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Abstract—The design and synthesis of a new class of nonpeptide luteinizing hormone-releasing hormone (LHRH) receptor
antagonists, the 2-phenylimidazo[1,2-a]pyrimidin-5-ones, is reported. Among compounds described in this study, we identified the
potent antagonist 15b with nanomolar in vitro functional antagonism. The result might suggest that the heterocyclic 5–6-ring sys-
tem possessing a pendant phenyl group attached to the five-membered ring is the important structural feature for a scaffold of small
molecule LHRH antagonists. # 2002 Elsevier Science Ltd. All rights reserved.

Introduction

In recent years, luteinizing hormone-releasing hormone
(LHRH, also known as gonadotropin-releasing hor-
mone; GnRH) antagonists are widely acknowledged as
logical candidates for new types of drugs in the treat-
ment of endocrine-based diseases, for example certain
sex hormone-dependent cancers, endometriosis, uterine
leiomyoma and precocious puberty.1,2 Indeed, peptidic
LHRH antagonists, which are expected to directly
reduce the steroid hormone levels without the initial
‘flare effect’ induced by peptidic LHRH agonists, have
achieved clinical success.2,3 Therefore, it is expected that
potent and orally bioavailable nonpeptide LHRH
antagonists may be clinically desirable agents without
the usual liabilities associated with large peptidic ther-
apeutics.

We previously identified the 2-phenylthieno[2,3-b]pyr-
idin-4-one T-98475 (1) as the first, potent, and orally
active nonpeptide LHRH receptor antagonist.4 Inspired

by this achievement, further effort has been devoted
toward searching for new scaffolds of small molecule
LHRH antagonists. Recently, we investigated the
synthesis and biological activity of a new series of
potent nonpeptide LHRH antagonists, the 6-phenyl-
thieno[2,3-d]pyrimidine-2,4-diones 2, which were
designed by substituting the pyrimidine ring for the
pyridine ring of the thienopyridin-4-one nucleus.5

Therefore, we next focused on the thiophene ring of the
thienopyridin-4-one core and decided to replace it with
other five-membered rings. Since the biological activities
and pharmacokinetic profiles of compounds depend on
their physicochemical properties, incorporation of a
five-membered ring with different physicochemical
properties from those of the thiophene ring, into a
bicyclic scaffold was hoped to provide new potent
LHRH antagonists with improved pharmacokinetic
profiles. Accordingly, we designed the 2-phenylimi-
dazo[1,2-a]pyrimidin-5-one 3,6 a heterocyclic 5–6-ring
system in which an imidazole ring is embedded, as a
novel scaffold for nonpeptide LHRH antagonists.

In this letter, we wish to describe the synthesis and bio-
logical evaluation of a series of 2-phenylimidazo[1,2-
a]pyrimidin-5-ones, which led to the identification of a
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new class of potent low molecular weight LHRH
antagonists, exemplified by the methoxyurea 15b.

Chemistry

To our knowledge, there are no reports on the synthesis
of highly functionalized 2-arylimidazo[1,2-a]pyrimidin-
5-ones.7 Hence, we started by developing a synthetic
procedure to obtain the target compound IV, according
to the approach illustrated in Chart 1. Briefly, alkylation

of 2-amino-4-hydroxypyrimidine I with 2-bromopropio-
phenone II provides the 3-alkyl-2-aminopyrimidin-4-one
III, which can then be converted to the desired imidazo-
pyrimidin-5-one IV by intramolecular cyclization.

The methodology of construction of the 2-phenylimi-
dazopyrimidine nucleus is shown in Scheme 1. Initially,
reaction of ethyl 2-amino-4-hydroxypyrimidine-5-car-
boxylate 4 with 2-bromopropiophenone 5 in the pre-
sence of potassium carbonate did not produce the
desired N3-alkylated compound and the cyclized

Chart 1.

Scheme 1. Reagents and conditions: (a) K2CO3, KI, DMF (6: 37%, 7: 31%, 8: 1%); (b) Zn, AcOH (78%); (c) 2,6-difluorobenzyl chloride, K2CO3,
KI, DMF (10: 85%, 11: 8%).
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product 9, but instead gave rise to the imidazopyr-
imidine 6 and the O-alkylated pyrimidine 7 (approxi-
mately 1:1 ratio) together with 8 and other minor
products.8 Determination of the chemical structures of 6
and 8 was achieved by measurement of the nuclear
Overhauser effect (NOE) between the two methyl
groups and the proton on the pyrimidine ring. Although
efforts have been made toward preparation of the N3-
alkylated product or 9 directly from 4 and 5 in satisfac-
tory yield, these attempts were unsuccessful. This might
be explained as follows: after initial N3-, O-, or N1-
alkylation of 4 occurred (N3- and O-alkylation exceeded
N1-alkylation), ring-closure reaction of the N3-, N1-
alkylated products and subsequent alkylation with 5
afforded 6 and 8, respectively. Secondary alkylation
may well be attributed to the relatively high reactivity of
the imidazopyrimidines due to their electron-rich nat-
ure. Based on these results, we next examined conver-
sion of 6 to the desired product 9. Gratifyingly,
reductive dealkylation of the phenacyl group using zinc

powder and acetic acid proceeded smoothly to furnish 9
in good yield. Alkylation of compound 9 with 2,6-
difluorobenzyl chloride gave the two regioisomers 10
(85%) and 11 (8%).9 X-ray crystallography showed
the major product to be the desired N8-alkylated com-
pound 10 (see Fig. 1).10

The synthetic procedure for the amides 14a–g and urea
analogues 14h,i and 15a,b is outlined in Scheme 2.
Nitration of 10 with sodium nitrate in sulfuric acid took
place with almost complete regioselectivity toward the
para position of the 2-phenyl ring to afford 12. After
bromination of 12 and incorporation of the N-benzyl-
methylamino group, the nitro compound 13 was
obtained. Reduction of 13 with iron powder-hydro-
chloric acid provided the corresponding aniline, which
in turn was converted to the target amide and urea
derivatives 14a–i via acylation using acyl chlorides,
condensation with carboxylic acids, reaction with ethyl
isocyanate, or reaction of 1,10-carbonyldiimidazole
(CDI) and successive treatment of O-methylhydroxyl-
amine. Finally, transesterification of compounds 14h,i
with titanium(IV) isopropoxide in 2-propanol afforded
the isopropyl esters 15a,b.11

Results and Discussion

The imidazo[1,2-a]pyrimidin-5-one derivatives were
evaluated for inhibition of specific [125I]leuprorelin
binding to the cloned human LHRH receptor12 and the
results are summarized in Table 1. Initially, the para
substituent on the 2-phenyl ring of the imidazopyr-
imidin-5-ones was explored for the 6-ethyl ester deriva-
tives. The isobutyrylamide 14a and propionylamide 14b
were found to show significant 10�8M order bindingFigure 1. X-ray structure of compound 10.10

Scheme 2. Reagents and conditions: (a) NaNO3, concd H2SO4 (89%); (b) NBS, AIBN, CCl4; (c) N-benzylmethylamine, iPr2NEt, DMF (80%, two
steps from 12); (d) Fe, concd HCl, EtOH (95%); (e) RCOCl, Et3N, CH2Cl2 (58–61%) or RCO2H, PyBOP, iPr2NEt, CH2Cl2 (48–86%); (f) EtNCO,
Py (65%) or (1) CDl, Et3N, CH2Cl2; (2) O-methylhydroxylammonium chloride, Et3N (50%); (g) Ti(OiPr)4,

iPrOH (15a: 47%, 15b: 13%).
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affinities. Replacement of the alkyl group of 14a with
cyclopropyl or vinyl moieties (14c,d) gave 6- to 10-fold
enhancement in activity. This indicated that the smaller
alkylamides are favorable. In the arylamide series, the
benzoyl analogue 14e was less potent than 14c,d, how-
ever, substitution of the phenyl group of 14e for the
thiophene (14f) or furan (14g) rings increased the affi-
nity. The high binding affinities of 14f,g might be a
consequence of the smaller ring size and/or introduction
of the hetero atom.

Incorporation of urea and urea-related moieties onto
the 2-phenyl ring produced an increase in activity. The
ethylurea 14h and methoxyurea 14i displayed sub-
nanomolar affinities and were 14- to 20-fold more
potent than 14b. Moreover, transesterification of 14 h,i
caused further enhancement in affinity. The isopropyl
esters 15a,b were about twice as potent as the ethyl
esters 14h,i. Binding affinities of 15a,b were almost
comparable to that of T-98475 (1) (IC50 value of
0.2 nM). The result revealed that the imidazopyrimidin-
5-one is a new scaffold for nonpeptide LHRH antago-
nists in addition to the thienopyridin-4-one and thieno-
pyrimidine-2,4-dione scaffolds.

The ethylurea 15a and methoxyurea 15b, which exhib-
ited low sub-nanomolar affinities, were next evaluated
for in vitro functional antagonism.13 Compounds 15a,b
potently inhibited LHRH-stimulated arachidonic acid
release from CHO cells expressing the human LHRH
receptor, with IC50 values of 10 and 7 nM, respectively.
From these data, the imidazopyrimidin-5-ones 15a,b
proved to be potent nonpeptide LHRH antagonists in
this context.

Consequently, this study has demonstrated that the
imidazopyrimidin-5-ones, thienopyridin-4-ones, and
thienopyrimidine-2,4-diones constitute a new class of
potent nonpeptide LHRH antagonists. It is expected
that further optimization of the 6-substituent of 15a,b
will lead to identification of potent and orally effective
LHRH antagonists.

Conclusion

Starting with the thienopyridine-based LHRH antago-
nist T-98475 (1), a series of the 2-phenylimidazopyr-
imidin-5-ones was designed, synthesized, and evaluated
as nonpeptide LHRH antagonists. This study resulted
in the identification of a new class of potent LHRH
antagonists, represented by the methoxyurea 15b pos-
sessing high binding affinity and potent in vitro antagon-
ism, with IC50 values of 0.4 and 7 nM, respectively.
These results led us to conclude that the imidazopyr-
imidin-5-one provides a new scaffold for small molecule
LHRH antagonists devoid of a thiophene ring. Taking
this finding into consideration, it is suggested that the
heterocyclic 5–6-ring system bearing a pendant phenyl
group attached to the five-membered ring is the key
structural motif for a LHRH antagonist scaffold.
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