

Journal of Fluorine Chemistry 111 (2001) 185-187

www.elsevier.com/locate/jfluchem

The trifluoromethylation of 1,1-dibromo-1-alkenes using trifluoromethylcopper (CF₃Cu) generated in situ from methyl fluorosulfonyldifluoroacetate

Feng-Ling Qing^{a,b,*}, Xingguo Zhang^c, Yiyuan Peng^c

^aLaboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China ^bCollege of Chemistry and Chemical Engineering, Donghua University, 1882 West Yanan Lu, Shanghai 200051, China ^cDepartment of Chemistry, Jiangxi Normal University, Jiangxi 330027, China

Received 25 March 2001; accepted 19 June 2001

Abstract

The trifluoromethylation of 2-aryl-1,1-dibromo-1-alkenes with CF₃Cu under palladium catalysis gave bistrifluoromethylated compounds (2), whereas under the same reaction conditions, monotrifluoromethylated products (3) were obtained exclusively in the case of 2-alkyl-1,1-dibromo-1-alkenes. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Trifluoromethylation; 1,1-Dibromo-1-alkenes; Palladium catalysis

1. Introduction

The introduction of the trifluoromethyl group into an organic compound can bring about remarkable changes in the physical, chemical and biological properties that result in new compounds/materials making them suitable for diverse applications in the areas of materials science, agrochemistry, and biomedical chemistry [1,2]. While a wide variety of methods have been developed for introducing trifluoromethyl groups into organic compounds [3,4], the coupling reaction of alkene halides with in situ generated trifluoromethylcopper (CF₃Cu) is rapidly becoming the method of choice [5]. 1,1-Dibromo-1-alkenes are easily prepared [6,7], and are versatile in organic synthesis. They can form (Z)-1aryl(alkenyl)-1-bromo-1-alkenes, stereospecifically trisubstituted alkenes, disubstituted cis-1-bromo-1-alkenes, and 1,3-divnes through coupling with organoboronic acids [8,9], organostannanes [10,11], organozinc and Grignard reagents [12–14], tributyltin hydride [15] and alkynes [16]. Stimulated by these findings we were interested in the investigation of the trifluoromethylation of 1,1-dibromo-1-alkenes in order to obtain a novel type of trifluoromethyl-containing building blocks.

E-mail address: flq@pub.sioc.ac.cn (F.-L. Qing).

2. Results and discussion

1,1-Dibromo-alkenes were prepared by the reaction of aldehydes with triphenyl phosphorus and carbon tetrabromide in dichloromethane [7]. 1,1-Dibromo-2-(4-nitrophenyl)ethene (1a) was chosen as model substrate to couple with in situ generated CF₃Cu. First, the trifluoromethylation of 1a was carried out using modified Chen's methodology [17,18]. Treatment of **1a** with FSO₂CF₂CO₂Me (5.0 eq.) and CuI (0.3 eq.) in DMF/HMPA at 70°C for 24 h gave a mixture of bistrifluomethylated compound (2a), monotrifluoromethylated compounds (E)-3a and (Z)-3a, along with unreacted 1a (Scheme 1). These compounds were very difficult to separate. The ratio of 2a:(E)-3a:(Z)-3a was 2:1:1 as determined by ¹⁹F NMR. In an attempt to get a single product and improve the reaction efficiency, we examined the trifluoromethylation under palladium catalysis. When 5 mol% PdCl₂ was added to the reaction mixture under similar reaction conditions, 1a was totally converted and the ratio of 2a:(E)-3a:(Z)-3a was changed to 12:1:1. When the PdCl₂ was replaced by Pd(PPh₃)₄, we were pleased to find that only a single bistrifluomethylated compound (2a) was isolated in 82% yield. These results showed the addition of palladium catalyst greatly improved the bistrifluomethylation. 1,1-Bis(trifluoromethyl)alkenes have been prepared from the reaction of aldehydes with 2,2dichlorohexafluoropropane [19] or tetrakis(trifluoromethyl)-1,3-dithietane [20] in the presence of triphenyl phosphine.

^{*}Corresponding author. Tel.: +86-21-64163300; fax: +86-21-64166128.

Scheme 1.

Br +
$$FSO_2CF_2CO_2CH_3$$
 $Cul / Pd(PPh_3)_4$ R = Alkyl R = Alkyl

Scheme 2.

However, the trifluoromethyl-containing starting materials are not readily accessible.

With these results in hand we next performed the trifluoromethylation reaction with a more extensive range of 1,1-dibromo-1-alkenes (Scheme 2 and Table 1). As shown in Table 1, 2-aryl-1,1-dibromo-1-alkenes gave bistrifluoromethylated compounds (2) in good yields, with no to small amount of monotrifluoromethylated products (3) isolated. Substitutions at the *para* position of the aromatic ring by the electron-donating methoxy group did not affect the trifluoromethylation reaction (entry 2). However, in the case of 2-alkyl-1,1-dibromo-1-alkenes under reaction conditions identical to those used for 2-aryl-1,1-dibromo-1-alkenes

(entries 4–6), monotrifluoromethylated products (3) were obtained exclusively instead of the bistrifluoromethylated compounds (2).

3. Experimental section

¹H NMR spectra were recorded on a 300 MHz spectrometer with Me₄Si as internal standard. ¹⁹F NMR spectra were obtained on a 56.4 MHz spectrometer using trifluor-oacetic acid as external standard, downfield shifts being designated as negative. All chemical shifts (δ) are expressed in ppm, coupling constants (J) are given in Hz. Mass spectra

Table 1 Trifluoromethylation of 1,1-dibromo-1-alkenes with in situ generated CF₃Cu under Pd(PPh₃)₄ catalysis

Entry	Dibromide	Product	Yield (%) ^a
1	O ₂ N——Br 1a	O ₂ N-CF ₃ 2a	82
2	сн ₃ о-Вг 1ь	CH ₃ O CF ₃ 2b	76
3	Br 1c	CF ₃ 2c	55
4	O NBoc Br 1d	ONBoc CF ₃ 3d, 39:61 ^b	90
5	O O Br 1e	O CF ₃ 3e, 37:63 ^b	82
6	CH ₃ (CH ₂) ₆ Br	CH ₃ (CH ₂) ₆ Br EF ₃ 3f, 48:52 ^b	60

^a Yields were based on 1.

^b The Z:E ratio was determined by ¹H NMR.

were recorded on a Finnigan-MAT-8430 instrument using EI ionization at 70 eV. IR spectra were recorded on a Shimadzu IR-440 spectrometer. 1,1-Dibromo-alkenes (1) were prepared using the literature procedure [7].

3.1. Representative procedure for the trifluoromethylation of 1,1-dibromo-alkenes 1

A solution of FSO₂CF₂CO₂CH₃ (1.3 ml, 10 mmol) in DMF (5 ml) was added via syringe over a period of 1.5 h to a mixture of dibromide (**1a**) (615 mg, 2 mmol), CuI (115 mg, 0.6 mmol), Pd(PPh₃)₄ (116 mg, 0.1 mmol) and HMPA (1 ml) in DMF (10 ml) at 70°C under a nitrogen atmosphere. The reaction was stirred at 70°C for 24 h before being cooled to room temperature. Saturated aqueous NH₄Cl (30 ml) was added and the mixture was extracted with ether. The extracts were washed with brine and dried over Na₂SO₄. The solvent was removed in vacuo. Purification of the residue by column chromatography on silica gel and elution with 25:1 hexane ethyl acetate gave compounds **2a** (469 mg, 82% yield).

3.2. 1,1-Ditrifluoromethyl-2-(4-nitrophenyl)ethene (2a)

¹H NMR (300 MHz, CDCl₃): δ 8.32 (d, J = 8.7 Hz, 2H), 7.74 (s, 1H), 7.55 (d, J = 8.7 Hz, 2H); ¹⁹F NMR (56.4 MHz, CDCl₃): δ −20.8 (s, 3F), −14.6 (s, 3F); IR (KBr) 2985, 1672, 1527, 1351, 1284, 1194, 1164 cm⁻¹; MS m/z 285 (M⁺, 94), 318 (100), 169 (96), 89 (11); anal. calcd for C₁₀H₅F₆NO₂: C, 42.12; H, 1.77; N, 4.91. Found: C, 42.45; H, 1.94; N, 5.21%.

3.3. 1,1-Ditrifluoromethyl-2-(4-methoxyphenyl)ethene (2b)

¹H NMR (300 MHz, CDCl₃): δ 7.50 (s, 1H), 7.48 (d, J = 8.9 Hz, 2H), 6.92 (d, J = 8.9 Hz, 2H), 3.80 (s, 3H); ¹⁹F NMR (56.4 MHz, CDCl₃): δ –19.8 (s, 3F), –14.6 (s, 3F); IR (thin film) 2966, 1608, 1516, 1289, 1176, 1154 cm⁻¹; MS m/z 271 ($M^+ + 1$, 14), 270 (M^+ , 100); anal. calcd for C₁₁H₈F₆O: C, 48.90; H, 2.99. Found: C, 48.70; H, 2.96%.

3.4. 1,1-Ditrifluoromethyl-2-phenylethene (2c)

¹H NMR (300 MHz, CDCl₃): δ 7.74 – 7.20 (m); ¹⁹F NMR (56.4 MHz, CDCl₃): δ –17.6 (s, 3F), –9.8 (s, 3F); IR (thin film) 3033, 1275, 1216, 1138 cm⁻¹; MS m/z 241 (M^+ + 1, 12), 240 (M^+ , 100), 171 (28), 151 (74); HRMS calcd for C₁₀H₆F₆: C, 240.0337. Found: 240.0373.

3.5. (Z)/(E)-tert-butyl (4S)-4-(2'-bromo-2'-trifluoromethyleth-1'-enyl)-2,2-dimethoyyloxazolidine-3-carboxylate (**3d**)

¹H NMR (300 MHz, CDCl₃): δ 6.68 (d, J = 8.9 Hz, 0.39H), 6.46 (d, J = 8.9 Hz, 0.61H), 4.84 (m, 1H), 4.12 (m, 1H), 3.78 (m, 1H), 1.74 – 1.38 (m, 15H); ¹⁹F NMR

(56.4 MHz, CDCl₃): δ –17.8 (s, 1.83F), –10.6 (s, 1.17F); IR (thin film) 2984, 1709, 1378, 1175, 1155 cm⁻¹; MS m/z 373 (M^+ , 5), 274 (43), 57 (100); anal. calcd for C₁₃H₁₉BrF₃NO₃: C, 41.73; H, 5.12; N, 3.74. Found: C, 41.91; H, 5.28; N, 3.99%.

3.6. 1-Bromo-1-trifluoromethyl-2-[(S)-2,2-dimethyl-1, 3-dioxolan-4-yl]ethene (3e)

¹H NMR (300 MHz, CDCl₃): δ 6.86 (d, J = 7.5 Hz, 0.37H), 6.56 (d, J = 7.5 Hz, 0.63H), 5.04 – 4.90 (m, 1H), 4.34 (m, 0.37H), 4.18 (m, 0.63H), 3.72 (m, 1H), 1.48 – 1.36 (m, 6H); ¹⁹F NMR (56.4 MHz, CDCl₃): δ –17.2 (s, 1.89F), –9.8 (s, 1.11F); IR (thin film) 2992, 1374, 1179, 1149, 1066 cm⁻¹; MS m/z 275 (M + 1, 15), 259 (73), 43 (100); anal. calcd for C₈H₁₀BrF₃O₂: C, 34.93; H, 6.67. Found: C, 34.99; H, 6.67%.

3.7. 1-Bromo-1-trifluoromethylnon-1-ene (3f)

¹H NMR (300 MHz, CDCl₃): δ 6.70 (t, J = 7.0 Hz, 0.37H), 6.44 (t, J = 7.0 Hz, 0.63H), 3.72 (m, 1H), 2.38 – 2.24 (m, 2H), 1.54 – 1.26 (m, 10H), 1.48 – 1.36 (m, 6H), 0.89 (t, J = 7.0 Hz, 3H); ¹⁹F NMR (56.4 MHz, CDCl₃): δ –17.2 (s, 1.56F), –9.8 (s, 1.44F); IR (thin film) 2959, 2930, 1289, 1172, 1143 cm⁻¹; MS m/z 272 (M⁺, 15), 69 (61), 43 (100); anal. calcd for C₁₀H₁₆BrF₃: C, 43.97; H, 5.90. Found: C, 43.72; H, 5.63%.

References

- [1] J.T. Welch, Tetrahedron 43 (1987) 3123.
- [2] I. Ojima, J.T. McCarthy (Eds.), Biomedical Frontiers of Fluorine Chemistry; ACS Symposium Series 639, American Chemical Society, Washington, DC, 1996.
- [3] G.A. Olah, G.K.S. Prakash, R.D. Chambers, Synthetic Fluorine Chemistry, Wiley, New York, 1992.
- [4] G.G. Furin, Synthetic Aspects of the Fluorination of Organic Compounds; Harwood, London, 1991.
- [5] M.A. McClinton, D.A. McClinton, Tetrahedron 48 (1992) 6555.
- [6] E.J. Corey, P.L. Fuches, Tetrahedron Lett. (1972) 3769.
- [7] F. Ramirez, N.B. Desai, N. McKelvie, J. Am. Chem. Soc. 84 (1962) 1745.
- [8] W.R. Roush, K.J. Moriarty, B.B. Brown, Tetrahedron Lett. 31 (1990) 6509.
- [9] W. Shen, Synlett (2000) 737.
- [10] W. Shen, L. Wang, J. Org. Chem. 64 (1999) 8873.
- [11] L. Wang, W. Shen, Tetrahedron Lett. 39 (1998) 7625.
- [12] A. Minato, K. Suzuki, K. Tamao, J. Am. Chem. Soc. 109 (1987) 1257.
- [13] A. Minato, J. Org. Chem. 56 (1991) 4052.
- [14] J.S. Panek, T. Hu, J. Org. Chem. 62 (1997) 4912.
- [15] J. Uenishi, R. Kawahama, O. Yonemitsu, J. Tsuji, J. Org. Chem. 63 (1998) 8965.
- [16] W. Shen, S.A. Thomas, Org. Lett. 2 (2000) 2857.
- [17] X. Zhang, F.L. Qing, Y. Yu, J. Org. Chem. 65 (2000) 7075.
- [18] O.Y. Chen, S.W. Wu, J. Chem. Soc., Chem. Commun. (1989) 705.
- [19] M. Hanack, C. Korhummel, Synthesis (1987) 944.
- [20] D.J. Burton, Y. Inouge, Tetrahedron Lett. (1976) 3397.