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Abstract  : The stereocontroUed nucleophilic addition of organometallics to novel chiral (x- 
ketoamides which were synthesized from (S)-2-methoxyrnethylindoline as a chiral auxiliary 
was carried out to obtain c~-hydroxyamides with extremely high diastereoselectivities ( up to 
dr_> 99:  1). 

A number of diastereoselective nucleophilic additions of organometallic reagents to a-ketoamides I or 

a-ketoesters 2 bearing appropriate chiral auxiliaries have been reported as the useful methods for the synthesis 

of optically active a-hydroxyacid derivatives, which are valuable for the syntheses of optically active organic 
compounds and natural products. 

There have been a number of reports concerning nucleophilic additions of organometallic reagents to 
chiral ct-ketoamides, which have a pyrrolidine ring bearing an adjacent stereogenic centre as a chiral 

auxiliary.: In regard to the diastereoselectivities in the nucleophilic addition of organometallics to ct- 

ketoamides of pyrrolidine derivatives, the chiral trans-2,5-disubstituted pyrrolidines le,d afforded higher 

diastereofacial selectivities than 2-monosubstituted pyrrolidines, l•b On the bases of these facts, we 

expected that a chiral pyrrolidine containing a benzene ring at the opposite side to the 2-position in (S)-2- 
methoxymethylindoline might play an important role and affect the diastereofacial selectivity in transition 

state ; a steric effect of the benzene ring of indoline 3 was expected to affect a high stereocontrolled selectivity 

by a modeling study on l a  and lb .  Recently, we reported that (S)-indoline derived catalysts resulted in high 

enantiomeric excess in asymmetric reductions of ketones to the corresponding secondary alcohols 4 and in 

asymmetric alkylations of the aldehydes to the alcohols. 5 (S)-2-Methoxymethylindoline ( > 99% ee )6 was 

easily prepared by reduction 3a ( 80 % ) of (S)-indoline-2-carboxylic acid with LiA1H 4 and then selective O- 

methylation ( 70 % ) with Nail - MeI - HMPA. a-Ketoamides l a  and l b  were synthesized in high yields by 

condensation of the ~t-ketoacids and (S)-2-methoxymethylindoline using dicyclohexyl carbodiimide. 

In this paper, we wish to describe that the chiral ct-ketoamide l a  reacted with Me2TiC12 prepared from 

MeLi and TiCl41b to give (R)-ct-hydroxyamide 2 in extremely high diastereoselectivity ( Run 1 and 2 ; R : S 

_> 99 : 1 ) and that l b  reacted with Ph2TiCI 2 or PhTiCI3 lb to give (S)-a-hydroxyamide 2 in high 

diastereoselectivity ( Run 10 and 11 ; R : S =3 : 97 ). The degree of diastereoselectivity is highly dependent 
on the organometallics and solvents ( Run 3 -9, Run 12 ). Grignard reagent or organolithium reagent afforded 
lower diastereoselectivities in comparison with alkyl or aryl titanium chloride. The ratios of R- and S- 
diastereomers of 2 were determined by HPLC analysis using a ehiral column ( Chiralcel OD column ; 25 cm 
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x 0.46 cm ) and IH-NMR ( 300 MHz ) analysis. The absolute configuration was determined by comparison of 
the specific rotation of atrolactic acid ( Run 1 ; 84 %, [GRID23 - 36.0 ( c 0.76, EtOH ), [ lit.,2b [a]DlO.5 + 37.7 ( C 

3.5, EtOH ) ] ) after hydrolysis ( 3M HC1 in dioxane at reflux for 6 h ) of 2. (S)-2-Methoxymethylindoline 

used as a chiral auxiliary was recovered in 9 1 %  without racemization. From the results described above, it 

can be concluded that the benzene ring of l a  and l b  plays an important role to affect the diastereofacial 

selectivity, although the detailed mechanism is not clear yet. Four conformers of ~t-ketoamides can be 
considered as shown in figure 1. Conformer A and !1 are destabilized by the repulsive interaction, and D is 
less stable than C because of the dipole-dipole repulsionlc between two carbonyl groups of D. However, in the 

presence of titanium reagent, D is more favorable than C due to the chelation of the strong oxophilic titanium 

with two carbonyl groups of D. Consequently, the R' may attack less hindered si-face to give R-configuration 

,~H ,~H 
of a-hydroxyamide. ~ O C H  3 R'-M ~ R O C H 3  

O ~ " ~  O la ;R=Ph o~" r  ~OH 
R lb ;R--CH3 2 R' 

Table I. Diastereoseleetive Addition of Organometallies to ovKetoamides 
Run ~-Ketoamide Organometal (eq) Solvent T (°C) Time Yield = (%) Ratio b (R e:S~ 

1 l a  Me2TiCI2d (3 eq) CH2CI 2 0 9 h 76 _> 99 : 1 

2 l e  MeTiCI3 e (3 eq) CH2CI 2 0 9 h 60 _> 99 : 1 

3 l a  MeTiCI3 f (3 eq) CH2CI2 0 9 h 72 98 : 2 

4 l a  MeMgl (6 eq) THF 0 5 min 87 85 : 15 

5 l a  MeMgl (6 eq) THF - 45 5 rain 90 73 : 27 

6 l a  MeMgl (6 eq) THF -78 5 rain 82 66 : 34 

7 l a  MeMgl (2 eq) Toluene 0 5 rain 90 54 : 46 

8 l e  MeLi (2eq) THF - 45 1 h 43 38 : 62 

9 l a  MaLl (2eq) THF - 78 1 h 66 31 : 69 

10 l b  Ph 2TiCI2 g (3 eq) CH2Cl2 - 78 5 h 60 3 : 97 

11 l b  PhTiCI3 h (3 eq) CH2CI2 - 78 5 h 74 3 : 97 

12 l b  PhLi (2 eq) THF - 78 1 h 62 35 : 65 

a Isolated yield, b Determined by 1H NMR and HPLC analysis ( Daicel Chiralcel OD ), 
c Determined from specific rotation of the hydrolysis product, atrolactic acid, d MeLi : TiCI 4 = 
2 : 1 ,  e M e M g B r : T i C i 4 = l  : I , I M e L i : T i C I  4 = 1 : 1 ,  g P h L i : T i C I 4 - 2 : t , h P h L i : T i C I  4 = 1 : 1  

R ~R' 
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