected the coupling

Table 3

Coupling reactions of α -benzoyloxyalkyl bromide **3a** with various aryl iodides **5**^a

^a Reagents and conditions: **3a** (2.0 equiv), Li (8.0 equiv), naphthalene (8.0 equiv), ZnBr₂ (4.0 equiv), TMSBr (0.1 equiv), THF/DMI = 1/1 (0.1–0.2 M), rt; **5** (1.0 equiv), Pd(OAc)₂ (5 mol %), SPhos (10 mol %), rt.

 b Yield in parentheses was obtained, when Pd(dba)_2 (10 mol %) and TFP (20 mol %) were used instead of Pd(OAc)_2 and SPhos.

^c The reaction was performed at 0 °C.

efficiency. Finally, indole derivative **5k** was coupled with **4a** to provide **6p** (entry 10).

The versatility of the α -benzoyloxyalkylzinc bromides was further proven by their successful cross-coupling reactions with vinyl iodides (Table 4). For these reactions, the Pd(dba)₂/TFP catalyst system was found to be consistently superior to the Pd(OAc)₂/ SPhos system. Pd(dba)₂/TFP indeed promoted the reaction between (*E*)-methyl 3-iodoacrylate **51** and zinc bromide **4a** to produce the adduct **6q** (entry 1). Cyclic vinyl iodides **5m** and **5n** also participated in the reaction with **4a**, giving rise to **6r** and **6s**, respectively (entries 2 and 3). When organozinc compounds bearing the cycloalkanes (**4e** and **4f**) and the cyclic vinyl iodide **5n** were employed, the cross-coupling reaction delivered **6t** and **6u**, respectively, with the two carbocycles (entries 4 and 5).

In summary, we have developed a two-step protocol for the preparation of α -benzoyloxyalkylzinc bromides from the chemi-

Table 4

Coupling reactions between α -benzoyloxyalkyl bromide **3** and vinyl iodides **5**^a

^a Reagents and conditions: **3** (2.0 equiv), Li (8.0 equiv), naphthalene (8.0 equiv), $ZnBr_2$ (4.0 equiv), TMSBr (0.1 equiv), THF/DMI = 1/1 (0.1–0.2 M), rt; **5** (1.0 equiv), Pd(dba)₂ (15 mol %), TFP (30 mol %), rt.

^b Reagents and conditions: **3** (2.0 equiv), Li (8.0 equiv), naphthalene (8.0 equiv), $ZnBr_2$ (4.0 equiv), THF/DMI = 1/1 (0.1–0.2 M), rt; **5n** (1.0 equiv), Pd(dba)₂ (30 mol %) and TFP (60 mol %), rt.

cally stable α -benzoyloxyalkyl selenides, and demonstrated the generality of the α -acyloxyzinc reagents as reactive intermediates for palladium-mediated cross-coupling reactions. The present zincation and coupling reactions both proceeded at room temperature under mild conditions, and effectively provided benzylic and allylic alcohol derivatives through formation of $C(sp^3)-C(sp^2)$ bonds without affecting a wide range of potentially reactive electrophilic functional groups.

Acknowledgments

This research was financially supported by the Funding Program for Next Generation World-Leading Researchers (JSPS) to M.I. and a Grant-in-Aid for Young Scientists (B) (JSPS) to D.U.

Supplementary data

Supplementary data (experimental protocol and characterization data of all newly synthesized compounds) associated with this article can be found, in the online version, at http://dx.doi.org/ 10.1016/j.tetlet.2013.05.114.

References and notes

- (a) Negishi, E.; King, A. O.; Okukado, N. J. Org. Chem. **1977**, 42, 1821; (b) King, A. O.; Okukado, N.; Negishi, E. J. Chem. Soc., Chem. Commun. **1977**, 683; For reviews on the Negishi cross-coupling, see: (c) Negishi, E. Bull. Chem. Soc. Jpn. **2007**, 80, 233; (d) Negishi, E. Angew. Chem., Int. Ed. **2011**, 50, 6738.
- For reviews, see: (a) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem. Int.
- Ed. 2005, 44, 4442; (b) Magano, J.; Dunetz, J. R. Chem. Rev. 2011, 111, 2177.
 (a) Ye, J.; Bhatt, R. K.; Falck, J. R. J. Am. Chem. Soc. 1994, 116, 1; (b) Falck, J. R.;
- (a) (e) J. Bilatt, R. K., Falck, J. K.J. All. Chem. Soc. **1935**, 110, 1, (b) Falck, J. K., Bhatt, R. K.; Ye, J. J. Am. Chem. Soc. **1995**, 117, 5973; (c) Goli, M.; He, A.; Falck, J. R. Org. Lett. **2011**, 13, 344; (d) Mohapatra, S.; Bandyopadhyay, A.; Barma, D. K.; Capdevila, J. H.; Falck, J. R. Org. Lett. **2003**, 5, 4759.
- 5. Molander, G. A.; Wisniewski, S. R. J. Am. Chem. Soc. **2012**, 134, 16856.
- (a) Knochel, P.; Chou, T.-S.; Chen, H. G.; Yeh, M. C. P.; Rozema, M. J. J. Org. Chem.
 198, 54, 5202; (b) Chou, T.-S.; Knochel, P. J. Org. Chem.
 198, 54, 5202; (b) Chou, T.-S.; Knochel, P. J. Org. Chem.
 1993, 55, 4791; (c) Knochel, P.; Chou, T.-S.; Jubert, C.; Rajagopal, D. J. Org. Chem.
 1993, 58, 588; (d) Papillon, J. P. N.; Taylor, R. J. K. Org. Lett.
 2002, 4, 119.
- 7. Urabe, D.; Yamaguchi, H.; Someya, A.; Inoue, M. Org. Lett. 2012, 14, 3842.
- For examples on synthesis of α-acyloxyalkyl bromides, see: (a) Ulich, L. H.;
 Adams, R. J. Am. Chem. Soc. **1921**, 43, 660; (b) Neuenschwander, M.; Bigler, P.;
 Christen, K.; Iseli, R.; Kyburz, R.; Mühle, H. Helv. Chim. Acta **1978**, 61, 2047; (c) Senet, J.-P.; Sennyey, G.; Wooden, G. P. Synthesis **1988**, 407.
- For reviews on functionalized organozinc compounds, see: (a) Knochel, P.; Singer, R. D. Chem. Rev. 1993, 93, 2117; (b) Erdik, E. Tetrahedron 1992, 48, 9577; (c) Knochel, P.; Jones, P.; Langer, F. In Organozinc Reagents: A Practical Approach;

Knochel, P., Jones, P., Eds.; Oxford: New York, 1999; p 179; (d) Knochel, P.; Calaza, M. I.; Hupe, E. In *Metal-Catalyzed Cross-Coupling Reactions*; Meijere, A. D., Diederich, F., Eds.; Wiley-VCH: Weinheim, 2004; Vol. 2, p 619.

- 10. The Pummerer reaction using the corresponding alkyl phenyl sulfoxide with Bz₂O and BzONa in refluxing toluene did not proceeded.
- 11. Yamago, S.; Yamada, T.; Hara, O.; Ito, H.; Mino, Y.; Yoshida, J. Org. Lett. **2001**, 3, 3867.
- (a) Rieke, R. D. Science **1989**, 246, 1260; (b) Zhu, L.; Wehmeyer, R. M.; Rieke, R. D. J. Org. Chem. **1991**, 56, 1445.
- 13. The screening of polar solvent revealed that DMI was superior to DMSO, NMP, and DMA as a cosolvent to THF.
- 14. For beneficial effect of polar solvents on zincations of alkyl halides and palladium-mediated cross-couplings of organozinc compounds, see; (a) Majid, T. N.; Knochel, P. Tetrahedron Lett. **1990**, 31, 4413; (b) Huo, S. Org. Lett. **2003**, 5, 423; (c) Hunter, H. N.; Hadei, N.; Blagojevic, V.; Patschinski, P.; Achonduh, G. T.; Avola, S.; Bohme, D. K.; Organ, M. G. Chem. Eur. J. **2011**, *17*, 7845.
- (a) Walker, S. D.; Barder, T. E.; Martinelli, J. R.; Buchwald, S. L. Angew. Chem., Int. Ed. 2004, 43, 1871; (b) Manolikakes, G.; Schade, M. A.; Hernandez, C. M.; Mayr, H.; Knochel, P. Org. Lett. 2008, 10, 2765; (c) Manolikakes, G.; Hernandez, C. M.; Schade, M. A.; Metzger, A.; Knochel, P. J. Org. Chem. 2008, 73, 8422; (d) Ross, A. J.; Lang, H. L.; Jackson, R. F. W. J. Org. Chem. 2010, 75, 245; For a review on crosscoupling using dialkylbiaryl phosphine ligands, see: (e) Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461.
- (a) Farina, V.; Baker, S. R.; Sapino, C., Jr. *Tetrahedron Lett.* **1988**, *29*, 6043; (b) Farina, V.; Krishnan, B. *J. Am. Chem. Soc.* **1991**, *113*, 9585; (c) Negishi, E.; Tan, Z.; Liou, S.-Y.; Liao, B. *Tetrahedron* **2000**, *56*, 10197; (d) Andersen, N. G.; Keay, B. A. *Chem. Rev.* **2001**, *101*, 997.
- 17. For the optimization of reaction conditions, see Supplementary data.