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High-oxidation state transition-metal alkylidenes have
received considerable attention in the past few years since
these systems are capable of catalyzing important processes
such as olefin metathesis, alkyne polymerization, and Wittig-
type reactions.[1,2] Although transition-metal alkylidene com-
plexes of the nucleophilic “Schrock-type” have been exten-
sively studied for the 4d and 5d metals of Group 5, the
chemistry for 3d vanadium systems has been far less explored.
The first example of a vanadium(iii)–alkylidene complex,
[CpV(CHtBu)(dmpe)] (dmpe= bis(dimethylphosphanyl)-
ethane), was reported by Hessen, Teuben, and co-workers
and involved a-hydrogen abstraction of the bis(alkyl) pre-
cursor.[3] In contrast to the heavier d0 alkylidene congeners,
which are prepared by a-hydrogen abstraction, the synthesis
of the first vanadium(v)–alkylidene complex
[CpV(NAr)(CHPh)(PMe3)] (Ar= 2,6-(CHMe2)2C6H3)
involved a two-electron oxidation of the precursor
[CpV(NAr)(PMe3)2] with the Wittig reagent Ph3P=CHPh by
alkylidene transfer.[4] Since there are only a handful of
vanadium–alkylidene complexes known,[3–6] we report the
synthesis of the first cationic and neutral four-coordinate
vanadium(iv)–neopentylidene complexes [(Nacnac)V=CH-
tBu(thf)](BPh4) and [(Nacnac)V=CHtBu(I)] (Nacnac�=
[Ar]NC(Me)CHC(Me)N[Ar], Ar= 2,6-(CHMe2)2C6H3), and
subsequent thermolysis of each system. These d1 paramag-
netic species reported herein are kinetically stable, and
contain the shortest V=C bonds reported so far.

Our recent strategy to prepare the first four-coordinate
titanium–neopentylidene complex by an oxidatively induced
a-hydrogen abstraction reaction[7] motivated us to pursue
other 3d transition metals containing this reactive motif.

Unlike titanium, vanadium displays more diverse redox
chemistry, hence oxidation states ranging from + 2 to + 5
can occur. Using the precursor [(Nacnac)VCl2]

[8] developed
by Budzelaar and co-workers and two equivalents of LiCH2-
tBu,[1g] we prepared the corresponding bis(neopentyl) com-
plex [(Nacnac)V(CH2tBu)2] (1) in 80% yield as dark brown
needles (Scheme 1). Attempts to obtain crystals suitable for a

single-crystal X-ray structure determination were unsuccess-
ful, but elemental analysis, magnetic susceptibility measure-
ments (meff= 2.96 mB), and reactivity (vide infra) are in
agreement with the formation of 1.[9] Complex 1 is a close
analogue of the nBu derivative prepared by Budzelaar and
co-workers, differing only by the lack of b-hydrogen atoms.[8]

Cyclic voltammograms of 1 (TBAH, THF; TBAH= tetra-n-
butylammonium hexafluorophosphate) revealed reversible
oxidation and reduction waves at �0.35 and �2.68 V,
respectively, which correspond to the VIII/VIV and VIII/VII

redox couple (referenced versus [FeCp2]/[FeCp2]
+).[9] Chem-

ical oxidation of 1 with AgBPh4 leads to formation of a Ag0

mirror concurrent with the vanadium(iv)–alkylidene complex
[(Nacnac)V=CHtBu(thf)](BPh4) (2) in 74% yield
(Scheme 1). Complex 2 is stable in the solid state, but its
solutions (Et2O, C6H6, THF) gradually decompose over
several hours at room temperature.

Dark brown single crystals of 2 were grown from THF
solutions of the complex layered with Et2O at �35 8C. The
structure of 2 (Figure 1) reveals a cationic and four-coordi-
nate vanadium center with pseudotetrahedral geometry, a
very short V=C bond length (V(1)�C(33) 1.795(3) E), and an
obtuse V(1)-C(33)-C(34) angle of 159.8(4)8.[9, 10] The highly
distorted neopentylidene ligand suggests that there is a
significant a-agostic CH interaction with the metal center.
Since 2 is a d1 complex, a-elimination is inhibited, and the
complex distorts to form an unusually short V=C bond. The
vanadium center deviates from the N(2)-N(6)-C(33) mean
plane by 0.592(6) E, and as consequence of the cationic
nature of the metal center, a coordinated molecule of THF
occupies the fourth site. EPR (giso= 1.982, Aiso= 88G
10�4 cm�1, 51V, I= 7/2, 99.6%, Figure 2) and magnetic sus-
ceptibility measurements (SQUID, meff= 1.85 mB; EvansI,

Scheme 1. Synthesis of the vanadium(iv)–alkylidene complexes 2
and 4.
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meff= 1.87 mB) are in accordance with a d1 paramagnetic
species and unambiguously rule out the possibility that
oxidation of a V�C bond in 1 occurred instead to give the
VIII cation [(Nacnac)V(CH2tBu)(thf)]

+. Similar species have
been prepared by protonation reactions of the corresponding
bis(alkyl) systems.[11] The role of the anion in the oxidation of
1 to form 2 is key in the oxidatively induced a-hydrogen
abstraction process inasmuch as oxidation of 1 with AgOTf
oxidizes the vanadium–carbon bond instead of the vanadium
center. Hence, the VIII complex [(Nacnac)V(CH2tBu)(OTf)]
(3) is formed in good yields (78%) when 1 is treated with
AgOTf. Elemental analysis, solution magnetic susceptibility
data, and single-crystal X-ray diffraction studies are consis-
tent with the connectivity proposed for complex 3.[9] Complex
2 can undergo smooth anion exchange with 0.5 equivalents of
I2 (47% yield) or excess MgI2 (69% yield) to produce the
neutral, four-coordinate vanadium–alkylidene complex
[(Nacnac)V=CHtBu(I)] (4) (Scheme 1). In the reaction of 2
with I2, we also detect, by 11B NMR spectroscopy, the
formation of BPh3 as a side product. This observation suggests
that I2 might be also oxidizing the B�C(phenyl) bond of the
BPh4

� counter anion to afford 4. Magnetic susceptibility
measurements (EvansI, meff= 1.94 mB), single-crystal X-ray
diffraction study, and solution EPR (giso= 1.976, Aiso= 64G
10�4 cm�1, 51V, I= 7/2, 99.6%, Figure 2) spectra are consistent
with the d1 vanadium(iv) complex 4 containing a terminal
alkylidene functionality. Cyclic voltammograms of 4 (TBAH,
THF) revealed irreversible oxidation and reduction waves at
�0.18 and �2.28 V, respectively (referenced versus [FeCp2]/
[FeCp2]

+).[9] This suggests that on the cyclic voltammetry time
scale the putative vanadium(iii) and vanadium(v) systems of

4, generated by one-electron reduction and one-electron
oxidation, respectively, appear to be unstable. In addition,
chemical reduction and oxidation of complex 4 resulted in
decomposition products. The molecular structure of 4 is
depicted in Figure 1 and reveals the shortest V=Ca{alkyli-
dene} bond reported so far (V(1)�C(34) 1.787(3) E) as well as
an obtuse V-Ca-Cb angle (V(1)-C(34)-C(35), 158.7(3)8).[12]

Complexes 2 and 4 are isostructural, where the bound THF
molecule and cationic charge in 2 are replaced with I� to
generate the neutral complex 4.

Owing to the instability of the previously reported four-
coordinate alkylidene complex [(Nacnac)Ti=CHtBu(OTf)],[7]

it was presaged that complexes 2 and 4 would also be prone to
“Wittig-like” reactivity involving the metal–alkylidene func-
tionality. Accordingly, when complex 2 is heated at 60 8C for
6 h in THF, extrusion of neopentane is observed (by 1H NMR
spectroscopy and GC MS analysis) concomitant with the
formation of the zwitterion vanadium(ii) product [(Nac-
nac)V(h6-C6H5BPh3)] (5) (77% yield, Scheme 2). THF is
dehydrogenated during the thermolysis inasmuch as [D2]neo-
pentane is observed when the reaction is carried out in
[D8]THF. Complex 5 is an orange, paramagnetic species, and
the X-band EPR solution spectra in toluene, as well as
solution and solid-state magnetic susceptibility measurements
are in accordance with the molecule having a quartet ground

Figure 1. Molecular structure of complexes [(Nacnac)V=CHtBu(thf)]-
(BPh4) (2) and [(Nacnac)V=CHtBu(I)] (4) with thermal ellipsoids at
the 50% probability level. Hydrogen atoms with the exception of the
alkylidene carbon atoms (C(33), 2 ; C(34), 4), and aryl groups on the
nitrogen atoms with the exception of the ipso-carbon atoms (C(7),
C(21), C(8), C(22)) are omitted for clarity. The [BPh4]

� ion and two dis-
ordered THF solvent molecules are omitted for clarity in the structure
of 2. Selected bond lengths [E] and angles [8]: for 2 : V(1)-C(33)
1.795(3), V(1)-N(2) 1.942(3), V(1)-N(6) 1.964(3), V(1)-O(38) 2.000(2);
V(1)-C(33)-C(34) 159.8(4), O(38)-V(1)-C(33) 101.87(13), C(33)-V(1)-
N(6) 112.82(15), C(33)-V(1)-N(2) 122.03(15), N(6)-V(1)-N(2)
96.12(11). For 4 : V(1)-C(34) 1.787(3), V(1)-N(3) 1.989(2), V(1)-N(7)
1.935(2), V(1)-I(2) 2.6478(6); V(1)-C(34)-C(35) 158.7(3), I(2)-V(1)-
C(34) 110.65(12), C(34)-V(1)-N(3) 107.08(12), C(34)-V(1)-N(7)
123.41(15), N(7)-V(1)-N(3) 94.93(9).

Figure 2. X-band EPR spectrum of 2 (a) and 4 (b) recorded at room
temperature in toluene. Experimental spectra (exp.) are above the
simulated spectra (sim.).
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state spin configuration (SQUID, meff= 3.93 mB; EvansI, meff=

3.68 mB).
[9] The structure determined for 5 by using suitable

single crystals also substantiates the proposed connectivity
and illustrates clearly a low-valent, two-coordinate (Nacnac)-
VII scaffold coordinating to one of the phenyl groups attached
to the borate (Figure 3).[13] In contrast to the transformation

of 2 to 5, when a solution of 4 in benzene is thermolyzed for
6 h at 60 8C, “Wittig-like” reactivity is observed, which is
evidenced by the formation of the vanadium(iv)–imide
complex [([Ar]NC(Me)CHC(Me)CHtBu)V=NAr(I)] (6)
(57% yield; Scheme 2). Solution EPR and magnetic suscept-
ibility measurements are consistent with a d1 system.[9] In
addition, the molecular structure of 6 was obtained from
single-crystal X-ray diffraction studies and disclosed a low-
coordinate vanadium(iv) center supported by an imide, and
an anilide with a h2-coordinated diene pendant arm.[14] The
low-coordination environment at the metal center promotes
h2 coordination of the ene motif, which is now part of the
former Nacnac� ligand (Figure 3). Similar transformations
have been reported by our group for four-coordinate [(Nac-
nac)TiIV] complexes with reactive alkylidene or phosphini-
dene functionalities.[7,15] Concentration-dependent experi-
ments on the titanium–alkylidene system (by 1H NMR
spectroscopy) determined the cross-metathesis reaction to
be first-order in titanium, hence we suspect the same to be
valid for the thermolytic transformation of 4 to 6.

In summary, the cationic and neutral four-coordinate
complexes (2 and 4, respectively) derived from the one-
electron oxidation of the bis(alkyl)vanadium(iii) precursor 1
represent a new class of alkylidene systems in the context of
the organometallic chemistry of vanadium. Further applica-
tions of these unique d1 metal radicals of vanadium containing
metal–ligand multiple bonds to reactions such as group- or
atom-transfer radical polymerization (ATRP),[16] and olefin
metathesis will be described in due course.

Experimental Section
Synthetic and characterization details for compounds 1–6 (including
single-crystal X-ray data for 2–6)[17] are described in the Supporting
Information.
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