Downloaded via CARLETON UNIV on December 3, 2020 at 08:38:27 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

JAIC'S

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

pubs.acs.org/JACS

Communication

Electroreductive Olefin—Ketone Coupling

Pengfei Hu, Byron K. Peters, Christian A. Malapit, Julien C. Vantourout, Pan Wang, Jinjun Lj,
Lucas Mele, Pierre-Georges Echeverria, Shelley D. Minteer,* and Phil S. Baran*

Cite This: https://dx.doi.org/10.1021/jacs.0c11214

I: I Read Online

ACCESS |

[l Metrics & More |

Article Recommendations |

Q Supporting Information

ABSTRACT: A user-friendly approach is presented to sidestep the venerable Grignard addition to unactivated ketones to access
tertiary alcohols by reversing the polarity of the disconnection. In this work a ketone instead acts as a nucleophile when adding to
simple unactivated olefins to accomplish the same overall transformation. The scope of this coupling is broad as enabled using an
electrochemical approach, and the reaction is scalable, chemoselective, and requires no precaution to exclude air or water. Multiple
applications demonstrate the simplifying nature of the reaction on multistep synthesis, and mechanistic studies point to an intuitive
mechanism reminiscent of other chemical reductants such as Sml, (which cannot accomplish the same reaction).

T ertiary alcohols are an abundant functional group with
versatile reactivity that are found in natural products,’
pharmaceuticals,” and a multitude of useful materials.’
Traditionally, perhaps overwhelmingly, the ketone has served
as a loyal progenitor of this species (Figure 1A) for good
reasons. Every undergraduate organic textbook prescribes a
direct nucleophilic addition of a strong nucleophile, such as
RMgX or RLi, to these electrophilic species.” Although these
incredibly robust reactions have been employed countless
times, they can indirectly contribute to synthetic inefficiencies,
as their low chemoselectivity often necessitates the use of
protecting groups.” This dilemma is nicely illustrated (Figure
1B) by examining the patented route to steroid derivative 2.°
Although a Grignard reaction with commercially available
ketone 1 is an obvious disconnection, its use introduces several
protecting group additions, removals, and functional group
manipulations throughout the course of a seven-step sequence
(only one of which forges a C—C bond).

Within the specific realm of intermolecular alkyl nucleophile
additions to unactivated ketones, Grignard and related
organometallic additions are fundamentally limited by their
two-electron mechanisms, which render these nucleophiles
both strongly nucleophilic and often highly basic.**” Efforts to
tone down their reactivity have been explored, with the most
successful stemming from nucleophiles bearing activated
positions (i.e., allylic, benzylic, propargylic, and a-carbonyl;
see Figure IC).&9 Studies employing Zr-,'° Ti-,'"' Ru-,'” and
Os-"? based systems, as well as hydrogen atom transfer (HAT)
chemistry,'* have also pointed to the use of olefins as
precursors to species capable of adding to carbonyl groups,
although intermolecular additions into unactivated ketones are
without precedent.'”” A less intuitive approach involves an
umpolung disconnection, which renders the ketone the
nucleophilic group through a reductive one-electron approach.
Currently, such approaches have relied primarily on Sm(II),”*"
Ti(II1),'* or photoinduced electron transfer'’ to couple
activated olefins and styrenes to ketones. A general
intermolecular reductive coupling of unactivated ketones and
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olefins is, so far, absent from the literature. The closest
precedent for the desired transformation was disclosed by
Shono and co-workers (Figure 1D).'"® These reports focus
predominantly on intra molecular couplings,'**® with only a
few inter molecular examples'**? presented. To the best of our
knowledge, this chemistry has not been applied in the
literature, despite being available for decades, presumably
due to the challenges of using a divided cell setup under an
argon atmosphere and the need for at least a fivefold excess of
the ketone. In this Communication, a new protocol for
electrochemically driven reductive couplings of unactivated
ketones and olefins is presented. This method uses a simple
undivided cell tolerating exogenous air and moisture, exhibits a
broad scope, and can be easily scaled (Figure 1E).
Explorations began by studying Shono’s original condi-
tions'® on a medicinally relevant model substrate pair:
homoallylic alcohol 4 and piperidone 3 (Table 1A). In
principle, the use of Grignard chemistry to perform this
assembly would necessitate the use of a protecting group on 4
and perhaps other precautions due to the enolizability of 3;
hence, more gentle methodologies were sought. Revisiting the
electrochemical method developed by Shono for less ornate
substrates'* only resulted in low yields (Table 1A, entry 1).
This method was pursued with some rigor (see the Supporting
Information for a full listing); however, the yield could not be
improved beyond 17%. Chemical reductants such as Sml, and
lithium 4,4’-di-tert-butylbiphenylide (LiDBB) were examined
next, and while these methods have been shown to have
success in similar intramolecular scenarios, they were found to
be unsatisfactory for this purpose (entries 2—5, Table 1A).
Developing this chemistry following the guiding principles
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Access to Tertiary Alcohols from Simple Ketones
A Carbonyls as a handle to access tertiary alcohols
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[limitations in conditions and substrates scope] [no general methods]

D Electrochemical approaches: Shono guiding precedents
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E This work: Electroreductive Olefin-Ketone Coupling

o R3 6 OH
,U\ + —_— > J\/\
R “R? / [e-coupling] R1R2 R3

[undivided cell] [no pyrophoric reagent] [scalable] [>40 examples]
[high functional groups tolerance] [industrial applications]

Figure 1. Tertiary alcohols from simple ketones remain a challenge
for modern synthesis (A). Synthesis of 2 is emblematic of the
problems with Grignard reaction (B). Recent approaches so far do
not address the problem (C). Electrochemical precedent on activated
olefins (D) and a summary of this work (E).

from our own forays'”* into electrochemistry, specifically

deeply reductive electrochemistry,”” allowed us to hone in on
the sacrificial anode, electrolyte, current density, and
concentration needed to facilitate a high-yielding olefin—
ketone coupling (Table 1B; see the Supporting Information for
a full listing). As graphically illustrated in Table 1B, these three
variables were crucial to the success of this transformation,
which, after optimization, led to a 95% isolated yield of adduct
S (Table 1A, entry 6). The use of an inexpensive sacrificial
anode (Zn) was ideal, and, in contrast to prior work, a lower
current ensured broad functional group tolerance (10 mA vs
200 mA). Notably, unlike prior precedent, only 2 equiv of the
ketone is required, inexpensive electrodes are employed, and
an operationally simple undivided cell is used. No precautions
are taken to exclude air or moisture, and in fact the reaction
can be run open to the air (cap removed). Finally, the linear
versus branched selectivity is remarkable (>15:1 in most of the
cases).

With these results in hand, the scope of the ketone—olefin
coupling was investigated (Table 2). Several functionalities on
the olefin were tolerated, including free alcohols (1°, 2°, and
3° 6 to 8), aniline (9), amides (10, 13, 21), nitrile (11), ester
(12), protected amino acid (14), and heterocycles (15—19)
(moderate to high yields). Most of these functional groups
would be challenging to employ using canonical 2e” tactics
such as the Grignard reaction. The reaction tolerated

Table 1. Optimization of the Reductive Ketone Olefin
Coupling. Comparison to Known Chemical Methods (A)
and a Graphical Optimization Overview of the Newly
Developed Electrochemical Protocol (B)

Optimization of the Electroreductive Olefin-Ketone Coupling

A Comparison with existing procedures
BocN "BuyNBr (0.3 M) OH
DMF 1mu), rt. BocN
+ 2\ 2
(+)Zn/( )Sn
Bn 10mA, 5 F/mol OH Bn
3(2 equw) 4 (1 equiv.) 5
entry deviation from above conditions yield (%)?
1 3/4 (5/1), (+)C/(-)Pt, divided cell, 0.2 A, 2.5 F/mol (Shono) <10
2 Sml, <10
3 Sml, + HMPA <10
4 Sml, + MeOH <10
5 LiDBB <5
6 None 95%
B Importance of Electrochemical Parameters
0% yield [Anode material] 100% yield
Graphite Mg Fe Zn
0% yield [Electrolyte] 100% yield
LiBr TBA-OTf TBA-BF, TBA-Cl  TBAB
0% yield [Current] 100% yield
100 mA 50 mA 15 mA 5 mA 10 mA

monosubstituted olefins but performed less successfully with
polysubstituted olefins with compounds 22 and 23 being the
only ones affording good yields. A plausible reason for this lack
of reactivity with more substituted olefins could be due to a
slower rate of addition (for steric reasons) compared to the
lifetime of the ketyl radical.”' In the case of cyclopentene-3-ol,
an interesting finding was that the reaction took place in high
yield with perfect syn diastereoselectivity. The analogous tert-
butyldimethylsilyl (TBS)-protected olefin did not react, nor
did cyclopentene itself. The directing effect of homoallylic
alcohols in this chemistry is notable and perhaps relevant to
the mechanism of the reaction (vide infra).

In a similar fashion, ketones bearing several different
substituents were tolerated (moderate to high vyields),
including ethers (26), protected amines (36 and 37), esters
(39), carbamates (43), alcohols (50 and 51), and cyclo-
propanes (52). When 4-substituted cyclohexanones were used,
single diastereomers were isolated with the selectivity
reminiscent of Sml,-promoted reactions (anti, 38 and 39).”*
Even cyclic ketones of varying ring sizes (24—39) worked well,
which are often challenging for other methods; reduction
products are often observed when sterically hindered ketones
react with Grignard reagents. For acyclic ketones, the sterics of
the substituents showed a minor impact on the reaction yields
(40—48), although only 25% yield of the desired product was
isolated when very hindered diisopropylketone (45) was used.
Notably, unprotected steroidal substrates 50—52 delivered a
single diastereomeric product in high yield (see the Supporting
Information for structure confirmation).

This reductive coupling could also be applied to simplify
real-world challenges in medicinal chemistry (Scheme 1A).
Thus, the synthesis of the simple vitamin D analogue side
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Table 2. Scope of the Electroreductive Olefin—Ketone Coupling

Scope of the Electroreductive Olefin-Ketone Coupling

Communication

n
o Bu,NBr (0.3 M) OH [simple reaction setup]
DMF (1 mL), rt. 40 |
ﬂ\ + B3 > g - [ examples]
) (+)Zn/(-)Sn, 10 mA, 5 F/mol R2 RS [broad FG tolerance]
Olefin Scope
Me
Me, OH
Me
OH Me\ﬂ/\(\ d)\ Bn - NHPh
3
Me Me OH OH Me Me Me Me
6:67% 7:98% 8: 73% 9: 77%
Me
o A o NHBoc
Me ]\ Me
_nBu Me Me
3 N 3 N 3 "CO,Me
Me Me OH H Me Me OH OH
10: 94% 1M X= CN): 58% 13: 98% 14: 30%
12 (X = CO,Me): 56%
Me H Me Me
Me Me
% vy Me% .
\Q 4 Me Me
OH X Me Me OH OH
15 (X = CH): 56% ] Me )
16 (X = N): 61% 17: 54% 18: 94% 19: 42%
M
Me Me A
Me . Me o _i-l OH
e 3
3 “OPh on™t
Me Me OH OH 23: 94% (single diastereomer)
20: 97% 88% 22: 47% [gram scale]: 74% (>20:1 dr)
Ketone Scope
X X X X
(o]
AV 2 Y w Y Q/\M%\Y
OH OH OH OH
24 (X = OH, Y = CH,Bn): 96% 26 (X = OH, Y = CH,Bn): 95% 28 (X = OH, Y = CH,Bn): 95% 30 (X = OH, Y = CH,Bn): 61%
25 (X =H, Y = Ph): 56% 27 (X = H, Y = Ph): trace 29 (X = H, Y = Ph): 50% 31 (X=H, Y =Ph): 21%
X
X o eN R OH
Y OH
Y 2 Y ‘ PN
o : OH OH vy
32 (X =OH, Y= CHyBn): 56% 34 (X=0H, Y = CH,Bn): 94% 36 (X=0H, Y= CH,Bn): 67% 38 (R = fBu): 87%
33 (X=H, Y =Ph): 77% 35 (X = H, Y = Ph): trace 37 (X=H, Y = Ph): 27% 39 (R = CO,Et): 62%
X
nPr X
Pr. Ph Ph X Ph Me Me
3 \I/\(vr BnH,C Ph Bu Ph Me
3 NERE N Ph
OH OH <
OH OH
M (X = CHZ)Z 85% 44 (X - Cy) 61% o
40: 97% 42 (X = 0): 84% 45 (X = iPr).' 25% 46: 53% 47:61% 48: 57%
43 (X = NBoc): 74% =0 " "
e e
Ho Me HO, : HO, :
> OH
Me
Me Ph
3
OH N
49: 11% HO 50: 70% Hoy 51:82% OMe  52:88%

chain 55 was reported through a seven-step route wherein only
one of those steps formed a C—C bond (Scheme 1A-1).”” In
contrast, commercially available oxazolidinone 53 could be
allylated and reduced to yield (S)-2 methyl-4-penten-1-ol 54.
Coupling of 54 with acetone under the developed electro-
chemical conditions then smoothly furnished side chain §5. Of
the three steps required to access SS, two forged key C—C

bonds. Next, the synthesis of DNA-binding metabolite 58
required a five-step sequence with two protecting groups and
the air-sensitive Sml, to forge a key C—C bond (73%
enantiomeric excess (ee), Scheme 1A-2).** With the electro-
chemical strategy outlined above, commercially available
aldehyde 56 was converted to the same product in only
three steps via a simple Brown allylation, followed by an
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Scheme 1. (A) Electrochemical Ketone—Olefin Coupling Facilitates Rapid Access to Medicinally Relevant Structures such as a

Vitamin D Side Chain (1), a DNA-Binding Metabolite (2),
Scaleup

and a Hedgehog Signaling Modulator (3). (B) Batch and Flow

A. Applications

nthesis of a vitamin D analog side chain
1 Synthesis of a vitamin D analog side chai "
e
[previ K] Y BoMcl LiAH,  Tsci Me S MgCl mcPBA LiAIH,  PdiC, H, OH We
previous wor : H o :
7 steps MeOZC/\/o . ' ' ' ' . > MeM ;/\/OH
e
(0} o NaHMDS
Br A acetone
[this work] Et)J\N/l(o %\Q/ ‘o - e
3 steps )\/ - OH
: B (83% over 2 steps) PN 0
n” 53 o P 54 (64%)
ynthesis of a -binding metabolite
2 Synthesis of a DNA-bindi tabolit: [0} 0
* 58
[previous work] MeLi T™SCI K2COs DMP Aux ‘OJ\/ OH 04
5 steps (o) @ @ @ @ @ = 4\/\/k/
73% ee : Me ;
Double protection Sml, Me H
fthiswork] ] QTES  (9)-lpesBlally) acetone, then TBAF OH OH OH o 0AG), TEMPO (cat)
3 steps
56 (81% over 2 steps, 93% ee) 57 °
3 Synthesis of a hedgehog signaling modulator
RMgBr  Pd/C,H, MsCl NaN;  TsOH  Pd/C, Hj
§ - . . o—eo—o —
N NHTeoc
: : \/\P)E CsF HO
1 H 59
. : 6 ® hedgehog signaling modulator, 2
: dihydropregnanone, 1. (48%, single diastereomer) (98%)
! [this work] 2 steps !
B. Batch and Flow Scale-up
j\ )O\H "Bug\lh?; (Ot-3 M) OH OH
1t
Me Me * AN Me > R \/kMe
(2 equiv) (1 equiv) (+)Zn/(-)Sn, constant current R2
Current Density _
Entry Cell Scale(g) Con.(g/mL) Current (A) (mA/cm?) Yield (%)
1 IKA 0.03 0.006 0.010 8.3 75
2 beaker 1 0.025 0.335 15 72
3  beaker 10 0.025 1.350 15 69
4 flow 10 0.025 1.360 15 772 _ —
5 flow 100 0.025 8.000 15 632 batch reactor flow reactor

“Isolated yield

electrochemical addition of acetone/tetra-n-butylammonium
fluoride (TBAF) workup and a final oxidative lactonization
(72% yield, 93% ee). Finally, the steroidal example® mentioned
in Figure 1 could be addressed in a similar way from the same
starting material (Scheme 1A-3). Thus, the electrochemical
addition of 1 to 2-(Trimethylsilyl)ethoxycarbonyl (Teoc)-
protected amine 59 delivered a single diastereomeric tertiary
alcohol that, after CsF-induced deprotection, delivered 2 in
only two steps. Clearly, the success of the above applications
benefits from the chemoselective (functional group (FG)
tolerant) nature of the electrochemical ketone—olefin coupling.
The reaction can be conducted on 100 g scale (>1 mol) using
a flow system affording a comparable yield to the batch

reaction (Scheme 1B; see the Supporting Information for
details).

The mechanism of this useful reaction (Scheme 2) was next
interrogated through the observation of certain side products
(Scheme 2A), deuterium labeling (Scheme 2B), kinetics, and
voltammetric studies (Scheme 2D,E). A notable limitation of
this chemistry was that ketones bearing a-substituents (such as
60) were not tolerated, and elimination of the a-substituent
was observed (62), suggestive of a ketyl radical intermediate.
Using allyl alcohol (64), the bis addition adduct 65 was
observed, perhaps pointing to a carbanion intermediate
wherein ZnBr, generated from anodic oxidation could assist
in the departure of the primary alcohol and regeneration of
another olefin. Deuterium labeling using acetone-dg led to 80%
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Scheme 2. Mechanistic Insights from Byproducts (A), Deuterium Labeling (B), Proposed Reaction Mechanism (C), and

Voltammetry Studies (D, E)“

Mechanistic Studies

D Cyclic voltammograms of ketone substrate in GC and Sn as Working Electrodes
GC as working electrode

Sn as working electrode

pre-peak current increases as a
1 function of increasing number of
scans and ketone concentration

current, i (UA)

»1'.1 -1‘.2 -1'.3 »1'.4 -1'.5 »1'.6 -1‘.7 -1'.8 »1'.9 -2‘.0 -2'_1 -2'_2 -2',3 . -1'.1 -1'.2 »1'.3 »1‘.4 -1'.5 -1'.6 -1',7 »1'.8 »1'.9 -2'.0 -ZI.1 -2'2 -2'.3 »2\_4
potential, E (V vs SCE) potential, E (V vs SCE)

Implications: The observed pre-peak current (as a function number of scan and ketone concentration)

disctinct in Sn as working electrode is a characteristic of a strong adsorption of the reduced product (ketyl

radical) to the working electrode (WE).

E Square-wave voltammograms
—— 1 mM ketone
~— 1 mM ketone + 1 mM olefin

1 mM ketone + 1 mM olefin + 0.2 mM ZnBr,
1 mM ketone + 0.1 mM ZnBr,

reduction of .
intermediate (E2) .
189V G

reduction of
ketone (E1)

reduction of Zn- 197V

coordinated
ketone

3
h

step current, i (mA)

18 20 22 24
potential, E (V vs SCE)

T T T T
-1.8 2.0 22 -1.6

potential, E (V vs SCE)

T
-16 24

Implications: The observed shift in the reduction peak current indicates a chemical reaction between the
ketyl radical and olefin after one-electron reduction of ketone (EC-type, left squarewave voltametry (SWV).
The observance of two reduction peak potentials in the presence of ZnBr, (shown as three peaks, third
peak is the reduction of Zn-coordinated ketone) suggests that a ZnBr,-promoted second reduction follows
after the EC steps. Overall, an ECEC-type mechanism is proposed where the second chemical step is

A Mechanistic insights from specific substrates
(o] standard OH w4
conditions
ME\HLMe + N "Npp —— MeMPh
Me
OR H < 204
50 61 62: 48% S
(R=Hor TBS) oy
o standard OH OH £
OH conditions ® 04
n-Pr)J\n-PI' v n-pr n-Pr n-P’:'-Pr
63 64 65: 50% 20
B Deuterium labeling experiments 4 80%D
j\ standard OH H/ID
Y conditions
+ Ph
D;C” "CD; D;C Ph
CD;
68 61 67-d: 74%
0% D
standard
o conditions OH HID4 50
St Z P G o nstedi HiC Ph
HsC CHs d7-DMF instead H3
61 of DMF 3 404
68: 72% 2
£
C Proposed Mechanism = 7
/\\ /\\ u g 20
E A ! E ! g
0 ©0 A R ©0 ©0 o 5 o
DCJ\CD D,c”>cD; C DC/I\/.\R DC/I\/\R
3 3 V3 3 3 CD3 3 CD3 od
D.__COCD;
OH D )
work-up > e D>l!_,/ (o]
D;C R D.C R
CD; 3 CD, Zn2*

protonation (see deuterium labeling, 2B).

“See the Supporting Information for details.

incorporation at the highlighted position (Scheme 2B), further
supporting a carbanion intermediate. When regular acetone
was used in the same experiment but with deuterated
dimethylformamide (DMF), no deuterated product was
observed. Kinetic studies revealed zero-order dependence on
all components except current, indicating that reduction is
purely electrochemical.

Finally, a series of voltammetric studies was performed
(Scheme 2D,E) to understand how traditionally nucleophilic
ketyl radical can serve as competent coupling partners with
unactivated olefins, as well as to provide evidence for the
overall electrochemical mechanistic sequence as proposed in
Scheme 2C. We hypothesized that the change in its electronic
property and reactivity can be facilitated by a strong adsorption
of the ketyl radical to the Sn electrode. Cyclic voltammetry
(CV) studies were performed using Sn and glassy carbon
(GC) as working electrodes with acetophenone25 as the source
of ketyl radical. Prepeaks on the CV were observed using Sn as
the working electrode but not observed using GC as the
working electrode. These prepeaks are distinct characteristics
of an electron transfer, where the product (ketyl radical) is
strongly adsorbed into the working electrode.”® Furthermore,
the current response observed in the prepeak in Sn was found
to be dependent on the concentration of ketone (see the
Supporting Information).”” This result also rationalizes the
effectiveness of using a Sn cathode over other electrode
materials (see the Supporting Information). Square-wave
voltammetry (SWV) studies were performed, and the results
are summarized in Scheme 2E. The addition of alkene 61 to

acetophenone showed an anodic shift in the cathodic peak
potential denoting a chemical reaction with the ketyl radical
after one-electron reduction. However, even at high
frequencies (100 Hz), the expected second reduction peak
was not observed. We hypothesized that one crucial role of the
sacrificial Zn anode is to provide Zn** as a thermodynamic sink
for the second electron reduction. SWV analysis in the
presence of catalytic amounts of ZnBr, showed three distinct
reduction peaks, where the third peak can be the reduction of
the ZnBr,-coordinated ketone (see the Supporting Informa-
tion). Taken together, these results suggest an ECEC-type
electrochemical mechanism where the ketyl radical formation
(E) takes place at the Sn cathode with strong adsorption
characteristic followed by radical addition (C) into the olefin.
A second one-electron reduction (second E) of the radical
anion to the dianion followed by protonation (second C) and
then workup delivers the final product. The enhanced
reactivity of homoallylic alcohols may be due to improved
binding of the olefin substrate to the cathode surface.

In summary, a chemoselective, scalable method to combine
unactivated olefins and ketones has been developed that
subverts the issues encountered using Grignard reagents in a
conventional retrosynthetic analysis. The scope of this reaction
is broad, and it is operationally simple to perform. A number of
applications demonstrate that the utility extends beyond that
of a simple tactical change, as when strategically employed, it
can dramatically reduce overall step count. Mechanistic studies
point to an intuitive electrochemically driven reductive
pathway that initiates upon the formation of a ketyl radical,
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addition to the olefin, and further reduction to a stabilized
carbanion prior to workup. This work is thus another example
of how strongly reducing chemistry can be uniquely facilitated
and enabled in complex settings under electrochemical control
when classical chemical reagents fail.
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