

Note

Access to #2-Amino Acids via Enantioselective 1,4-Arylation of #–Nitroacrylates Catalyzed by Chiral Rhodium Catalysts

Jia-Hong Jian, Chih-Lung Hsu, Jin-Fong Syu, Ting-Shen Kuo, Ming-Kang Tsai, Ping-Yu Wu, and Hsyueh-Liang Wu

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.8b00586 • Publication Date (Web): 29 Aug 2018 Downloaded from http://pubs.acs.org on August 30, 2018

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

7

8 9 10

11

12 13

14

15

16 17 18

19

20

21

22 23 24

25

26

27

28

29 30 31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58

59

60

Access to β²-Amino Acids via Enantioselective 1,4-Arylation of β–Nitroacrylates Catalyzed by Chiral Rhodium Catalysts

Jia-Hong Jian,^a Chih-Lung Hsu,^a Jin-Fong Syu,^a Ting-Shen Kuo,^a Ming-Kang Tsai,^a Ping-Yu Wu^b and Hsyueh-Liang Wu^{a,*}

^aDepartment of Chemistry, National Taiwan Normal University, No. 88, Section 4, Tingzhou Road, Taipei 11677, Taiwan ^bOleader Technologies, Co., Ltd., 1F., No. 8, Aly. 29, Ln. 335, Chenggong Rd., Hukou Township 30345, Hsinchu, Taiwan *Supporting Information Placeholder*

ABSTRACT: The highly enantioselective conjugate addition of a variety of arylboronic acids to β -nitroacrylates is reported to provide optically active α -aryl β -nitropropionates in up to 70% yields and >99.5% ee's, which are useful building blocks for preparing chiral β^2 -amino acids. The applicability of this transformation is demonstrated by converting **3aa** into the β^2 -amino acid **5** and transforming **3ap** to β -amino ester **7** via reduction and reductive *N*-alkylation. The latter compound is a precursor for preparing *ent*-ipatasertib.

The synthesis of chiral β -amino acids and derivatives thereof has attracted a great deal of interest¹ since they are crucial segments in numerous naturally occurring compounds of biological interest.² Amidst chiral β -amino acids, β^2 -amino acids (α substituted- β -amino acids) are common building blocks in natural products and bioactive molecules (Figure 1). For example, bishyoscyamine (1a), an alkaloid isolated from *Anisodus acutangulus*, has an unusual dimeric tropane structure.^{3a}

Figure 1. Compounds containing β^2 -amino acid moieties.

Nakinadines B (**1b**) and C (**1c**), which were isolated from the Okinawa marine sponge, *Amphimedon* sp. (SS-1059), were reported to show moderate *in vitro* cytotoxicity toward KB human epidermoid carcinoma and L1210 murine leukemia cells.^{3b} Ipatasertib (**1d**) is an Akt inhibitor that is currently in clinical trials.^{3c} In addition, β -peptides comprised of β^2 -amino acids

exhibited inhibitory activity against viral infections^{4a,b} and to have a specific affinity to the human somatostatin receptor 4 (hsst4) at the nano-molar level.^{4c}

While the diastereoselective synthesis of β^2 -amino esters has been previously reported,⁵ these preparations involved the aminomethylation of aldehydes^{6a} and enals,^{6b} respectively. Furthermore, the Rh-carbenoid induced C–H activation of *N*-substituted methylamines and their insertion into aryldiazoesters resulted in the one pot production of β^2 -amino esters.^{6c} While the catalytic asymmetric hydrogenation of β^2 -enamides directly provided optically active β^2 -amino acids,^{6d} the enantioselective hydrogenation of α -phthalimidylmethyl acrylates^{6e} and α -aminomethyl acrylates^{6f,g} readily gave rise to enantio-enriched β^2 amino esters. Chiral β^2 -amino esters also can be synthesized by reducing the nitro group of α -substituted β -nitropropionates, which can be obtained by asymmetric transfer hydrogenation,^{6h} or the hydrogenation⁶ⁱ of α -substituted β -nitroacrylates.

Since chiral α -substituted β -nitropropionates are crucial building blocks for the preparation of β^2 -amino acids and also appear to be cytotoxic,^{7a} the development of an efficient synthetic route to α -substituted β -nitropropionates would be highly desirable. We envisaged that the asymmetric conjugate addition of carbon nucleophiles to prochiral β -nitroacrylates would offer a convenient and convergent access to α -chiral β -nitropropionates. In fact, the Cu(I)-catalyzed conjugate addition of dialkylzincs^{7b} and trialkylaluminiums^{7c} to β -nitroacrylates and the Pd(II)catalyzed enantioselective arylation of β -nitroacrylamides^{7d} gave 2-substituted-3-nitropropion-ates and -amides, respectively, that were readily transformed into β^2 -amino acids. In our recent studies,^{8,9} a chiral Rh(I)/L1 catalyst was found to have a high catalytic activity and enantioselectivity in the arylation of β -nitroolefins (S/C up to 1000).^{8c} More recently, the same catalytic system was used for the enantioselective arylation of α -substituted β -nitroacrylates to access chiral $\beta^{2,2}$ -amino acids.^{8g} While β -nitroolefins¹⁰ and α -substituted β -nitroacrylates^{8g} were applicable acceptors in the Rh-catalyzed conjugate addition reactions,¹¹ the asymmetric arylation of β-nitroacrylates resulted in only moderate asymmetric induction when the diene ligand L1 was used (Table 1, entry 1).^{8g} At the same time, we also reported that chiral dienes L2, possessing an extra amide group, were effective ligands in achieving the highly selective arylation of *N*-DPP (diphenylphosphonyl) imines,^{9c} as a result of the hydrogen bond donor ability of the amide group. Hence, we envisioned that hydrogen bond interactions between the NO₂ groups of nitroacrylates and the N–H bond of the chiral diene ligand L2 would improve catalytic activity and enhance the degree of asymmetric induction associated with the conjugate addition¹² to β -nitroacrylates catalyzed by Rh(I)/L2 catalysts, and we herein report our findings.

Table 1. Optimization of Reaction Conditions^a

1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58

59

60

		CO₂tBu _ PhB(OH	Rh(I)	/L (3.0 mol % of Rh)		O ₂ tBu
0 ₂ N			ado tolu	litive (10 mol %) ene, 60 °C, 24 h	Ēh	
				$122 P^2 = H \cdot P^3 = (10)$	3aa 3-1-Phenylethyl	
	Ar L1, Ar = 1-N	Ar NR ² R ³	Ph	L2a, $R^2 = H$; $R^3 = H$; $R^3 = (22a, R^2 = H; R^3 = (22a, R^2 = H; R^3 = (22a, R^2 = H; R^3 = 1)$ L2a, $R^2 = H; R^3 = 1$; L2a, $R^2 = H; R^3 = 2$; L2f, $R^2 = H; R^3 = fE$; $R^3 = fE$; $R^2 = H; R^3 = FE$; $R^3 = H$; $R^3 =$	F_1 - Phenylethyl S)-1-Phenylethyl $_6H_5CH_2$ -Naphthylmethyl Naphthylmethyl Bu Et (<i>R</i>)-1-Phenyleth	yl
	Ph L3 MeO	Ph Ph H Me H	I	PPh ₂ PPh ₂	Ph N) S., //tBu
	Ph	/	5	L6	L7	
	L4					
	entry	additive	L	yield $(\%)^b$	ee (%) ^c	
	1	КОН	L1	31	83	
	2^d	KHF_2	L2a	N.R.	N.D.	
	3^d	KOH	L2a	45	90	
	4^e	KOH	L2a	70	93	
	5 ^f	KOH	L2a	68	90	
	6	KOH	L2b	50	93	
	7	KOH	L2c	24	86	
	8	KOH	L2d	45	85	
	9	KOH	L2e	50	88	
	10	KOH	L2f	26	91	
	11	KOH	L2g	73	74	
	12	KOH	L2h	53	80	
	13 ^g	KOH	L2a	24	96	
	14^h	KOH	L2a	36	70	
	15	LiOH	L2a	48	92	
	16	NaOH	L2a	48	96	

17	NaHCO ₃	L2a	47	96
18	K_2CO_3	L2a	42	96
19	KOH	L3	58	-65
20	KOH	L4	20	-17
21	KOH	L5	N.R.	N.D.
22	KOH	L6	N.R.	N.D.
23	KOH	L7	N.R.	N.D.

^aSolutions of **1a** (0.2 mmol), **2a** (0.4 mmol, 2.0 equiv), [RhCl(C₂H₄)₂]₂ (1.5 mol %), **L** (3.6 mol %) and aq KHF₂ (3.0 M, 0.4 mL, 1.2 mmol) were stirred in toluene (1.0 mL) at 60 °C for 24 h. For other additives: 0.1 M, 0.2 mL, 0.02 mmol. ^{*b*}Isolated yield. N.R. denotes "no reaction" as judged by the ¹H NMR analysis of the crude products. ^cDetermined by HPLC analysis. N.D. denotes "not determined." ^{*d*}At 40 °C. ^{*e*}10% of **1a** was left by analyzing the crude ¹H NMR spectrum. ^{*f*}At 80 °C for 12 h. ^{*g*}At 40 °C in ether. ^{*h*}At 40 °C in CH₂Cl₂.

Initial investigations involved the conjugate addition of tert-butyl nitroacrylate 1a with phenylboronic acid (2a) (Table 1). While the desired product was not observed when the reaction was carried out in the presence of 3 mol % of Rh(I)/L2a under optimal reaction conditions for α-substituted β-nitroacrylates (entry 2), the desired product 3aa was obtained in 45% yield and 90% ee when KHF₂ was replaced with KOH (entry 3). Conducting the reaction at 60 °C gave 3aa in a gratifying 70% yield and 93% ee (entry 4), whereas the stereoselectivity decreased with the reaction run at 80 °C (entry 5). A subsequent ligand study revealed that, while high asymmetric induction was observed using both L2a and L2b, which were derived from (R)and (S)-1-phenylethylamine respectively (entries 4 and 6), chiral diene ligands with N-benzyl (L2c), N-1-naphthylmethyl (L2d), N-2-naphthylmethyl (L2e), and N-tBu (L2f) amides were found to be less efficient, giving 3aa in 24-50% yield and 85–91% ee (entries 7–10). Conducting the asymmetric reaction with the N,N-diethyl amide ligand L2g and L2h, which is the N-Me analogue of L2a, provided compound 3aa in 74% ee and 80% ee, respectively (entries 11 and 12), indicating the significance of hydrogen bond activation. The ensuing optimization with respect to solvents and additives resulted in no improvement in both catalytic reactivity and enantioselectivity (entries 13-18). This asymmetric transformation was also tested using chiral ligands that are known to be efficient in Rh(I)-catalyzed conjugate addition reactions. While chiral bicyclo[2.2.2]octadiene L3^{13a} and L4^{13b} gave 3aa in moderate yield and ee (entries 19 and 20), no reaction was observed in the presence of chiral diene L5,^{13c} which has a bicyclo[3.3.0] framework (entry 21). Similarly, the use of BINAP^{13d} (L6, entry 22) and the sulfoxideolefin hybrid ligand L713e resulted in no desired product being produced (entry 23).

Table 2 summaries the outcome of asymmetric reactions of assorted arylboronic acids **2** with acceptors **1** under optimal reaction conditions that were presented in Table 1, entry 4. The use of methoxy-substituted phenylboronic acids (**2b–2d**) afforded enantio-enriched adducts **3ab–3ad** in 91–98% ee's and in 44–56% yields (entries 2–4). Similar results were observed when tolylboronic acids (**2e–2g**), 4-*t*Bu-phenylboronic acid (**2h**) and 4-biphenylboronic acid (**2i**) were used, producing adducts in 45–65% yields with 90–98% ee (entries 5–9). A single X-ray crystal analysis of **3ai** permitted the absolute configuration of newly formed chiral center to be determined as R.¹⁴ 1-Naphthyl-and 2-naphthyl-boronic acids (**2j** and **2k**) were also applicable

2

3

4

5

6

7

8

9

10

11

12 13

14

52

53

54

55

56

57

58

59

60

in this asymmetric reaction, giving the corresponding adducts 3aj and 3ak in 65% and 45% yields with 93% and 94% ee, respectively (entries 10 and 11). While the steric hindrance of ortho-CF₃ substituent caused the chemical yield of compound **3al** to be decreased (entry 12), good chemical yields and high selectivity were found in the cases of its meta- and para-congeners (2m and 2n in entries 13 and 14, respectively). Fluoro-, chloro- and dichloro-substituted phenylboronic acids are good reactions partners, providing addition products in 51-63% yields with 95-98% ee (entries 15-17). The scope of this method was further extended to acceptors with *i*Pr (1b) and Bn (1c) ester groups, which resulted in the formation of the corresponding products in 42-64% yield and 92-97% ee (entries 18-21).23

Table 2. Substrate Scope in Rh(I)/L2a-Catalyzed Asymmetric Conjugate Addition Reaction^a

15					
16		00 P	Rh (I)/ L (3.0 mol %	.2a of Rh)	,CO₂R
17	O ₂ N	CO ₂ R	+ ArB(OH) ₂	O_2N	Ār -
18	1a : R = <i>t</i> Bu 1b : R = <i>t</i> Pr 1c : R = Bn		2 toluene, 60	°C, 24 h	3
19				Å	
20				the second	- Leo
21				3ai	X B
22				°	
23	entry	1	Ar (2)	yield $(\%)^b$	ee
24				•	(%)
25	1 d	1.		70	02
20	1"	1a	$C_6H_5(2a)$	(32)(33)	95
27	γ^e	19	2-MeO-C-H-(2h)	(Jun) 44 (3 9h)	98
29	2	1a 1a	$2 - M_{2}O - C_{0}H_{4}(20)$		04
30	5	14	$3-MeO-C_6H_4(2c)$	30 (3ac)	94
31	4	la	$4-\text{MeO-C}_6\text{H}_4$ (2d)	48 (3ad)	91
32	5	1a	$2-Me-C_{6}H_{4}(2e)$	63 (3ae)	95
33	6	1a	$3-Me-C_6H_4(2f)$	54 (3af)	92
34	7	1a	$4-Me-C_{6}H_{4}(2g)$	45 (3ag)	90
35	8^e	1a	$4-tBu-C_{6}H_{4}(2h)$	65 (3ah)	95
36	9	1 a	4-Ph-C ₆ H ₄ (2i)	57 (3ai)	98
37	10	19	1-Naphthyl (2i)	65 (3 ai)	93
38	10	10	2 Naphthyl (2)	45 (3 ak)	04
39 40	11	14	$2 - \operatorname{Naphthyl}(2\mathbf{k})$	43 (Jak)	> 00.5
40 //1	120	1a	$2-CF_3-C_6H_4(2I)$	36 (3 81)	>99.5
42	13	1a	$3-CF_3-C_6H_4(2m)$	61 (3am)	98
43	14	1a	$4-CF_{3}-C_{6}H_{4}(2n)$	67 (3an)	98
44	15	1a	$4-F-C_{6}H_{4}(20)$	63 (3ao)	96
45	16	1a	4-Cl-C ₆ H ₄ (2p)	51 (3ap)	95
46	17	1a	$3,4-Cl_2-C_6H_3(2q)$	51 (3aq)	98
47	18	1b	$C_{6}H_{5}(2a)$	64 (3ba)	93
48	19	1b	1-Naphthyl (2i)	59 (3bi)	97
49	20	1b	$4-F-C_{6}H_{4}(2n)$	43 (3hn)	96
50	20	10	$C \amalg (2a)$	12 (3 00)	02
51	21	IC	$C_6H_5(2a)$	42 (sca)	92

^aSolutions of 1 (0.2 mmol), 2 (0.4 mmol, 2.0 equiv), [RhCl(C₂H₄)₂]₂ (1.5 mol %), L2a (3.6 mol %) and aq KOH (0.1 M, 0.2 mL, 0.02 mmol) were stirred in toluene (1.0 mL) at 60 °C for 24 h. ^bIsolated yield. ^cDetermined by HPLC analysis. ^dData in parenthesis was obtained from 2 mmole and 5.8 mmole (1.0 g) scale

reactions, respectively. eAn additional 3 mol % of Rh/L2a catalyst was added after 6 h.

The conversion of 3aa into the corresponding amino acid further confirmed the utility of this method (Scheme 1). The hydrogenation of 3aa in the presence of Pd/C6h proceeded smoothly to give the amino ester 4, which was subsequently hydrolyzed in aq HCl to produce the β^2 -amino acid 5 in 67% over 2 steps. This method was also applicable for the preparation of a known precursor in the synthesis of an enantiomeric isomer of ipatasertib (Scheme 2).^{3c,6d} The nitro group of **3ap** was reduced by means of Zn/HOAc to furnish the amine¹⁵ which after a reductive N-alkylation reaction [acetone / NaBH(OAc)₃],^{6d} gave a 38% yield of the amino ester 7 in a 2-step operation.

Scheme 1. Synthesis of β^2 -amino acid 5

Scheme 2. Synthesis of the ent-ipatasertib precursor 7

The stereochemical outcome was illustrated, in Figure 2, by carrying out DFT calculations using Gaussian 16 program¹⁶ using hybrid B3LYP functional^{17,18} in conjunction with 6-31G $(d,p)^{15}$ for the main group elements and LAN2LDZ basis set²⁰ for the Rh atom using toluene and the integral equation formalism variant of the polarizable continuum model (IEFPCM).²¹ The results identified that the observed asymmetric reaction could be facilitated favorably via complex 8a, in which the tert-butyl nitroacrylate 1a was coordinated with the Rh-L2a-phenyl species via Re-face, by 4.6 kcal lower in energy than the corresponding Si-faced-coordinated complex **8b**. The steric repulsion between tert-butyl ester group and substituents of ligand backbone and the nitro group being hydrogen-bonded with the amide substituent^{12j} accounted for the observed stereochemistry from *Re*-face addition.

Figure 2. DFT-optimized putative transition structures for the asymmetric reaction to 1a.

In summary, a highly enantioselective arylation of β-nitroacrylates was realized for the first time in the presence of Rh(I)catalyst derived from the chiral diene ligand L2a. This method tolerated a variety of arylboronic acids as nucleophile donors and β -nitroacrylates as electrophiles, with addition products The Journal of Organic Chemistry

Experimental section General information

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

54

55

56

57 58

59

60

All commercial chemicals and solvents were reagent grade and were distilled before use. All reactions were carried out under an atmosphere of argon or nitrogen gas. Reactions were monitored by TLC using Merck 60 F 254 silica gel plates; zones were detected visually under ultraviolet irradiation (254 nm) or by spraying with KMnO₄ solution followed by heating with a heat gun or on a hot plate. Column chromatography was conducted over silica gel. NMR spectra were recorded at room temperature in deuterated solvents on Bruker spectrometers. Chemical shifts δ were recorded in parts per million (ppm) and were reported relative to the deuterated solvent signal for ¹³C NMR spectroscopy, the residual ¹H-solvent signal for ¹H NMR spectroscopy. First order spin multiplicities are abbreviated as singlet (s), doublet (d), doublet of doublets (dd), septet (sep), and mutiplets are abbreviated as (m). High-resolution mass spectra were obtained using EI, ESI and FAB ionization methods. Optical rotations were measured on a Jasco P-2000 polarimeter. Enantiomeric excess was determined by HPLC analysis on a Chiralcel OD-H, or OJ-H and Chiralpak AD-H, or IB columns (Daicel Chemical Industries, Ltd). Substrates 1 were prepared according to the literature.²² Boronic acids 2 that were commercially available were used as supplied and/or were prepared using methods reported in the literature.²³ Chiral diene ligands L2 were prepared according to the reported procedure.8a

29 The following procedures were followed for the Rh-catalyzed 30 asymmetric reactions: Under N2 atmosphere, to a mixture of 31 $[RhCl(C_2H_4)_2]_2$ (1.2 mg, 3.1 μ mol, 3.0 mol % of Rh), chiral lig-32 and L2d (2.58 mg, 7.2 µmol, 3.6 mol %), (E)-nitroacrylate 1 33 (0.2 mmol, 1.0 equiv) and arylboronic acid 2 (0.4 mmol, 3.0 34 equiv) were added toluene (1.0 mL) and aqueous KOH (0.1 M, 35 0.2 mL, 0.02 mmol, 0.1 equiv). The resulting mixture was 36 heated to 60 °C for 24 h and the product mixture was concen-37 trated in vacuo and the residue was purified by column chromatography over silica gel (hexanes / ethyl acetate = 20 / 1) to af-38 ford the desired products 3. 39

(R)-tert-butyl 3-nitro-2-phenylpropanoate (3aa). Isolated as 40 a colorless oil: 35.2 mg (0.2 mmol scale), 70% yield; 137 mg 41 (1.0 mmol), 52% yield. The ee was determined on a Daicel Chi-42 ralpak IB column (250 mm) with hexanes / 2-propanol = 90 / 43 10, flow = 1.0 mL/min, wavelength = 220 nm. Retention times: 44 6.61 min [(R)-enantiomer], 9.47 min [(S)-enantiomer]. 93% ee. 45 $[\alpha]_{D}^{25}$ +131.9 (c 1.00, CHCl₃). R_f 0.22 (hexanes / ethyl acetate, 46 20 / 1).¹H NMR (400 MHz, CDCl₃): δ 7.39–7.29 (m, 3H), 7.28– 47 7.24 (m, 2H), 5.03 (dd, J = 14.8, 10.0 Hz, 1H), 4.49 (dd, J =48 14.8, 5.2 Hz, 1H), 4.32 (dd, J = 10.0, 5.2 Hz, 1H), 1.41 (s, 9H). 49 ¹³C NMR (100 MHz, CDCl₃): δ 169.5, 133.9, 129.2, 128.4, 50 127.6, 82.5, 75.9, 49.7, 27.8. FT-IR (KBr, neat): v 2980, 1726, 51 1556, 1370, 1254, 1210, 1152 cm⁻¹. HRMS (FAB/Magnetic 52 Sector): m/z calcd for C₁₃H₁₈NO₄⁺ $[M + H]^+$ 252.1236, found 53 252.1235.

(*R*)-tert-butyl 2-(2-methoxyphenyl)-3-nitropropanoate
(3ab). Isolated as a colorless oil: 24.8 mg, 44% yield. The ee was determined on a Daicel Chiralcel OJ-H column (250 mm); detected at 220 nm; hexanes / 2-propanol, 90 / 10; flow = 1.0

mL/min; retention times: 10.51 min [(*R*)-enantiomer], 12.27 min [(*S*)-enantiomer]. 98% ee. $[\alpha]_0^{26}$ +77.1 (*c* 1.00, CHCl₃). *R_f* 0.17 (hexanes / ethyl acetate, 20 / 1). ¹H NMR (400 MHz, CDCl₃): δ 7.32–7.26 (m, 1H), 7.15 (dd, *J* = 7.6, 1.6 Hz, 1H), 6.96–6.86 (m, 2H), 4.97 (dd, *J* = 14.4, 9.2 Hz, 1H), 4.64 (dd, *J* = 9.2, 5.2 Hz, 1H), 4.47 (dd, *J* = 14.4, 5.2, Hz, 1H), 3.83 (s, 3H), 1.43 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 169.9, 156.7, 129.6, 129.3, 122.8, 120.9, 110.8, 82.0, 74.8, 55.3, 44.9, 27.8. FT-IR (KBr, neat): \tilde{v} 2979, 2363, 1729, 1556, 1495, 1460, 1370, 1251, 1153 cm⁻¹. HRMS (EI/Magnetic Sector): *m/z* calcd for C₁₄H₁₉NO₅⁺ [*M*]⁺ 281.1263, found 281.1265.

(*R*)-*tert*-butyl 2-(3-methoxyphenyl)-3-nitropropanoate (3ac). Isolated as a colorless oil: 31.6 mg, 56% yield. The ee was determined on a Daicel Chiralpak IB column (250 mm); detected at 220 nm; hexanes / 2-propanol, 90 / 10; flow = 1.0 mL/min; retention times: 7.31 min [(R)-enantiomer], 20.93 min [(S)-enantiomer]. 94% ee. $[\alpha]_{D}^{26}$ +55.6 (c 1.00, CHCl₃). R_f 0.17 (hexanes / ethyl acetate, 20 / 1). ¹H NMR (400 MHz, CDCl₃): δ 7.27 (dd, J = 8.0, 7.6 Hz, 1H), 6.89–6.77 (m, 3H), 5.02 (dd, J =14.4, 10.4 Hz, 1H), 4.47 (dd, J = 14.4, 4.8 Hz, 1H), 4.29 (dd, J = 10.4, 4.8 Hz, 1H), 3.80 (s, 3H), 1.42 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 169.4, 160.0, 135.2, 130.2, 119.9, 113.7, 113.6, 82.5, 75.9, 55.2, 49.6, 27.8. FT-IR (KBr, neat): v 2982, 1727, 1601, 1586, 1556, 1492, 1371, 1258, 1219 cm⁻¹. HRMS (EI/Magnetic Sector): m/z calcd for C₁₄H₁₉NO₅⁺ [M]⁺ 281.1263, found 281.1263.

(*R*)-*tert*-butyl 2-(4-methoxyphenyl)-3-nitropropanoate (3ad). Isolated as a colorless oil: 27.0 mg, 48% yield. The ee was determined on a Daicel Chiralpak IB column (250 mm); detected at 220 nm; hexanes / 2-propanol, 90 / 10; flow = 1.0 mL/min; retention times: 9.17 min [(*R*)-enantiomer], 14.32 min [(*S*)-enantiomer]. 91% ee. $[\alpha]_D^{26}$ +55.7 (c 1.00, CHCl₃). R_f 0.17 (hexanes / ethyl acetate, 20 / 1). ¹H NMR (400 MHz, CDCl₃): δ 7.18 (d, *J* = 8.8 Hz, 2H), 6.88 (d, *J* = 8.8 Hz, 2H), 4.99 (dd, *J* = 14.4, 10.0 Hz, 1H), 4.46 (dd, *J* = 14.4, 5.2 Hz, 1H), 4.26 (dd, *J* = 10.0, 5.2 Hz, 1H), 3.80 (s, 3H), 1.41 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 169.8, 159.6, 128.9, 125.8, 114.6, 82.4, 76.1, 55.3, 48.9, 27.8. FT-IR (KBr, neat): \tilde{v} 2979, 1725, 1610, 1556, 1513, 1369, 1303, 1252, 1152 cm⁻¹. HRMS (El/Magnetic Sector): m/z calcd for C₁₄H₁₉NO₅⁺ [M]⁺ 281.1263, found 281.1265.

(*R*)-*tert*-butyl 3-nitro-2-(o-tolyl)propanoate (3ae). Isolated as a colorless oil: 33.5 mg, 63% yield. The ee was determined on a Daicel Chiralpak IB column (250 mm); detected at 220 nm; hexanes / 2-propanol, 90 / 10; flow = 1.0 mL/min; retention times: 6.85 min [(*R*)-enantiomer], 17.57 min [(*S*)-enantiomer]. 95% ee. $[\alpha]_{D}^{26}$ +75.9 (*c* 1.00, CHCl₃). R_f 0.3 (hexanes / ethyl acetate, 20 / 1). ¹H NMR (400 MHz, CDCl₃): δ 7.24–7.12 (m, 4H), 5.03 (dd, *J* = 14.4, 10.0 Hz, 1H), 4.62 (dd, *J* = 10.0, 4.8 Hz, 1H), 4.42 (dd, *J* = 14.4, 4.8 Hz, 1H), 2.44 (s, 3H), 1.40 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 169.9, 136.4, 132.4, 131.2, 128.2, 126.7, 126.4, 82.4, 75.2, 45.4, 27.8, 19.6. FT-IR (KBr, neat): \tilde{v} 2979, 1727, 1556, 1370, 1253, 1152 cm⁻¹. HRMS (EI/Magnetic Sector): *m/z* calcd for C₁₄H₁₉NO₄⁺ [*M*]⁺ 265.1314, found 265.1313.

(*R*)-tert-butyl 3-nitro-2-(*m*-tolyl)propanoate (3af). Isolated as a colorless oil: 28.7 mg, 54% yield. The ee was determined on a Daicel Chiralpak IB column (250 mm); detected at 220 nm; hexanes / 2-propanol, 90 / 10; flow = 1.0 mL/min; retention times: 5.36 min [(*R*)-enantiomer], 7.52 min [(*S*)-enantiomer]. 92% ee. $[\alpha]_{D}^{26}$ +59.0 (*c* 1.00, CHCl₃). R_f 0.3 (hexanes / ethyl acetate, 20 / 1). ¹H NMR (400 MHz, CDCl₃): δ 7.25–7.21 (m, 1H),

2

3

4

5

58

59

60

7.13 (d, J = 7.6 Hz, 1H), 7.06–7.03 (m, 2H), 5.02 (dd, J = 14.4, 10.0 Hz, 1H), 4.46 (dd, J = 14.4, 4.8 Hz, 1H), 4.28 (dd, J = 10.0, 4.8 Hz, 1H), 2.35 (s, 3H), 1.42 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 169.6, 139.0, 133.7, 129.15, 129.05, 128.5, 124.7, 82.4, 76.0, 49.6, 27.8, 21.3. FT-IR (KBr, neat): \tilde{v} 2981, 1726, 1556, 1370, 1252, 1150 cm⁻¹. HRMS (EI/Magnetic Sector): m/zcalcd for C₁₄H₁₉NO₄⁺ [M]⁺ 265.1314, found 265.1316.

6 (R)-tert-butyl 3-nitro-2-(p-tolyl)propanoate (3ag). Isolated as 7 a colorless oil: 23.9 mg, 45% yield. The ee was determined on 8 a Daicel Chiralpak IB column (250 mm); detected at 220 nm; 9 hexanes / 2-propanol, 90 / 10; flow = 1.0 mL/min; retention 10 times: 6.51 min [(R)-enantiomer], 10.64 min [(S)-enantiomer]. 11 90% ee. $\left[\alpha\right]_{D}^{26}$ +54.0 (c 1.00, CHCl₃). R_f 0.3 (hexanes / ethyl ac-12 etate, 20 / 1). ¹H NMR (400 MHz, CDCl₃): δ 7.17 (d, J = 8.613 Hz, 2H), 7.14 (d, J = 8.6 Hz, 2H), 5.01 (dd, J = 14.4, 10.0 Hz, 14 1H), 4.46 (dd, J = 14.4, 5.2 Hz, 1H), 4.28 (dd, J = 10.0, 5.2 Hz, 15 1H), 2.33 (s, 3H), 1.41 (s, 9H). 13 C NMR (100 MHz, CDCl₃): δ 16 169.7, 138.3, 130.8, 129.9, 127.6, 82.4, 76.1, 49.3, 27.8, 21.1. 17 FT-IR (KBr, neat): v 2980, 1727, 1514, 1416, 1371, 1253, 1210, 1153 cm⁻¹. HRMS (EI/Magnetic Sector): m/z calcd for 18 $C_{14}H_{19}NO_4^+$ [*M*]⁺ 265.1314, found 265.1314. 19

20 2-(4-(tert-butyl)phenyl)-3-nitropropanoate (R)-tert-butyl (3ah). Isolated as a colorless oil: 40.0 mg, 65% yield. The ee 21 was determined on a Daicel Chiralpak IB column (250 mm); 22 detected at 220 nm; hexanes / 2-propanol, 90 / 10; flow = 1.0 23 mL/min; retention times: 4.96 min [(R)-enantiomer], 14.72 min 24 [(S)-enantiomer]. 95% ee. $[\alpha]_{D}^{26}$ +48.7 (c 1.00, CHCl₃). R_f 0.37 25 (hexanes / ethyl acetate, 20 / 1). ¹H NMR (400 MHz, CDCl₃): δ 26 7.37 (d, J = 8.6 Hz, 2H), 7.18 (d, J = 8.6 Hz, 2H), 5.01 (dd, J =27 14.8, 10.4 Hz, 1H), 4.46 (dd, J = 14.8, 4.8 Hz, 1H), 4.29 (dd, J28 = 10.4, 4.8 Hz, 1H), 1.43 (s, 9H) 1.31 (s, 9H). ¹³C NMR (100) 29 MHz, CDCl₃): δ 169.7, 151.4, 130.7, 127.4, 126.1, 82.4, 76.1, 30 49.3, 34.6, 31.2, 27.8. FT-IR (KBr, neat): v 2966, 1727, 1555, 31 1369, 1252, 1152 cm⁻¹. HRMS (EI/Magnetic Sector): *m/z* calcd 32 for $C_{17}H_{25}NO_4^+$ [M]⁺ 307.1784, found 307.1782.

33 (*R*)-*tert*-butvl 2-([1,1'-biphenyl]-4-yl)-3-nitropropanoate 34 (3ai). Isolated as an off-white solid: 37.3 mg, 57% yield. The ee 35 was determined on a Daicel Chiralpak IB column (250 mm); 36 detected at 220 nm; hexanes / 2-propanol, 90 / 10; flow = 1.0 37 mL/min; retention times: 11.28 min [(R)-enantiomer], 11.87 min [(S)-enantiomer]. 98% ee. $[\alpha]_{D}^{26}$ +67.0 (c 1.00, CHCl₃). M.p. 38 84–86 °C. R_f 0.17 (hexanes / ethyl acetate, 20 / 1). ¹H NMR (400 39 MHz, CDCl₃): δ 7.61–7.55 (m, 4H), 7.48–7.42 (m, 2H), 7.40– 40 7.31 (m, 3H), 5.07 (dd, J = 14.4, 10.4 Hz, 1H), 4.53 (dd, J =41 14.4, 5.2 Hz, 1H), 4.37 (dd, J = 10.4, 5.2 Hz, 1H), 1.44 (s, 9H). 42 ¹³C NMR (100 MHz, CDCl₃): δ 169.5, 141.4, 140.2, 132.8, 43 128.8, 128.2, 127.9, 127.6, 127.0, 82.6, 75.9, 49.4, 27.8. FT-IR 44 (KBr, neat): \tilde{v} 2978, 1727, 1556, 1487, 1413, 1370, 1253, 1152 45 cm⁻¹. HRMS (EI/Magnetic Sector): m/z calcd for C₁₉H₂₁NO₄⁺ 46 $[M]^+$ 327.1471, found 327.1472.

47 (R)-tert-butyl 2-(naphthalen-1-yl)-3-nitropropanoate (3aj). 48 Isolated as a colorless oil: 39.2 mg, 65% yield. The ee was de-49 termined on a Daicel Chiralpak IB column (250 mm); detected 50 at 220 nm; hexanes / 2-propanol, 90 / 10; flow = 1.0 mL/min; 51 retention times: 11.01 min [(R)-enantiomer], 28.53 min [(S)-en-52 antiomer]. 93% ee. $[\alpha]_{D}^{26}$ +124.5 (c 1.00, CHCl₃). R_f 0.35 (hex-53 anes / ethyl acetate, 20 / 1). ¹H NMR (400 MHz, CDCl₃): δ 8.09 54 (d, J = 8.4 Hz, 1H), 7.91 (d, J = 8.0 Hz, 1H), 7.85 (d, J = 8.0 Hz)Hz, 1H), 7.64-7.52 (m, 2H), 7.49-7.37 (m, 2H), 5.23-5.12 (m, 55 2H) 4.55 (d, J = 10.8 Hz, 1H), 1.42 (s, 9H). ¹³C NMR (100 MHz, 56 CDCl₃): δ 170.1, 134.2, 130.9, 130.1, 129.2, 129.1, 127.1, 57

126.2, 125.4, 125.3, 122.4, 82.7, 75.5, 45.4, 27.8. FT-IR (KBr, neat): \tilde{v} 2978, 1726, 1556, 1513, 1370, 1254, 1153 cm⁻¹. HRMS (EI/Magnetic Sector): *m/z* calcd for C₁₇H₁₉NO₄⁺ [*M*]⁺ 301.1314, found 301.1315.

(*R*)-*tert*-butyl 2-(naphthalen-2-yl)-3-nitropropanoate (3ak). Isolated as an off-white solid: 27.2 mg, 45% yield. The ee was determined on a Daicel Chiralpak AD-H column (250 mm); detected at 220 nm; hexanes / 2-propanol, 90 / 10; flow = 1.0 mL/min; retention times: 9.36 min [(*S*)-enantiomer], 10.16 min [(*R*)-enantiomer]. 94% ee. $[\alpha]_{D}^{26}$ +66.0 (*c* 1.00, CHCl₃). M.p. 88–90 °C. R_f 0.35 (hexanes / ethyl acetate, 20 / 1). ¹H NMR (400 MHz, CDCl₃): δ 7.89–7.79 (m, 3H), 7.74–7.72 (m, 1H), 7.55–7.48 (m, 2H), 7.37 (dd, *J* = 8.4, 2.0 Hz, 1H), 5.14 (dd, *J* = 14.8, 10.0 Hz, 1H), 4.58 (dd, *J* = 14.8, 5.2 Hz, 1H), 4.50 (dd, *J* = 10.0, 5.2 Hz, 1H), 1.42 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 169.6, 133.4, 133.0, 131.2, 129.1, 127.9, 127.7, 127.2, 126.7, 126.6, 125.1, 82.6, 76.0, 49.8, 27.8. FT-IR (KBr, neat): \tilde{v} 2979, 1726, 1555, 1370, 1252, 1218, 1151 cm⁻¹. HRMS (EI/Magnetic Sector): *m/z* calcd for C₁₇H₁₉NO₄⁺ [*M*]⁺ 301.1314, found 301.1314.

(R)-tert-butyl 3-nitro-2-(2-(trifluoromethyl)phenyl)propanoate (3al). Isolated as a colorless oil: 23.0 mg, 36% yield. The ee was determined on a Daicel Chiralpak IB column (250 mm); detected at 220 nm; hexanes / 2-propanol, 90 / 10; flow = 1.0 mL/min; retention times: 5.84 min [(R)-enantiomer], 6.19 min [(S)-enantiomer]. 99.5% ee. $[\alpha]_{D}^{26}$ +75.9 (c 1.00, CHCl₃). R_f 0.25 (hexanes / ethyl acetate, 20 / 1). ¹H NMR (400 MHz, CDCl₃): δ 7.74 (d, J = 8.0 Hz, 1H), 7.56 (dd, J = 8.0, 7.2 Hz, 1H), 7.50–7.41 (m, 2H), 4.98 (dd, J = 14.8, 10.4 Hz, 1H), 4.79 (dd, J = 10.4, 4.0, Hz, 1H), 4.41 (dd, J = 14.8, 4.0 Hz, 1H), 1.40(s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 169.1, 132.5, 129.2 (q, J = 30.0 Hz), 128.61, 128.55, 127.0 (q, J = 6.0 Hz), 124.0 (q, J= 272.0 Hz), 83.0, 75.3, 45.3, 27.7. FT-IR (KBr, neat): \tilde{v} 2980, 1730, 1561, 1376, 1314, 1255, 1156 cm⁻¹. HRMS (FAB/Magnetic Sector): m/z calcd for $C_{14}H_{17}F_{3}NO_{4}^{+}[M + H]^{+}$ 320.1110, found 320.1108.

(*R*)-*tert*-butvl 3-nitro-2-(3-(trifluoromethyl)phenyl)propanoate (3am). Isolated as a colorless oil: 39.1 mg, 61% yield. The ee was determined on a Daicel Chiralpak IB column (250 mm); detected at 220 nm; hexanes / 2-propanol, 90 / 10; flow = 1.0 mL/min; retention times: 6.43 min [(R)-enantiomer], 7.65 min [(S)-enantiomer]. 98% ee. $[\alpha]_{D}^{26}$ +62.0 (c 1.00, CHCl₃). R_f 0.25 (hexanes / ethyl acetate, 20 / 1). ¹H NMR (400 MHz, $CDCl_3$): δ 7.61 (d, J = 7.2 Hz, 1H), 7.56–7.42 (m, 3H), 5.05 (dd, J = 14.4, 9.6 Hz, 1H), 4.53 (dd, J = 14.4, 5.6 Hz, 1H), 4.40 (dd, J = 9.6, 5.6 Hz, 1H), 1.41 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 168.8, 135.0, 131.7 (q, J = 32.0 Hz), 131.2, 129.8, 125.4 (q, J = 3.0 Hz), 124.8 (q, J = 3.0 Hz), 123.7 (q, J = 271.0 Hz), 83.2, 75.6, 49.4, 27.7. FT-IR (KBr, neat): v 2980, 1729, 1562, 1372, 1330, 1256, 1154 cm⁻¹. HRMS (FAB/Magnetic Sector): *m/z* calcd for $C_{14}H_{17}F_{3}NO_{4}^{+}[M+H]^{+}$ 320.1110, found 320.1110.

(*R*)-tert-butyl **3-nitro-2-(4-(trifluoromethyl)phenyl)propanoate (3an)**. Isolated as a colorless oil: 42.8 mg, 67% yield. The ee was determined on a Daicel Chiralpak IB column (250 mm); detected at 220 nm; hexanes / 2-propanol, 90 / 10; flow = 1.0 mL/min; retention times: 7.01 min [(*R*)-enantiomer], 9.25 min [(*S*)-enantiomer]. 98% ee. $[a]_{\rm D}^{26}$ +62.4 (*c* 1.00, CHCl₃). R_f 0.25 (hexanes / ethyl acetate, 20 / 1). ¹H NMR (400 MHz, CDCl₃): δ 7.64 (d, *J* = 8.0 Hz, 2H), 7.40 (d, *J* = 8.0 Hz, 2H), 5.04 (dd, *J* = 14.8, 9.6 Hz, 1H), 4.52 (dd, *J* = 14.8, 5.6 Hz, 1H), 4.40 (dd, *J* = 9.6, 5.6 Hz, 1H), 1.42 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 168.8, 137.9, 130.9 (q, *J* = 33.0 Hz), 128.3, 126.2 (q,

Page 6 of 9

J = 4.0 Hz), 123.8 (q, J = 270.0 Hz), 83.2, 75.6, 49.5, 27.7. FT-IR (KBr, neat): \tilde{v} 2982, 1729, 1561, 1421, 1372, 1326, 1256, 1154 cm⁻¹. HRMS (FAB/Magnetic Sector): m/z calcd for $C_{14}H_{17}F_3NO_4^+ [M + H]^+$ 320.1110, found 320.1110.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

58

59

60

(*R*)-*tert*-butyl 2-(4-fluorophenyl)-3-nitropropanoate (3ao). Isolated as a colorless oil: 33.9 mg, 63% yield. The ee was determined on a Daicel Chiralcel OD-H column (250 mm); detected at 220 nm; hexanes / 2-propanol, 90 / 10; flow = 1.0 mL/min; retention times: 10.27 min [(*S*)-enantiomer], 10.91 min [(*R*)-enantiomer]. 96% ee. $[\alpha]_D^{26}$ +64.8 (*c* 1.00, CHCl₃). R_f 0.22 (hexanes / ethyl acetate, 20 / 1). ¹H NMR (400 MHz, CDCl₃): δ 7.25–7.21 (m, 2H), 7.09–7.02 (m, 2H), 5.00 (dd, *J* = 14.4, 10.0 Hz, 1H), 4.48 (dd, *J* = 14.4, 5.2, Hz 1H), 4.31 (dd, *J* = 10.0, 5.2 Hz, 1H), 1.41 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 169.4, 165.1 (d, *J* = 246.0 Hz), 129.7, 129.5 (d, *J* = 8.0 Hz), 116.2 (d, *J* = 22.0 Hz), 82.7, 75.9, 48.9, 27.7. FT-IR (KBr, neat): \tilde{v} 2983, 1728, 1605, 1157, 1510, 1418, 1372, 1228, 1152 cm⁻¹. HRMS (EI/Magnetic Sector): *m/z* calcd for C₁₃H₁₆FNO₄⁺ [*M*]⁺ 269.1063, found 269.1062.

18 (R)-butyl 2-(4-chlorophenyl)-3-nitropropanoate (3ap). Iso-19 lated as an off-white solid: 29.3 mg, 51% yield. The ee was de-20 termined on a Daicel Chiralpak IB column (250 mm); detected at 220 nm; hexanes / 2-propanol, 90 / 10; flow = 1.0 mL/min; 21 retention times: 7.47 min [(R)-enantiomer], 10.11 min [(S)-en-22 antiomer]. 95% ee. $[\alpha]_{D}^{26}$ +67.5 (c 1.00, CHCl₃). M.p. 60–62 °C. 23 $R_f 0.27$ (hexanes / ethyl acetate, 20 / 1). ¹H NMR (400 MHz, 24 $CDCl_3$): δ 7.34 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H), 25 5.00 (dd, J = 14.4, 10.0 Hz, 1H), 4.48 (dd, J = 14.4, 5.4 Hz, 1H),26 4.30 (dd, J = 10.0, 5.4 Hz, 1H), 1.41 (s, 9H). ¹³C NMR (100 27 MHz, CDCl₃): δ 169.1, 134.5, 132.4, 129.5, 129.2, 82.9, 75.7, 28 49.1, 27.8. FT-IR (KBr, neat): v 2980, 1726, 1556, 1492, 1370, 29 1254, 1152 cm⁻¹. HRMS (EI/Magnetic Sector): m/z calcd for 30 $C_{13}H_{16}CINO_4^+ [M]^+ 285.0768$, found 285.0768.

31 (*R*)-*tert*-butvl 2-(3,4-dichlorophenyl)-3-nitropropanoate 32 (3aq). Isolated as a colorless oil: 32.7 mg, 51% yield. The ee 33 was determined on a Daicel Chiralpak IB column (250 mm); 34 detected at 220 nm; hexanes / 2-propanol, 90 / 10; flow = 1.0 35 mL/min; retention times: 8.03 min [(R)-enantiomer], 15.57 min [(S)-enantiomer]. 98% ee. $[\alpha]_{D}^{26}$ +61.8 (c 1.00, CHCl₃). R_f 0.25 36 37 (hexanes / ethyl acetate, 20 / 1). ¹H NMR (400 MHz, CDCl₃): δ 38 7.44 (d, J = 8.4 Hz, 1H), 7.38 (d, J = 2.4 Hz, 1H), 7.12 (dd, J =8.4, 2.4 Hz, 1H), 4.99 (dd, J = 14.8, 9.6 Hz, 1H), 4.49 (dd, J =39 14.8, 5.6 Hz, 1H), 4.28 (dd, J = 9.6, 5.6 Hz, 1H), 1.42 (s, 9H). 40 ¹³C NMR (100 MHz, CDCl₃): δ 168.6, 134.0, 133.4, 132.9, 41 131.2, 129.9, 127.1, 83.3, 75.5, 48.8, 27.8. FT-IR (KBr, neat): 42 \tilde{v} 2981, 1729, 1556, 1472, 1371, 1253, 1153 cm⁻¹. HRMS 43 (EI/Magnetic Sector): m/z calcd for $C_{13}H_{15}Cl_2NO_4^+$ $[M]^+$ 44 319.0378, found 319.0380.

45 (R)-isopropyl 3-nitro-2-phenylpropanoate (3ba). Isolated as 46 a colorless oil: 30.4 mg, 64% yield. The ee was determined on 47 a Daicel Chiralpak IB column (250 mm); detected at 220 nm; 48 hexanes / 2-propanol, 90 / 10; flow = 1.0 mL/min; retention 49 times: 9.04 min (*R*), 17.65 min (*S*). 93% ee. $[\alpha]_{D}^{28}$ +118.1 (*c* 1.00, CHCl₃). R_f 0.3 (hexanes / ethyl acetate, 20 / 1). ¹H NMR (400 50 51 MHz, CDCl₃): δ 7.40–7.24 (m, 5H), 5.13–5.00 (m, 2H), 4.53 52 (dd, J = 14.8, 5.2 Hz, 1H), 4.38 (dd, J = 10.0, 5.2 Hz, 1H), 1.27 53 (d, J = 6.2 Hz, 3H), 1.13 (d, J = 6.2 Hz, 3H). ¹³C NMR (100 54 MHz, CDCl₃): δ 170.0, 133.5, 129.3, 128.5, 127.8, 75.8, 69.6, 49.0, 21.6, 21.3. FT-IR (KBr, neat): v 2987, 2360, 1729, 1697, 55 1557, 1376, 1251, 1203, 1178 cm⁻¹. HRMS (EI/Magnetic Sec-56 tor): m/z calcd for C₁₂H₁₅NO₄⁺ [M]⁺ 237.1001, found 237.1000. 57

(R)-isopropyl 2-(naphthalen-1-yl)-3-nitropropanoate (3bj). Isolated as a colorless oil: 33.9 mg, 59% yield. The ee was determined on a Daicel Chiralcel OJ-H column (250 mm); detected at 220 nm; hexanes / 2-propanol, 90 / 10; flow = 1.0 mL/min; retention times: 23.04 min [(R)-enantiomer], 28.56 min [(S)-enantiomer]. 96% ee. $[\alpha]_{D}^{26}$ +210.5 (c 1.00, CHCl₃). R_f 0.2 (hexanes / ethyl acetate, 20 / 1). ¹H NMR (400 MHz, CDCl₃): δ 8.08 (d, J = 8.4 Hz, 1H), 7.90 (d, J = 8.0 Hz, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.64-7.51 (m, 2H), 7.47-7.41 (m, 1H),7.39–7.35 (m, 1H), 5.28–5.16 (m, 2H), 5.11 (sep, J = 6.4 Hz, 1H), 4.64–4.51 (m, 1H), 1.27 (d, J = 6.4 Hz, 3H), 1.09 (d, J = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 170.6, 134.2, 130.9, 129.7, 129.3, 129.2, 127.2, 126.2, 125.5, 125.4, 122.3, 75.4, 69.8, 44.8, 21.6, 21.2. FT-IR (KBr, neat): v 2983, 1728, 1645, 1557, 1522, 1418, 1376, 1319, 1253, 1203, 1144 cm^{-1} . HRMS (EI/Magnetic Sector): m/z calcd for $C_{16}H_{17}NO_4^+$ $[M]^+$ 287.1158, found 287.1159.

(*R*)-isopropyl 3-nitro-2-(4-(trifluoromethyl)phenyl)propanoate (3bn). Isolated as a colorless oil: 22.0 mg, 43% yield. The ee was determined on a Daicel Chiralpak IB column (250 mm); detected at 220 nm; hexanes / 2-propanol, 90 / 10; flow = 1.0 mL/min; retention times: 7.17 min [(R)-enantiomer], 11.15 min [(S)-enantiomer]. 96% ee. $[\alpha]_{D}^{26}$ +117.6 (c 1.00, CHCl₃). R_f 0.17 (hexanes / ethyl acetate, 20 / 1). $^1\mathrm{H}$ NMR (400 MHz, CDCl₃): δ 7.29–7.22 (m, 2H), 7.10–7.02 (m, 2H), 5.10–5.01 (m, 2H), 4.53 (dd, J = 14.4, 5.2 Hz, 1H), 4.37 (dd, J = 10.0, 5.2 Hz, 1H), 1.27 (d, J = 6.4 Hz, 3H), 1.13 (d, J = 6.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 169.8, 162.7 (*d*, *J* = 247.0 Hz), 129.6 (*d*, J = 8.0 Hz), 129.3 (d, J = 3.0 Hz), 116.3 (d, J = 22.0 Hz), 75.8, 69.8, 48.3, 21.6, 21.3. FT-IR (KBr, neat): v 2989, 1731, 1621, 1560, 1421, 1377, 1326, 1254, 1205 cm⁻¹. HRMS (EI/Magnetic Sector): m/z calcd for C₁₂H₁₄FNO₄⁺ [M]⁺ 255.0907, found 255.0908.

(*R*)-benzyl 3-nitro-2-phenylpropanoate (3ca). Isolated as an off-white solid: 24.0 mg, 42% yield. The ee was determined on a Daicel Chiralpak IB column (250 mm); detected at 220 nm; hexanes / 2-propanol, 90 / 10; flow = 1.0 mL/min; retention times: 13.89 min [(*R*)-enantiomer], 26.77 min [(*S*)-enantiomer]. 92% ee. $[\alpha]_{D}^{28}$ +98.2 (*c* 1.00, CHCl₃). M.p. 50–52 °C. R_f 0.2 (hexanes / ethyl acetate, 20 / 1). ¹H NMR (400 MHz, CDCl₃): δ 7.37–7.18 (m, 10H), 5.22 (d, *J* = 12.4 Hz, 1H), 5.12 (d, *J* = 12.4 Hz, 1H), 5.11 (dd, *J* = 14.4, 10.0 Hz, 1H), 4.56 (dd, *J* = 14.8, 5.2 Hz, 1H), 4.48 (dd, *J* = 10.0, 5.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 170.4, 135.1, 133.1, 129.4, 128.7, 128.6, 128.4, 128.01, 127.96, 75.7, 67.5, 48.8. FT-IR (KBr, neat): \tilde{v} 3036, 1737, 1557, 1498, 1455, 1416, 1377, 1247, 1195 cm⁻¹. HRMS (EI/Magnetic Sector): *m/z* calcd for C₁₆H₁₅NO₄⁺ [*M*]⁺ 285.1001, found 285.1001.

General procedures for the synthesis of $\,\beta^2\text{-amino}$ acids

A 10 mL round bottle flask charged with **3aa** (50.3 mg, 0.2 mmol), and Pd/C (20 mg, 5wt%, 10%, 0.01 mmol) was evacuated and backed filled with H₂. MeOH (2 mL) was then added. After being stirred at rt for 12 h, the mixture was filtered through a pad of Celite[®] and the volatile was removed at reduced pressure, followed by the addition of 6 *N* HCl (10 mL). The mixture was heated to reflux, and it was cooled to rt after 12 h. The aqueous layer was extracted with ether (20 mLx3), and the aqueous layer was concentrated to give ammonium salt of compound **5** as a white solid. The solid was purified and neutralized by column chromatography on silica gel (eluting with

2

3

4

5

6

7

8

IPA/MeOH/NH₄OH, 5/2/1) to give **5** (22.1 mg, 67%) as a white solid.

(*R*)-3-amino-2-phenylpropanoic acid (5).²⁵ $[\alpha]_{\rm D}^{25}$ +80.7 (*c* 0.22, H₂O) M.p. 204–206 °C. ¹H NMR (400 MHz, D₂O): δ 7.48–7.32 (m, 5H), 3.80 (dd, J = 7.6, 7.6 Hz, 1H), 3.47 (dd, J = 12.8, 7.6 Hz, 1H), 3.29 (dd, J = 12.8, 7.6 Hz, 1H). ¹³C NMR (100 MHz, D₂O): δ 178.3, 137.2, 129.3, 128.2, 128.0, 51.4, 42.3. HRMS (ESI/Q-TOF): *m/z* calcd for C₉H₁₀NO₂⁻ [*M*]⁻ 164.0717, found 164.0711.

9 To a 15 mL round bottle flask were added 3ap (108.6 mg, 0.38 10 mmol), Zn dust (99.2 mg, 1.52 mmol), and MeOH (4 mL). At 0 °C, AcOH (4 mL) was added and the mixture was stirred for 11 additional 3 h. Ethyl acetate (10 mL) was added after the mix-12 ture was warmed to rt. The whole mixture was neutralized with 13 NaHCO3(aq), and the aqueous layer was separated, and extracted 14 with ethyl acetate (10 mLx3). The combined organic layer was 15 washed with brine, dried over anhydrous Na2SO4, filtered and 16 concentrated at reduced pressure to give the crude mixture. To 17 this mixture were added NaBH(OAc)₃, and CH₂Cl₂ (2 mL) un-18 der Ar atmosphere. The mixture was added anhydrous acetone 19 (22 µL, 0.3 mmol), and after being stirred for overnight, the 20 mixture was neutralized with 5 % NaOH(aq). The organic layer 21 was separated, washed with brine, dried over anhydrous Na₂SO₄, 22 filtered and concentrated at reduced pressure to give the crude 23 mixture, which was purified by column chromatography on silica gel (eluting with ethyl acetate/hexanes, 3/7) to give 7 (47.3 24 mg, 38%) as a white solid. 25

(R)-2-(4-chlorophenyl)-3-(isopropylamino)pro*tert*-butvl 26 panoate (7). The ee was determined on a Daicel Chiralpak OJ-27 H column (250 mm); detected at 220 nm; hexanes / 2-propanol, 28 90 / 10; flow = 1.0 mL/min; retention times: 3.46 min [(R)-en-29 antiomer], 4.88 min [(S)-enantiomer]. 95% ee. $[\alpha]_{D}^{29}$ +15.2 (c 30 1.00, CHCl₃). M.p. 61-63 °C. R_f 0.37 (hexanes / ethyl acetate, 31 3/1). ¹H NMR (400 MHz, CDCl₃): δ 7.29 (d, J = 8.4 Hz, 2H), 32 7.22 (d, J = 8.4 Hz, 2H), 3.64 (dd, J = 8.4, 6.8 Hz, 1H), 3.17 33 (dd, J = 12.0, 8.4 Hz, 1H), 2.84-2.73 (m, 2H), 1.39 (s, 9H),34 1.37-1.25 (m, 1H), 1.03 (d, J = 6.4 Hz, 3H), 1.01 (d, J = 6.4 Hz, 35 3H). ¹³C NMR (100 MHz, CDCl₃): δ 172.1, 136.5, 133.1, 129.3, 36 128.8, 81.1, 52.6, 50.2, 48.3, 27.9, 22.9, 22.8. FT-IR (KBr, 37 neat): v 2968, 2931, 2869, 1724, 1506, 1491, 1367, 1257, 1147 cm⁻¹. HRMS (ESI/Q-TOF): m/z calcd for C₁₆H₂₅NO₂Cl⁺ 38 [*M*+H]⁺298.1574, found 298.1577. 39

ASSOCIATED CONTENT

Supporting Information

The Supporting Information containing HPLC chromatograms, and
NMR spectra of addition products is available free of charge on the
ACS Publications website.

AUTHOR INFORMATION

Corresponding Author

* E-mail:hlw@ntnu.edu.tw.

Notes

40

41

42

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

The authors declare no competing financial interest.

ACKNOWLEDGMENT

Financial support from the Ministry of Science and Technology of Republic of China (102-2113-M-003-006-MY2 and 104-2628-M-003-001-MY3) and National Taiwan Normal University (NTNU 2016 Subsidy Policy for International Collaboration and Research Projects) is gratefully acknowledged.

REFERENCES

(1) (a) Cheng, R. P.; Gellman, S. H.; DeGrado, W. F. β-Peptides: From Structure to Function. Chem. Rev. 2001, 101, 3219-3213. (b) Liu, M.; Sibi, M. P. Recent Advances in the Stereoselective Synthesis of β-Amino Acids. Tetrahedron, 2002, 58, 7991-8035. (c) Lelais, G.; Seebach, D. β²-Amino Acids—Syntheses, Occurrence in Natural Products, and Components of β -Peptides. Biopolymers 2004, 76, 206–243. (d) Davies, S. G.; Smith, A. D.; Price, P. D. The Conjugate Addition of Enantiomerically Pure Lithium Amides as Homochiral Ammonia Equivalents: Scope, Limitations and Synthetic Applications. Tetrahedron: Asymmetry 2005, 16, 2833-2891. (e) Juaristi, E.; Soloshonok, V. A. Eds. Enantioselective Synthesis of β -Amino Acids, 2nd ed., Wiley-VCH: Weinheim, 2005. (f) Liljeblad, A.; Kanerva, L. T. Biocatalysis as a Profound Tool in the Preparation of Highly Enantiopure β-Amino Acids. Tetrahedron, 2006, 62, 5831-5854. (g) Haldar, D. Recent Developments in the Synthesis of Amino Acids and Analogues for Foldamers Study. Curr. Org. Synth. 2008, 5, 61-80.

(2) Kudo, F.; Miyanaga, A.; Eguchi, T. Nat. Prod. Rep. 2014, 31, 1056.

(3) (a) Geng, C.-A.; Ma, Y.-B.; Chen, J.-J. Bishyoscyamine, One Unusual Dimeric Tropane Alkaloid from *Anisodus Acutangulus. Chin. Chem. Lett.* **2013**, *24*, 236–238. (b) Nishi, T.; Kubota, T.; Fromont, J.; Sasaki, T.; Kobayashi, J. Nakinadines B–F: New Pyridine Alkaloids with a β-Amino Acid Moiety from Sponge Amphimedon sp. *Tetrahedron*, **2008**, *64*, 3127–3132. (c) Blake, J. F.; Xu, R.; Bencsik, J. R.; Xiao, D.; Kallan, N. C.; Schlachter, S.; Mitchell, I. S.; Spencer, K. L.; Banka, A. L.; Wallace, E. M.; Gloor, S. L.; Martinson, M.; Woessner, R. D.; Vigers, G. P. A.; Brandhuber, B. J.; Liang, J.; Safina, B. S.; Li, J.; Zhang, B.; Chabot, C.; Do, S.; Lee, L.; Oeh, J.; Sampath, D.; Lee, B. B.; Lin, K.; Liederer, B. M.; Skelton, N. J. Discovery and Preclinical Pharmacology of a Selective ATP-Competitive Akt Inhibitor (GDC-0068) for the Treatment of Human Tumors. *J. Med. Chem.* **2012**, *55*, 8110–8127.

(4) (a) Stephens, O. M.; Kim, S.; Welch, B. D.; Hodsdon, M. E.; Kay, M. S.; Schepartz, A. Inhibiting HIV Fusion with a β -Peptide Foldamer. *J. Am. Chem. Soc.* **2005**, *127*, 13126–13127. (b) English, E. P.; Chumanov, R. S.; Gellman, S. H.; Compton, T. Rational Development of β -Peptide Inhibitors of Human Cytomegalovirus Entry. *J. Biol. Chem.* **2006**, *281*, 2661–2667. (c) Gademann, K.; Kimmerlin, T.; Hoyer, D.; Seebach, D. Peptide Folding Induces High and Selective Affinity of a Linear and Small β -Peptide to the Human Somatostatin Receptor 4. *J. Med. Chem.* **2001**, *44*, 2460–2468.

(5) (a) Evans, D. A.; Urpi, F.; Somers, T. C.; Clark, J. S.; Bilodeau, M. T. New Procedure for the Direct Generation of Titanium Enolates. Diastereoselective Bond Constructions with Representative Electrophiles. *J. Am. Chem. Soc.* **1990**, *112*, 8215–8216. (b) Hintermann, T.; Seebach, D. Synthesis of a β -Hexapeptide from (*R*)-2-Aminomethyl-alkanoic Acids and Structural Investigations. *Synlett* **1997**, 437–438. (c) Beddow, J. E.; Davies, S. G.; Smith, A. D.; Russell, A. J. Asymmetric Synthesis of 2-Alkyl- and 2-aryl-3-aminopropionic acids (β^2 -Amino Acids) from (*S*)-*N*-Acryloyl-5,5-dimethyloxazolidin-2-one SuperQuat Derivatives. *Chem. Commun.* **2004**, 2778–2779. (d) Tessier, A.; Lahmar, N.; Pytkowicz, J.; Brigaud, T. Highly Diastereoselective Synthetic Route to Enantiopure β^2 -Amino Acids and γ -Amino Alcohols Using a Fluorinated Oxazolidine (Fox) as Chiral Auxiliary. *J. Org. Chem.* **2008**, *73*, 3970–3973.

(6) (a) Chi, Y.; Gellman, S. H. Enantioselective Organocatalytic Aminomethylation of Aldehydes: A Role for Ionic Interactions and Efficient Access to β^2 -Amino Acids. J. Am. Chem. Soc. **2006**, 128, 6804–6805. (b) Xu, J.; Chen, X.; Wang, M.; Zheng, P.; Song, B.-A.; Chi, Y. R. Aminomethylation of Enals through Carbene and Acid Cooperative Catalysis: Concise Access to β^2 -Amino Acids. Angew. Chem. Int. Ed. **2015**, 54, 5161–5165. (c) Davies, H. M. L.; Venkataramani, C. Catalytic Enantioselective Synthesis of β^2 -Amino Acids. Angew. Chem. Int. Ed. **2002**, 41, 2197–2199. (d) Remarchuk, T.; Babu, S.; Stults, J.; Zanotti-Gerosa, A.; Roseblade, S.; Yang, S.; Huang, P.; Sha, C.; Wang, Y. An Efficient Catalytic Asymmetric Synthesis of a β^2 -Amino Acid on Multikilogram Scale. Org. Process Res. Dev. **2014**, 18, 135–141. (e) Huang, H.; Liu, X.; Deng, J.; Qiu, M.; Zheng, Z. Rhodium-Catalyzed Enantioselective Hydrogenation of β -Phthalimide Acrylates to

Synthesis of β²-Amino Acids. Org. Lett. 2006, 8, 3359–3362. (f) Qiu, L.; Prashad, M.; Hu, B.; Prashad, K.; Repic, O.; Blacklock, T. J.; Kwong, F. Y.; Kok, S. H. L.; Lee, H. W.; Chan, A. S. C. Enantioselective Hydrogenation of α-Aminomethylacrylates Containing a Free N–H Group for the Synthesis of β-Amino Acid Derivatives. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 16787–16792. (g) Guo, Y.; Shao, G.; Li, L.; Wu, W.; Li, R.; Li, J.; Song, J.; Qiu, L.; Prashad, M.; Kwong, F. Y. A General Approach to the Synthesis of β²-Amino Acid Derivatives via Highly Efficient Catalytic Asymmetric Hydrogenation of α-Aminomethylacrylates. Adv. Synth. Catal. 2010, 352, 1539–1553. (h) Martin, N. J. A.; Chen, X.; List, B. Organocatalytic Asymmetric Transferhydrogenation of β-Nitroacrylates: Accessing β²-Amino Acids. J. Am. Chem. Soc. 2008, 130, 13862–13863. (i) Li, S.; Xiao, T.; Li, D.; Zhang, X. First Iridium-Catalyzed Highly Enantioselective Hydrogenation of β-Nitroacrylates. Org. Lett. 2015, 17, 3782–3785.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58

59

60

(7) (a) Csuk, R.; Heller, L.; Siewert, B.; Gutnov, A.; Seidelmann, O.; Wendisch, V. β-Nitro Substituted Carboxylic Acids and Their Cytotoxicity. *Bioorg. Med. Chem. Lett.* 2014, 24, 4011–4013. (b) Eilitz, U.; Leßmann, F.; Seidelmann, O.; Wendisch, V. Stereoselective Synthesis of β²-Amino Acids by Michael Addition of Diorgano Zinc Reagents to Nitro Acrylates. *Tetrahedron: Asymmetry* 2003, *14*, 189–191. (c) Eilitz, U.; Leßmann, F.; Seidelmann, O.; Wendisch, V. Stereoselective Michael Addition of Trimethyl Aluminium to Nitro Acrylates: A Route to 2-Methyl-3-amino Propionic Acid. *Tetrahedron: Asymmetry* 2003, *14*, 3095–3097. (d) Petri, A.; Seidelmann, O.; Eilitz, U.; Leßmann, F.; Reißmann, S.; Wendisch, V. *Tetrahedron Lett.* 2014, *55*, 267.

21 (8) (a) Wei, W.-T.; Yeh, J.-Y.; Kuo, T.-S.; Wu, H.-L. Highly Enan-22 tioselective Rhodium-Catalyzed Asymmetric 1,4-Addition Reactions 23 of Arylboronic Acids to Acyclic a, β-Unsaturated Compounds: The Formal Synthesis of (-)-Indatraline. Chem. Eur. J. 2011, 17, 11405-24 11409. (b) Liu, C.-C.; Janmanchi, D.; Chen, C.-C.; Wu, H.-L. Expand-25 ing the C1-Symmetric Bicyclo[2.2.1]heptadiene Ligand Family: Highly 26 Enantioselective Synthesis of Cyclic β-Aryl-Substituted Carbonyl 27 Compounds. Eur. J. Org. Chem. 2012, 2503-2507. (c) Huang, K.-C.; Gopula, B.; Kuo, T.-S.; Chiang, C.-W.; Wu, P.-Y.; Henschke, J. P.; Wu, 28 H.-L. Rhodium-Catalyzed Asymmetric Addition of Arylboronic Acids 29 to B-Nitroolefins: Formal Synthesis of (S)-SKF 38393. Org. Lett. 2013, 30 15, 5730-5733. (d) Gopula, B.; Tsai, Y.-F.; Kuo, T.-S.; Wu, P.-Y.; 31 Henschke, J. P.; Wu, H.-L. Rhodium/Chiral Diene Complexes in the 32 Catalytic Asymmetric Arylation of β-Pyrazol-1-yl Acrylates. Org. Lett. 2015, 17, 1142-1145. (e) Gopula, B.; Yang, S.-H.; Kuo, T.-S. Hsieh, 33 J.-C.; Wu, P.-Y.; Henschke, J. P.; Wu, H.-L. Direct Synthesis of Chiral 34 3-Arylsuccinimides by Rhodium- Catalyzed Enantioselective Conju-35 gate Addition of Arylboronic Acids to Maleimides. Chem. Eur. J. 2015, 36 21, 11050-11055. (f) Fang, J.-H.; Chang, C.-A.; Gopula, B.; Kuo, T.-37 S.; Wu, P.-Y.; Henschke, J. P.; Wu, H.-L. Rhodium-Catalyzed Enantioselective Arylation of N-Substituted α,β -Unsaturated γ -Lactams: 38 Preparation of Chiral 4-Aryl-2- Pyrrolidones. Asian J. Org. Chem. 39 2016, 5, 481-485. (g) Fang, J.-H.; Jian, J.-H.; Chang, H.-C.; Kuo, T.-40 S.; Lee, W.-Z.; Wu, P.-Y.; Wu, H.-L. Synthesis of Quaternary-Carbon-41 Containing $\beta^{2,2}$ -Amino Acids by the Rh^I-Catalyzed Enantioselective 42 Arylation of α -Substituted β -Nitroacrylates. Chem. Eur. J. 2017, 23, 1830-1838. 43

(9) (a) Gopula, B.; Chiang, C.-W.; Lee, W.-Z.; Kuo, T.-S.; Wu, P.-Y.; Henschke, J. P.; Wu, H.-L. Highly Enantioselective Rh-Catalyzed Alkenylation of Imines: Synthesis of Chiral Allylic Amines via Asymmetric Addition of Potassium Alkenyltrifluoroborates to N-Tosyl Imines. Org. Lett. 2014, 16, 632–635. (b) Chen, C.-C.; Gopula, B.; Syu, J.-F.; Pan, J.-H.; Kuo, T.-S.; Wu, P.-Y.; Henschke, J. P.; Wu, H.-L. Enantioselective and Rapid Rh-Catalyzed Arylation of N-Tosyl- and N-Nosylaldimines in Methanol. J. Org. Chem. 2014, 79, 8077–8085. (c) Syu, J. F.; Lin, H. Y.; Cheng, Y.-Y.; Tsai, Y.-C.; Ting, Y.-C.; Kuo, T.-S.; Janmanchi, D.; Wu, P.-Y.; Henschke, J. P.; Wu, H.-L. Design and Synthesis of Chiral Diene Ligands for Rh¹-Catalyzed Enantioselective Arylation of N-DPP-protected Aldimines: Synthesis of the Antifungal Agent Bifonazole. Chem. Eur. J. 2017, 23, 14515–14522.

(10) (a) Wang, Z. G.; Feng, C. G.; Zhang, S. S.; Xu, M. H.; Lin, G. Q. Rhodium-Catalyzed Asymmetric Conjugate Addition of Organoboronic Acids to Nitroalkenes Using Chiral Bicyclo[3.3.0] Diene Ligands. *Angew. Chem. Int. Ed.* 2010, *49*, 5780–5783. (b) Lang, F.; Chen,; Li,

L.; Xing, J.; Han, F.; Cun, L.; Liao, J. Rhodium-catalyzed Highly Enantioselective Addition of Arylboronic Acids to 2-Nitrostyrenes by *tert*-Butanesulfinylphosphine Ligand. *Chem. Eur. J.* **2011**, *17*, 5242– 5245. (c) Xing, J.; Chen, G.; Cao, P.; Liao, J. Rhodium-Catalyzed Asymmetric Addition of Arylboronic Acids to Indolylnitroalkenes. *Eur. J. Org. Chem.* **2012**, 1230–1236. (d) Xue, F.; Wang, D. P.; Li, X. C.; Wan, B. S. Rhodium-Catalyzed Asymmetric Conjugate Addition of Arylboronic Acids to Nitroalkenes Using Olefin–Sulfoxide Ligands. *J. Org. Chem.* **2012**, *77*, 3071–3081.

(11) (a) Hayashi, T.; Yamasaki, K. Rhodium-Catalyzed Asymmetric 1,4-Addition and Its Related Asymmetric Reactions. *Chem. Rev.* 2003, *103*, 2829–2844. (b) Tang, P.; Dong, H.-Q.; Lin, G.-Q. Rhodium-Catalyzed Asymmetric Arylation. *ACS Catal.* 2012, *2*, 95–119. (c) Glorius, F. Chiral Olefin Ligands—New "Spectators" in Asymmetric Catalysis. *Angew. Chem. Int. Ed.* 2004, *43*, 3364–3366. (d) Defieber, C.; Grützmacher, H.; Carreira, E. M. Chiral Olefins as Steering Ligands in Asymmetric Catalysis. *Angew. Chem. Int. Ed.* 2008, 47, 4482–4502. (e) Shintani, R.; Hayashi, T. Chiral Diene Ligands for Asymmetric Catalysis. *Aldrichimica Acta* 2009, *42*, 31–38.

(12) For some selected references on hydrogen bond-mediated selectivity in transition metal catalysis: (a) Das, S.; Incarvito, C. D.; Crabtree, R. H.; Brudvig, G. W. Molecular Recognition in the Selective Oxvgenation of Saturated C-H Bonds by a Dimanganese Catalyst. Science 2006, 312, 1941–1943. (b) Fackler, P.; Berthold, C.; Voss, F.; Bach, T. Hydrogen-Bond-Mediated Enantio- and Regioselectivity in a Ru-Catalyzed Epoxidation Reaction. J. Am. Chem. Soc. 2010, 132, 15911-15913. (c) Fackler, P.; Huber, S. M.; Bach, T. Enantio- and Regioselective Epoxidation of Olefinic Double Bonds in Quinolones, Pyridones, and Amides Catalyzed by a Ruthenium Porphyrin Catalyst with a Hydrogen Bonding Site. J. Am. Chem. Soc. 2012, 134, 12869-12878. (d) Hyster, T. K.; Knorr, L.; Ward, T. R.; Rovis, T. Biotinylated Rh(III) Complexes in Engineered Streptavidin for Accelerated Asymmetric C-H Activation. Science 2012, 338, 500-503. (e) Gellrich, U.; Seiche, W.; Keller, M.; Briet, B. Mechanistic Insights into a Supramolecular Self-Assembling Catalyst System: Evidence for Hydrogen Bonding during Rhodium-Catalyzed Hydroformylation. Angew. Chem. Int. Ed. 2012, 51, 11033–11038. (f) Dydio, P.; Reek, J. H. N. Supramolecular Control of Selectivity in Hydroformylation of Vinyl Arenes: Easy Access to Valuable β-Aldehyde Intermediates. Angew. Chem. Int. Ed. 2013, 52, 3878-3882. (g) Dydio, P.; Detz, R. J.; Reek, J. H. N. Precise Supramolecular Control of Selectivity in the Rh-Catalyzed Hydroformylation of Terminal and Internal Alkenes. J. Am. Chem. Soc. 2013, 135, 10817-10828. (h) Arai, T.; Ogawa, H.; Awata, A.; Sato, M.; Watanabe, M.; Yamanaka, M. PyBidine-Cu(OTf)2-Catalyzed Asymmetric [3+2] Cycloaddition with Imino Esters: Harmony of Cu-Lewis Acid and Imidazolidine-NH Hydrogen Bonding in Concerto Catalysis. Angew. Chem. Int. Ed. 2015, 54, 1595-1599. (i) Hatano, M.; Nishimura, T. Hydroxoiridium/Chiral Diene Complexes as Effective Catalysts for Asymmetric Annulation of α-Oxo- and Iminocarboxamides with 1,3-Dienes. Angew. Chem. Int. Ed. 2015, 54, 10949-10952. (j) Miyaura, H.; Nishino, K.; Yasukawa, T.; Kobayashi, S. Chem. Sci. 2017, 8, 8362-8372

(13) (a) Otomaru, Y.; Okamoto, K.; Shintani, R.; Hayashi, T. Preparation of C2-Symmetric Bicyclo[2.2.2]octa-2,5-diene Ligands and Their Use for Rhodium-Catalyzed Asymmetric 1,4-Addition of Arylboronic Acids. J. Org. Chem. 2005, 70, 2503-2508. (b) Paquin, J.-F.; Defieber, C.; Stephenson, C. R. J.; Carreira, E. M. Asymmetric Synthesis of 3,3-Diarylpropanals with Chiral Diene-Rhodium Catalysts. J. Am. Chem. Soc. 2005, 127, 10850-10851. (c) Helbig, S.; Sauer, S.; Cramer, N.; Laschat, S.; Baro, A. Frey, W. Chiral Bicyclo[3.3.0]octa-2,5-dienes as Steering Ligands in Substrate-Dependent Rhodium-Catalyzed 1,4-Addition of Arylboronic Acids to Enones. Adv. Synth. Catal. 2007, 349, 2331-2337. (d) Takaya, Y.; Ogasawara, M.; Hayashi, T.; Sakai, M.; Miyaura, N. Rhodium-Catalyzed Asymmetric 1,4-Addition of Aryl- and Alkenylboronic Acids to Enones. J. Am. Chem. Soc. 1998, 120, 5579-5580. (e) Jin, S.-S.; Wang, H.; Zhu, T.-S.; Xu, M.-H. Design of N-Cinnamyl Sulfinamides as New Sulfur-containing Olefin Ligands for Asymmetric Catalysis: Achieving Structural Simplicity with a Categorical Linear Framework. Org. Biomol. Chem. 2012, 10, 1764-1768.

(14) CCDC 1820488 (compound **3ai**) and 1820490 (compound **7**) contain the supplementary crystallographic data for this paper. The data

can be obtained free of charge from the Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/structures/

(15) Wahba, A. E.; Hamann, M. T. Reductive *N*-Alkylation of Nitroarenes: A Green Approach for the *N*-Alkylation of Natural Products. *J. Org. Chem.* **2012**, *77*, 4578–4585.

(16) Frisch, M. J. et al.; *Guassian 16*, Revison A.03, Gaussian, Inc., Wallingford CT, 2016.

(17) Becke, A. D. Density-functional Exchange-energy Approximation with Correct Asymptotic Behavior. *Phys. Rev. A* **1988**, *38*, 3098– 3100.

(18) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-energy Formula into a Functional of the Electron Density. *Phys. Rev. B* **1988**, *37*, 785–789.

(19) Andrae, D.; Häussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Energy-adjusted *ab initio* Pseudopotentials for the Second and Third Row Transition Elements. *Theor. Chim. Acta* **1990**, *77*, 123–141.

(20) Hay, P. J.; Wadt, W. R. *Ab initio* Effective Core Potentials for Molecular Calculations. Potentials for K to Au Including the Outermost Core Orbitals. *J. Chem. Phys.* **1985**, *82*, 299–310.

(21) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999–3094.

(22) (a) Ishikawa, H.; Suzuki, T.; Hayashi, Y. High-Yielding Synthesis of the Anti-Influenza Neuramidase Inhibitor (–)-Oseltamivir by Three "One-Pot" Operations. *Angew. Chem. Int. Ed.* **2009**, *48*, 1304– 1307. (b) Yoshida, M.; Masaki, E.; Ikehara, H.; Hara, S. Enantioselective Synthesis of Gabapentin Analogues via Organocatalytic Asymmetric Michael Addition of α -Branched Aldehydes to β -Nitroacrylates. *Org. Biomol. Chem.* **2012**, *10*, 5289–5297. (c) Mukherjee, S.; Corey, E. J. [4 + 2] Cycloaddition Reactions Catalyzed by a Chiral Oxazaborolidinium Cation. Reaction Rates and Diastereo-, Regio-, and Enantioselectivity Depend on Whether Both Bonds Are Formed Simultaneously. *Org. Lett.* **2010**, *12*, 1024–1027.

(23) Paraskar, A. S.; Sudalai, A. Co-catalyzed Reductive Cyclization of Azido and Cyano Substituted α,β -Unsaturated Esters with NaBH₄: Enantioselective Synthesis of (*R*)-Baclofen and (*R*)-Rolipram. *Tetrahedron* **2006**, *62*, 4907–4916.

(24) In all cases being tested, recovery of unreacted starting materials accounts for the moderate chemical yields.

(25) Gianolio, E.; Mohan, R.; Berkessel, A. Enantiopure *N*-Benzyloxycarbonyl-β²-amino Acid Allyl Esters from Racemic β-Lactams by Dynamic Kinetic Resolution Using *Candida Antarctica* Lipase. *Adv. Synth. Catal.* **2016**, *358*, 30. No erosion of ee was observed by comparing the optical rotation of compound **5** ($[\alpha]_{\rm D}^{25}$ +80.7 (*c* 0.22, H₂O); 93% ee) with reported data ($[\alpha]_{\rm D}^{20}$ +82 (*c* 0.2, H₂O), 95% ee) listed in above reference.