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Abstract: A convergent, enantioselective total synthesis of rhizoxin D (didesepoxy- 
rhizoxin), a potent antitumor natural product, was achieved via three critical 
olefinations, including a Horner-Emmons macrocyclization. © 1999 Elsevier Science Ltd. All fights reserved. 

In the mid-1980's,  Iwasaki and coworkers discovered an exciting new family of 16-membered 
macrolactones known as the rhizoxins from the fungus Rhizopus chinensis. 2 The subsequent discovery that 
these compounds possess remarkable antitumor and antifungal activity has prompted considerable interest in 
these natural products, 3 and rhizoxin (1, Scheme I) has undergone extensive clinical studies as a potential 
chemotherapeutic agent. 4 A minor component isolated in 1986 was found to be the didesepoxy analog of rhi- 
zoxin (rhizoxin D, 2), 5 and 2 is thought to be the biogenetic precursor to 1. Although rhizoxin D possesses 
biological activity equivalent to 1 and may thus be able to circumvent some of the clinical shortcomings of 
rhizoxin, 6 it has been less studied primarily because of the limited quantity of 2 available. ~ Not surprisingly, 
there has been substantial interest in the synthesis of the rhizoxins, s including two recently completed syntheses 
of 2. 9 We wish to communicate our efforts, which have culminated in the total synthesis of rhizoxin D. ~° 
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We chose to disconnect the molecule about the macrolide linkage (a), the C2-C3 olefin (b), the C9-C10 
olefin (c) and the C18-C19 olefin (d), leading to the initial synthetic targets 3-6. Our original plan was to 
complete the synthesis via one of the known macrolactonization methods, a strategy that ultimately proved 
unsuccessful, u This necessitated the development of the strategy detailed below. In our initial efforts, we set 
the C15 stereocenter in the unnatural R configuration predicated on a subsequent inversion using the Mitsunobu 
macrolactonization protocol, with inversion via protection deemed a suitable backup plan. 10 In practice that 
proved to be unsatisfactory, and thus the revised synthesis began with an anti-aldol addition to 7 (Scheme II). ~z 
While numerous anti-aldol procedures were explored, success was ultimately achieved through the 
norephedrine-based methodology of Masamune. 15 Thus, addition of g allowed installation of both the C15 and 
C16 stereocenters with excellent diastereoselectivity (90% de) and in good yield. Silylation and reductive 
cleavage of the auxiliary then provided 9. 

Installation of the triene portion of the oxazole also proved to be a challenging task. We explored the con- 
struction of virtually every bond from C18 to C23 before we were satisfied that a Horner-Emmons reaction 
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uniting C18 and C19 represented our best option. Dess Martin oxidation of 9 followed by conversion to the I~- 
ketophosphonate gave us the requisite precursor, and addition to aldehyde 4 afforded the desired triene. 14 
Removal of the TMS protecting group was remarkably difficult, as significant isomerization about the C22-C23 
olefin was typically observed, and fairly specialized fluorosilicic acid conditions were required. 15 Once alcohol 
10 was in hand, an intramolecular Tishchenko reaction with p-nitrobenzaldehyde was used to install the C17 
stereocenter. 16 Methylation of the allylic alcohol was followed by selective desilylation and oxidation to 
generate 11. ~7 
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a) NEt 3 (81%); b) TMSCI, imid. (86 %); c) DIBAL (100 %); d) Dess-Martin oxid. (90 %); 0) 2-1ithioethyldiethylphosphonat¢ 
(100 %); f) Dess-Martin oxid. (96 %); g) 4, Ba(OH)2.H20 (85 %); h) H2SiF 6, i-PrOH -40 °C (86 %); i)p-nitrobenzaldehyde, SmI2 
(83 %);j) M¢I, Ag20, ultrasound (77 %); k) H2SiF6, 4:1 CH3CN/t-BuOH (94 %); 1) Dess-Martin oxid. (82 %) 

Our unsuccessful bid to perform a Mitsunobu or any standard macrolactonization demanded that we revise 
our synthesis of the fight hand portion of rhizoxin as well. Specifically, we needed to facilitate a Horner- 
Emmons macrocyclization, and experience told us that we also needed the ~-lactone to be closed in a masked 
form." Previously prepared 12 (Scheme IUy ° was converted to mesylate 13 in a straightforward manner. We 
discovered that the use of standard Julia couplings in the synthesis of the rhizoxin skeleton was not fruitful, and 
were thus intrigued by the prospects of utilizing the one-pot modification of this olefination reaction. TM Toward 
this end, displacement of mesylate 13 with the sodium salt of 2-mercaptobenzothiazole and molybdenum 
oxidation supplied the sulfone. The 5-1actone was then masked as acetal 14 and the C3 terminus was converted 
to the corresponding TES ether 5.19 Deprotonation and coupling with aldehyde 11 then gave 15 as a single 
isomer in one step and in good overall yield, z° 

With the C3-C26 backbone of our target completed, we turned to the functionalization of 15 to prepare for 
macrocyclization. The PNB ester was reductively removed and replaced with a diethylphosphonoacetyl group 
at C15 via 6. 21 Selective cleavage of the TES ether was accomplished using fluorosilicic acid, and Dess Martin 
oxidation yielded macrolide precursor 16. We found the barium hydroxide-mediated Horner-Emmons 
conditions to be the best method for effecting the cyclization of 16; 14 the macrolide could then be selectively 
deprotected to the hemiacetal. TPAP oxidation and TBAF deprotection finally afforded rhizoxin D, which was 
identical in all respects to data provided for the natural product. 
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a) TIPSCI, imid. (95 %); b) Na/NH 3 (98 %); c) Ag2CO3/celite (86 %); d) I-IF, CH3CN (95 %); e) MsCl, NEt 3 (96 %); t') ArSNa 
(94 %); g) Mo(VI), H202 (91%); h) DIBAL (80 %); i) TBSCI, imid. (85 %); j) OsO4, NMO; NalO 4 (87 %); k) NaBI-I4 (88 %); 
1) TESCI, i-Pr2NEt (96 %); m) 11, LiHMDS (2.3 equiv.), -78 °C --~ rt (79 %); n) DIBAL (90 %); o) 6, pyr. (92 %); p) H2SiF 6, i-PrOH, 
-40 °C (88 %); q) Dess-Martin oxid. (78 %); r) Ba(OH)2.H20 (49 %); s) HF-pyr. (80 %); t) TPAP, NMO (61%); u) TBAF (73 %) 
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