3-Alkenylation or 3-Alkylation of Indole with Propargylic Alcohols: Construction of 3,4-Dihydrocyclopenta[b]indole and 1,4-Dihydrocyclopenta[b]indole in the Presence of Different Catalysts

Li Zhang, Yuanxun Zhu, Guangwei Yin, Ping Lu,* and Yanguang Wang*

Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China

Supporting Information

ABSTRACT: 3-Alkenylation or 3-alkylation of indole with propargylic alcohols could be efficiently controlled by the catalyst. In the presence of triflic acid, 3-alkenylation of indole occurred and a 3,4-dihydrocyclopenta[b]indole skeleton was effectively constructed in moderate to excellent yields via a cascade process. In the presence of Cu(OTf)₂, 3-alkylation of indole resulted in the formation of 3-propargylic indole, which could be further converted into 2-iodo-1,4-dihydrocyclopenta[b]indoles in the presence of N-iodosuccinimide and boron trifluoride etherate. Possible mechanisms related to the 3-alkenylation or 3-alkylation of indole and their extension to the formation of 3,4-dihydrocyclopenta[b]indoles or 1,4-dihydrocyclopenta[b]indoles are postulated and discussed.

INTRODUCTION

3,4-Dihydrocyclopenta[b]indole and 1,4-dihydrocyclopenta[b]indole are key substructures and can be extended to, respectively, indeno[2,1-b]indole skeleton and indeno[1,2-b]indole via Diels-Alder cycloaddition reaction (Scheme 1). Indeno[2,1-b]indole is of particularly importance as it was mapped in a route to cyanobacterial alkaloid (Fischerindole I), while indeno[1,2-b]indole was mapped into KSP inhibitor (Terpendole E).^{1,2}

Total synthesis of Fischerindole I as well as Terpendole E is attractive because they display a broad range of bioactivities and is also challenging due to its structural complexity and the dense functionalities.³ Baran et al.^{4–6} and Gademann et al.⁷ had successfully done the pioneer work in synthesizing these bioactive compounds with a spectacular protecting-group-free strategy. In the literature, the C ring is normally constructed by Friedel–Crafts alkylation on the 2-position of indole,⁸ by Pd-catalyzed carbopalladation–annulation of indole,⁹ by biradical cyclization of allenyl azide,^{10,11} and by photostimulated reaction of 2-iodoaniline with the enolate anion of 2-indanone.¹² Rhodium-catalyzed¹³ or silver-catalyzed¹⁴ 3-alkylation of indole followed by sequential cyclization could also fuse the C ring efficiently.

RESULTS AND DISCUSSION

As a part of our ongoing research of the chemistry of propargylic alcohol under acid condition, $^{15-18}$ we tried the reaction between *N*-methylindole (1a) and propargylic alcohol (2a), which was prepared from fluorenone and phenylacetylene, in refluxing dichloromethane (DCM) for 12 h in the presence of triflic acid (TfOH) (Scheme 2). As we expected, 3a was isolated in a yield of 66%, and the structure of 3a was established by X-ray analysis of its single crystal (Figure 1).

In order to have a better conversion, we optimized the reaction conditions, and results are summarized in Table 1. When ytterbium triflate was used as the catalyst, 3-alkylated indole (4a) was formed instead of the 3-alkenylated indole (3a). HPLC area % of 4a was determined to be 53% (Table 1, entry 1). Two peaks at ¹³C NMR spectrum (91.46 and 81.34 ppm) were ascribed to two sp hybridized carbons of 4a. Copper triflate afforded 4a in 63% HPLC area. No desired product (3a) was observed (Table 1, entry 2). When silver triflate was used,

Special Issue: Robert Ireland Memorial Issue

© XXXX American Chemical Society

Received: February 21, 2012

Scheme 1. Structures of 3,4-Dihydrocyclopenta[b]indole and 1,4-Dihydrocyclopenta[b]indole

Scheme 2. Formation of Cyclopenta[b]indoles from Propargylic Alcohols and Indoles

Figure 1. Crystal structures of 3a (left) and 3c (right).

3a could be detected except for the formation of **4a** (Table 1, entry 3). To our delight, when the catalyst was changed into FeCl₃, AlCl₃, SnCl₄, BF₃·Et₂O, and TfOH, the peak area of **3a** was significantly increased (Table 1, entries 4–8). By increasing the reaction temperature to 83 °C by using dichloroethane (DCE) as the solvent, the HPLC area % of **3a** approached 91% (Table 1, entry 9). When other halogenated alkanes such as chloroform and carbon tetrachloride were used as solvent, the reaction lost its selectivity (Table 1, entries 10 and 11). The reaction could also be conducted in acetonitrile, but with relatively lower HPLC area % (Table 1, entry 12).

With the optimized reaction condition in hand (Table 1, entry 9), we test the substrate diversity for the selective formation of 3. When we altered 1a to *N*-methyl-5-nitroindole (1b), 3b was quantitatively prepared (Table 2, entry 2). When 2b, a benzophenone derived propargylic alcohol, reacted with the substituted indoles (1a-1f), corresponding products (3c-3h) were obtained in yields between 22% and 86% (Table 2, entries 3–8). Here it is noteworthy that indoles with electron-withdrawing groups attached at the 5 position benefitted the reaction and gave satisfactorily isolated yields (Table 1, entries 4, 7, and 8). As a comparison, methyl substituted indole (1c)

afforded corresponding 3e in 28% yield only. In this case, a direct 3-alkylated indole (4b) was formed and isolated in 9% yield. When we modified the phenylacetylene part of the propargylic alcohol, the best yield was seen for 2e among cases of 2c, 2d, and 2e (Table 2, entries 9-11). In this case, R^5 of 2e is the p-fluorophenyl, with the nature of an electronwithdrawing group. Acetophenone derived alcohol (2f) did react with 1a, but too many products were indicated by TLC (Table 2, entry 12) and the desired product could not be isolated. However, the reaction between 2f and 1b afforded 3l in yield of 96% (Table 2, entry 13). Benzaldehyde derived alcohol (2g) gave the 3-alkylated indole (4c) in yield of 61%, while the 3-alkenylated indole derivative was not detected (Table 2, entry 14). Acetone derived alcohol (2h) reacted with 1b or 1e smoothly and produced 3m and 3n in yields of 56% and 57%, respectively (Table 2, entries 16 and 17). However, too many spots were observed by TLC when 2h reacted with 1a or 1f (Table 2, entries 15 and 18). Yield was improved when **1b** reacted with pentafluorosubstituted propargylic alcohol (**2i**) (Table 2, entry 19). Reactions between 1b and 2j, 1b and 2k, and 1b and 2l afforded the corresponding cyclized products 3p, 3q, and 3r, respectively (Table 2, entries 20-22). Reaction of

Table 1. Optimization of Reaction Conditions^a

	N + OH Acid	Me +	N Ph Me 4a	
entry	acid	solvent	3a ^b	4a ^c
1	Yb(OTf) ₃ (20 mol %)	CH ₂ Cl ₂	2	53
2	$Cu(OTf)_2$ (20 mol %)	CH_2Cl_2	0	63
3	AgOTf (20 mol %)	CH ₂ Cl ₂	3	39
4	FeCl ₃	CH_2Cl_2	59	4
5	AlCl ₃	CH_2Cl_2	82	0
6	$SnCl_4$	CH_2Cl_2	63	3
7	$BF_3 \cdot Et_2O$	CH_2Cl_2	85	2
8	TfOH	CH ₂ Cl ₂	83	0
9	TfOH	ClCH ₂ CH ₂ Cl	91	4
10	TfOH	CHCl ₃	47	42
11	TfOH	CCl_4	21	55
12	TfOH	CH ₃ CN	59	0

Ph

^{*a*}1a (0.25 mmol), 2a (0.25 mmol), acid (0.25 mmol, otherwise indicated in parentheses), and 3 mL of solvent were mixed at room temperature and refluxed for 12 h. ^{*b*}HPLC peak area percentage of 3a. C18 column was used for HPLC analysis. ^{*c*}HPLC peak area percentage of 4a.

Table 2. Synthesis of Various 3-Alkenylated Indoles $(3)^a$

	$R^{1} \xrightarrow{N} R^{2} + \overset{R^{4}}{\underset{R^{5}}{\overset{R^{3}}{\longrightarrow}}} H \xrightarrow{H^{2}} DH$	$\frac{\text{DTf}}{\text{E, reflux}} \xrightarrow{R^1} \xrightarrow{R^2} \xrightarrow{R^3} + \xrightarrow{R^4} $	R ³ R ⁵
	1 2	3 4	
entry	$1 (R^1, R^2)$	2 $(R^3/R^4/R^5)$	$3 (\%)^b + 4 (\%)^b$
1	1a (H, Me)	2a	3a (74)
2	1b (NO ₂ , Me)	2a	3b (93)
3	1a	2b (Ph/Ph/Ph)	3c (58)
4	1b	2b	3d (86)
5	1c (Me, Me)	2b	3e(28) + 4b(9)
6	1d (OMe, Me)	2b	3f (22)
7	1e (CN, Me)	2b	3 g (79)
8	1f (Br, Me)	2b	3h (74)
9	1a	2c (Ph/Ph/p-Me-Ph)	3i (52)
10	1a	2d (Ph/Ph/p-OMe-Ph)	3j (49)
11	1a	2e (Ph/Ph/ <i>p</i> -F-Ph)	3k (75)
12	1a	2f (Ph/Me/Ph)	с
13	1b	2f	31 (96)
14	1b	2g (Ph/H/Ph)	4c (61)
15	1a	2h (Me/Me/Ph)	с
16	1b	2h	3m (56)
17	1e	2h	3n (57)
18	1f	2h	с
19	1b	2i (Me/Me/C ₆ F ₅)	3o (74)
20	1b	2j (Me/Et/Ph)	3p (38)
21	1b	$2k (-(CH_2)_4-/Ph)$	3q (47)
22	1b	2l (-(CH ₂) ₅ -/Ph)	3r (61)
23	1b	$2\mathbf{m} (\mathrm{Ph}/\mathrm{Ph}/n\text{-}\mathrm{C}_{5}\mathrm{H}_{11})$	3s (41)
24	1g (H, H)	2b	с
25	1h (H, Ts)	2b	с
26	1i (H, $PO(OEt)_2$)	2b	с

^a1 (0.5 mmol), 2 (0.5 mmol), TfOH (0.5 mmol), and 5 mL of DCE were mixed at room temperature and refluxed for 12 h. ^bIsolated yield. ^cNo isolable products.

	R^{1} R^{2} R^{2} R^{5} R^{5	$\frac{Cu(OTf)_2}{CM, rt} \xrightarrow{R^1} \xrightarrow{R^4} \xrightarrow{R^3} R^5 \frac{NIS, E}{DCM}$	$\frac{BF_3 \cdot Et_2O}{rt} \stackrel{R^1}{} \stackrel{R^2}{} \stackrel{R^3}{} \stackrel{R^4}{} \stackrel{I}{} \stackrel{R^5}{} \stackrel{R^5}{$	
entry	$1 (R^1, R^2)$	2 $(R^3/R^4/R^5)$	4 (%) ^c	5 (%) ^c
1	1a (H, Me)	2a	4a (68)	5a (46)
2	1b (NO ₂ , Me)	2a	$4d^{d}$ (84)	5b (31)
3	1c (Me, Me)	2a	4e (73)	5c (54)
4	1 d (OMe, Me)	2a	4f (58)	5d (38)
5	1e (CN, Me)	2a	4g (93)	5e (36)
6	1f (Br, Me)	2a	$4h^{d}$ (86)	5f (43)
7	1a	2b (Ph/Ph/Ph)	4i (65)	5g (26)
8	1a	2c (Ph/Ph/p-Me-Ph)	4 j (60)	5h (45)
9	1a	2d (Ph/Ph/ p-OMe-Ph)	е	
10	1a	2e (Ph/Ph/ p-F-Ph)	4k (34)	5i (39)
11	1a	2f (Ph/Me/Ph)	4l (84)	е
12	1b	$2n^{f}$	4m (37)	5 j (16)

Table 3. Synthesis of 3-Alkylated Indoles $(4)^a$ and 2-Iodo-1,4-dihydrocyclopenta[b]indoles $(5)^b$

^a1 (1 mmol), 2 (1 mmol), Cu(OTf)₂ (0.1 mmol), and 10 mL of DCM were mixed at room temperature and reacted. ^b4 (0.5 mmol), NIS (0.5 mmol), BF₃·Et₂O (0.5 mmol), and 10 mL of DCM were mixed at room temperature and reacted. ^cIsolated yield. ^dRefluxing needed and tracked by TLC. ^eNo isolable product. ^fStructure of **2n** is shown in Scheme 8.

Scheme 3. Possible Mechanism for Formation of 3, 4, and 5

1b with *n*-heptyne derived alcohol (2m) gave 3s in a yield of 41% (Table 2, entry 23). Finally we examined the substituent on the nitrogen of indole. No unsubstitution (1g) or substitution by sulfonyl (1h) or phosphoryl (1i) made the reaction complicated and resulted in a mixture that could not be purified by column chromatography (Table 2, entries 24–26).

As we mentioned in Table 1, 3-alkylated indole (4a) could be formed and isolated in the presence of catalysts such as Yb(OTf)₃, Cu(OTf)₂, AgOTf, and TfOH as well. The most suitable catalyst for the formation of 4a was found to be Cu(OTf)₂ (Table 1, entry 2). We thereby tested the substrate diversity for the formation of 4 in the presence of Cu(OTf)₂, and the results are summarized in Table 3. Because of the large difference of the reaction activity resulted from the various substituted groups, reaction time and reaction temperature were varied and determined by TLC tracking. Similarly, the nature of the substituted group on the 5-position of the indole played a key role in the formation of 4. With electronwithdrawing groups such as nitro, nitrile, and bromo, 1b, 1e, and 1f afforded 4d, 4g, and 4h in yields of 84%, 93%, and 86%, respectively (Table 3, entries 2, 5, and 6). Those with electrondonating groups, 1c and 1d, produced 4e and 4f in relatively lower yields (Table 3, entries 3 and 4). Substitute effect on the propargylic alcohols 2 was not apparent. When 2d was used, the desired 3-alkylated product 4 could not be isolated, although the starting materials were completely consumed after a certain period (Table 3, entry 9). Acetophenone derived propargylic alcohol 2f provided 4l in 84% yield (Table 3, entry 11), while the reaction between **1b** and **2n** provided **4m** in 37% yield (Table 3, entry 12). With the 3-alkylated indoles 4a-4m in hand, we tried to cyclize them into 2-iodo-1,4-

The Journal of Organic Chemistry

dihydrocyclopenta[b]indoles (5). The workable method was using the NIS as the electrophile in the presence of boron trifluoride etherate in DCM as solvent as shown in Table 3. In this way, 5a-5h were constructed from 4a and 4d-4j, accordingly, in yields between 26% and 54%. 4l failed to afford an isolable product (Table 3, entries 11), while 4k and 4m gave the corresponding 5i and 5j in yields of 39% and 16%, respectively (Table 3, entries 10, and12). Structure of 5j was established by X-ray analysis of its single crystal (see Supporting Information).

On the basis of the investigation of the reaction condition and the substrate diversity, we postulated a possible mechanism for this transformation (Scheme 3). Propargylic alcohol was dehydrated under acidic condition and generated propargylic carbocation **A**, which could be directly trapped by indole (1) to form 3-alkylated indoles **4** in some cases. Via Meyer–Schuster rearrangement, ^{19,20} **A** was converted into allenylic carbocation **B**, which subsequently reacted with indole (1) to derive 3allenylated indole **C**. Compound **C** undergoes protonation under the acidic conditions to form allylic carbocation **D**, which readily undergoes intramolecular cyclization to provide intermediate **E**. After deprotonation of **E**, compound **3**, with the 3,4-dihydrocyclopenta[b]indole skeleton, was constructed in moderate to excellent yields.

By analyzing the NMR spectra of 3 and 4 (Scheme 4), we observed the "fluorene effect". Chemical shifts of H_a in fluorene

Scheme 4. Comparative Analysis of Chemical Shifts of H_a and C_a in 3 and 4

derived 3a and 3b were 5.92 and 6.02 ppm, respectively. It was highly shielded by the plane of fluorene in comparison with those of analogues 3c, 3e-3f, and 3h-3k, which varied from 6.35 to 6.43 ppm. The shielding effect of the fluorene could be clearly seen from the comparative images of the single crystal structures of 3a and 3c (Figure 1). On the other hand, chemical shifts of H_a in fluorene derived 4a and 4d-4h fell within 7.20-7.29 ppm, which was deshielded by the fluorene plane (Figure 2). In comparison, chemical shifts of H_a for 4b and 4i-4k were observed in a range of 6.17-6.23 ppm. Chemical shifts of Ca's in 3 and 4 depended upon the relative electron densities of C_a. Electron densities of 3a and 3c were calculated to be 0.1763 and 0.1789, while the electron densities of 4a and 4i were calculated to be 0.2911 and 0.2934, respectively. It is noticeable that the higher the electron density of the C_{av} the lower the value of its chemical shift.

Figure 2. Optimized structures of 4a (left) and 4i (right), calculated with Gaussian 03 on the B3LYP Levels.

Structures of 1,3-dihydrobenzo[*cd*]indole and 1,5dihydrobenzo[*cd*]indole could be derived into naphtho[3,2,1*cd*]indole and naphtha[1,2,3-*cd*]indole via Diels—Alder reaction. The former compound is the key substructure of ergot analogues that are anagestic and cell-protective agents,^{21–24} while the later one was the core of bioactive hapalindole G and its relatives.^{25–28} Therefore, we sought to construct 1,3dihydrobenzo[*cd*]indole and 1,5-dihydrobenzo[*cd*]indole skeletons.

1,3-dihydrobenzo[*cd*]indole and 1,5-dihydrobenzo[*cd*]indole skeletons.

A methyl group was first used to occupy 2-position of indole, such as 1j, to force the cyclization occurring on the C-4 of indole ring (Scheme 5) in the presence of the triflic acid. However, instead of obtaining the expected 3-alkenylated product with the 1,5-dihydrobenzo[*cd*]indole skeleton, we isolated 6 in 71% yield. Structure of 6 was established by its single crystal analysis (see Supporting Information). By postulating the possible mechanism for the formation of 6, we found that the 3-alkenylation did occur at the beginning, and a key intermediate J was formed. After the subsequent protonation, K was formed. The problem arises because of the acidity of the allylic proton (H_a) of K. As a result, after the sequential deprotonation, and finally β -elimination, 6 was obtained.

Then we move our attention to other propargylic alcohols, such as 2a, a fluorene derived propargylic alcohol. A possible depronation from K to L could be avoided. Reaction between 1j and 2a afforded 7a (Scheme 6), structure of 7a was established by the X-ray analysis of its single crystal (see Supporting Information). Meyer–Schuster rearrangement occurs, and 3-alkenylation happens on the 3-position of indole. K' was formed similar to the formation of K. However, the sequential cyclization occurred on the phenyl ring of 2a instead of the C-4 of indole. A similar situation was observed for the reaction between 2a and 1k, which had the phenyl group

Scheme 5. Possible Mechanism for the Formation of 6

Scheme 6. Formation of 7

Scheme 7. Formation of 4n and 4o

occupied on the 2-position of indole and the methoxy group occupied on the 5-position of the indole to enrich the electron density of the indole. Still, **7b** was isolated in 65% yield. Afterward, 3-alkenylation on the 3-position of the indole ring did occur in the presence of triflic acid, but the subsequent intramolecular Friedel–Crafts alkylation on the C-4 of indole ring was not successful.

Then we tried the sequence of 3-alkylation and subsequent cyclization to construct 1,3-dihydrobenzo[cd]indole. In the presence of Cu(OTf)₂, **4n** and **4o** were isolated in yields of 70% and 57%, respectively (Scheme 7). Structure of **4n** was established by X-ray analysis of its single crystal (see Supporting Information). Unfortunately, the target molecules were not constructed from either **4n** or **4o** even though various electrophiles were tested, such as NIS, iodine, and iodine chloride.

Fortunately, when 1k reacted with 2n, in which the steric hindrance raised by the phenyl group was eliminated,

compound 8 was constructed with the skeleton of 1,3dihydrobenzo[*cd*]indole (Scheme 8). Structure of 8 was

Scheme 8. Formation of 8

established by X-ray analysis of its single crystal (see Supporting Information). Enlightened by this result, we tested the reactions between **2n** and **1j** or **1l**, which resulted in complete consumption of the starting materials, but none of the desired product was isolated.

Article

Scheme 9. Gram Scale Reactions of the 3-Alkenylation and 3-Alkylation of Indole

Larger scale reactions were carried between **1b** (880 mg, 5 mmol) and **2a** (1.41 g, 5 mmol) (Scheme 9). Thus, **3b** (1.9 g, 86%) was obtained in 1 h at room temperature in the presence of equivalent TfOH, while **4d** (1.4 g, 63%) was obtained in 3 h at refluxing temperature by decreasing the catalyst loading to 5 mol % $Cu(OTf)_{2}$.

CONCLUSION

In conclusion, we selectively synthesized 3,4dihydrocyclopenta[b]indoles and 1,4-dihydrocyclopenta[b]indoles from indoles and propargylic alcohols by the choice of the catalysts. 3-Alkenylation of indole with propargylic alcohols could be realized by the triflic acid, while 3-alkylation of indole could be accomplished by $Cu(OTf)_2$. We also attempted to construct 1,3-dihydrobenzo[cd]indole as well as 1,5-dihydrobenzo[cd]indole skeletons. Fortunately, one 1,3dihydrobenzo[cd]indole was furnished by fine-tuning the electron density of the indole ring and altering the structure of the propargylic alcohol.

EXPERIMENTAL SECTION

General Methods. ¹H NMR spectra were recorded at 400 or 500 MHz using TMS as an internal standard and ¹³C NMR spectra at 100 or 125 MHz using CDCl_3 as an internal standard. The following abbreviations are used to describe peak patterns where appropriate: b, broad; s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. Coupling constants are reported in hertz. High resolution mass spectra (HRMS) were performed on an electron ionization time-of-flight (EI-TOF) mass spectrometer. Reactions were controlled using TLC on silica. HPLC analyses were performed on a HPLC system equipped with C18 columns, detected at 273 nm. Flow phase was acetonitrile/water (95/5), and flow rate was 1.0 mL/min. Melting points were measured with a micro melting point apparatus.

The *N*-methyl-indoles and propargylic alcohols were prepared according to the published methods.²⁹ Other materials were purchased from common commercial sources and used without additional purification.

General Procedure for the Preparation of 3, 6, and 7. To a solution of indole 1 (0.5 mmol) and propargylic alcohol 2 (0.5 mmol) in dichloromethane (5 mL) was added a solution of triflic acid (75 mg, 0.5 mmol) in dichloromethane (3 mL) dropwise over 2 min, and the solution was stirred for 10 min at room temperature. After being stirred at reflux temperature for 6 h, the mixture was evaporated under vacuum. The product was isolated by silica gel column chromatography with a hexane/dichloromethane mixture.

4-Methyl-1-phenyl-4H-spiro[cyclopenta[b]indole-3,9'-fluorene] (3a). White solid; 146 mg, 74% yield; mp 211.7–214.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 7.3 Hz, 2H), 7.86 (dd, *J* = 5.8, 2.9 Hz, 1H), 7.82 (d, *J* = 7.6 Hz, 2H), 7.49 (t, *J* = 7.6 Hz, 2H), 7.38 (t, *J* = 7.4 Hz, 3H), 7.24–7.13 (m, 5H), 7.10 (d, *J* = 7.5 Hz, 2H), 5.92 (s, 1H), 2.95 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 150.7, 144.7,

143.1, 142.3, 141.5, 136.7, 129.1, 128.9, 128.5, 128.2, 128.1, 127.6, 124.4, 121.9, 121.0, 120.74, 120.66, 120.2, 120.0, 110.2, 62.4, 30.0; MS (ESI) (m/z) 396.2 (M + H⁺); HRMS (EI) (m/z) calcd for C₃₀H₂₁N 395.1674, found 395.1680.

4-Methyl-7-nitro-1-phenyl-4H-spiro[cyclopenta[b]indole-3,9'-fluorene] (3b). Yellow solid; 205 mg, 93% yield; mp 174.5–175.2 °C ; ¹H NMR (500 MHz, CDCl₃) δ 8.79 (d, J = 2.1 Hz, 1H), 8.06 (dd, J = 9.1, 2.2 Hz, 1H), 7.86 (t, J = 7.5 Hz, 4H), 7.55 (t, J = 7.6 Hz, 2H), 7.43 (dd, J = 14.0, 6.9 Hz, 3H), 7.29–7.17 (m, 3H), 7.09 (d, J = 7.6 Hz, 2H), 6.02 (s, 1H), 3.01 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 154.0, 143.9, 143.7, 142.3, 142.1, 141.6, 135.7, 130.7, 129.3, 128.9, 128.7, 128.3, 127.4, 124.2, 123.2, 120.9, 120.8, 116.9, 116.3, 110.0, 62.5, 30.4; MS (ESI) (m/z) 441.4 (M + H⁺); HRMS (EI) (m/z) calcd for C₃₀H₂₀N₂O₂ 440.1525, found 440.1528.

4-Methyl-1,3,3-triphenyl-3,4-dihydrocyclopenta[b]indole (**3c**). White solid; 115 mg, 58% yield; mp 184.7–186.9 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.84 (d, J = 7.4 Hz, 2H), 7.81 (d, J = 7.8 Hz, 1H), 7.44 (t, J = 7.6 Hz, 2H), 7.37–7.28 (m, 6H), 7.28–7.21 (m, 6H), 7.20–7.11 (m, 2H), 6.44 (s, 1H), 3.53 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 155.1, 141.5, 141.2, 140.1, 136.5, 136.2, 128.82, 128.78, 128.6, 128.1, 127.7, 127.3, 122.0, 120.9, 120.4, 120.3, 119.1, 110.2, 62.3, 31.6; MS (ESI) (m/z) 398.2 (M + H⁺); HRMS (EI) (m/z) calcd for C₃₀H₂₃N 397.1830, found 397.1837.

4-Methyl-7-nitro-1,3,3-triphenyl-3,4-dihydrocyclopenta[b]indole (3d). Yellow solid; 190 mg, 86% yield; mp 231.4–234.3 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.73 (s, 1H), 8.11 (d, *J* = 8.8 Hz, 1H), 7.81 (d, *J* = 7.3 Hz, 2H), 7.52 (t, *J* = 7.3 Hz, 2H), 7.42 (t, *J* = 7.1 Hz, 1H), 7.38–7.21 (m, 11H), 6.53 (s, 1H), 3.63 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.9, 144.0, 142.2, 140.3, 139.1, 137.6, 135.6, 129.2, 129.0, 128.6, 128.4, 127.9, 127.4, 121.5, 120.9, 117.2, 116.4, 110.1, 62.7, 32.1; MS (ESI) (*m*/*z*) 443.2 (M + H⁺); HRMS (EI) (*m*/*z*) calcd for C₃₀H₂₂N₂O₂ 442.1681, found 442.1689.

4,*z***-Diethyl-1,3,3-triphenyl-3,4-dihydrocyclopenta[b]indole** (**3e**). White solid; 58 mg, 28% yield; mp 171.7–173.1 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.82 (d, *J* = 7.4 Hz, 2H), 7.58 (s, 1H), 7.43 (t, *J* = 7.3 Hz, 2H), 7.35–7.10 (m, 12H), 7.00 (d, *J* = 8.1 Hz, 1H), 6.40 (s, 1H), 3.47 (s, 3H), 2.44 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 155.2, 141.3, 140.2, 139.9, 136.6, 136.0, 129.5, 128.8, 128.7, 128.6, 128.0, 127.7, 127.3, 122.4, 122.1, 120.1, 118.5, 109.9, 62.1, 31.6, 22.0; MS (ESI) (*m*/*z*) 411.3 (M ⁺); HRMS (EI) (*m*/*z*) calcd for C₃₁H₂₅N 411.1987, found 411.1985.

7-Methoxy-4-methyl-1,3,3-triphenyl-3,4-dihydrocyclopenta-[*b*]**indole (3f).** White solid; 47 mg, 22% yield; mp 189.7–190.4 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.83 (d, *J* = 7.2 Hz, 2H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.41–7.17 (m, 13H), 6.86 (dd, *J* = 8.9, 2.4 Hz, 1H), 6.40 (s, 1H), 3.83 (s, 3H), 3.52 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 155.7, 154.6, 141.1, 140.2, 136.9, 136.6, 135.8, 128.83, 128.77, 128.6, 128.1, 127.6, 127.3, 122.1, 118.5, 110.9, 110.3, 103.1, 62.2, 56.4, 31.7; MS (ESI) (*m*/*z*) 428.2 (M + H⁺); HRMS (EI) (*m*/*z*) calcd for C₃₁H₂₅NO 427.1936, found 427.1932.

4-Methyl-1,3,3-triphenyl-3,4-dihydrocyclopenta[*b*]**indole-7carbonitrile (3g).** White solid; 167 mg, 79% yield; mp 241.7–243.8 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.11 (s, 1H), 7.76 (d, *J* = 7.2 Hz, 2H), 7.48 (t, *J* = 7.6 Hz, 2H), 7.38 (ddd, *J* = 22.0, 11.5, 4.9 Hz, 3H), 7.31–7.23 (m, 10H), 6.50 (s, 1H), 3.58 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.1, 142.8, 140.3, 139.2, 137.4, 135.7, 129.1, 129.0, 128.5, 128.4, 127.7, 127.4, 125.6, 123.8, 121.5, 121.2, 120.1, 111.1, 103.2, 62.6, 31.9; MS (ESI) (*m*/*z*) 423.3 (M + H⁺); HRMS (EI) (*m*/*z*) calcd for C₃₁H₂₂N₂ 422.1783, found 422.1786.

7-Bromo-4-methyl-1,3,3-triphenyl-3,4-dihydrocyclopenta-[*b*]indole (3h). White solid; 176 mg, 74% yield; mp 218.7–219.1 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.88 (d, *J* = 1.6 Hz, 1H), 7.77 (d, *J* = 7.4 Hz, 2H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.35 (t, *J* = 7.4 Hz, 1H), 7.32– 7.20 (m, 11H), 7.15 (d, *J* = 8.7 Hz, 1H), 6.43 (s, 1H), 3.51 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 156.1, 140.8, 140.2, 139.7, 136.5, 136.1, 129.0, 128.9, 128.5, 128.3, 127.5, 123.7, 123.3, 122.7, 118.7, 113.8, 111.6, 62.3, 31.7; MS (ESI) (*m*/*z*) 476.1 (M + H⁺); HRMS (EI) (*m*/*z*) calcd for C₃₀H₂₂BrN 475.0936, found 475.0945.

4-Methyl-3,3-diphenyl-1-(*p***-tolyl)-3,4-dihydrocyclopenta[***b***]indole (3i). White solid; 107 mg, 52% yield; mp 203.5–204.0 °C; ¹H NMR (500 MHz, CDCl₃) \delta 7.81 (d,** *J* **= 7.7 Hz, 1H), 7.74 (d,** *J* **= 7.7 Hz, 2H), 7.39–7.11 (m, 15H), 6.40 (s, 1H), 3.53 (s, 3H), 2.39 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) \delta 155.1, 141.5, 141.1, 140.2, 137.8, 135.6, 133.6, 129.5, 128.7, 128.6, 127.6, 127.3, 122.0, 120.8, 120.4, 120.2, 119.2, 110.2, 62.2, 31.6, 21.7; MS (ESI) (***m***/***z***) 412.2 (M + H⁺); HRMS (EI) (***m***/***z***) calcd for C₃₁H₂₅N 411.1987, found 411.1982.**

1-(4-Methoxyphenyl)-4-methyl-3,3-diphenyl-3,4dihydrocyclopenta[b]indole (3j). White solid; 105 mg, 49% yield; mp 204.8–206.0 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, *J* = 7.7 Hz, 1H), 7.77 (d, *J* = 8.3 Hz, 2H), 7.30 (t, *J* = 6.9 Hz, 5H), 7.27–7.11 (m, 8H), 6.98 (d, *J* = 8.3 Hz, 2H), 6.35 (s, 1H), 3.82 (s, 3H), 3.52 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 159.7, 155.1, 141.5, 140.7, 140.3, 134.8, 129.1, 128.8, 128.7, 128.6, 127.3, 122.0, 120.8, 120.3, 120.2, 119.3, 114.2, 110.2, 62.1, 55.7, 31.6; MS (ESI) (*m*/*z*) 428.2 (M + H⁺); HRMS (EI) (*m*/*z*) calcd for C₃₁H₂₅NO 427.1936, found 427.1939.

1-(4-Fluorophenyl)-4-methyl-3,3-diphenyl-3,4dihydrocyclopenta[b]indole (3k). White solid; 156 mg, 75% yield; mp 202.2–204.0 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.83–7.76 (m, 2H), 7.74 (d, *J* = 7.7 Hz, 1H), 7.30 (d, *J* = 7.3 Hz, 5H), 7.28–7.21 (m, 6H), 7.16 (ddd, *J* = 20.6, 16.1, 7.9 Hz, 4H), 6.38 (s, 1H), 3.53 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 162.9 (d, *J*_{CF} = 246.7 Hz), 155.1, 141.5, 140.2, 140.0, 135.9, 132.7 (d, *J*_{CF} = 2.1 Hz), 129.3 (d, *J*_{CF} = 7.9 Hz), 128.8, 128.6, 127.4, 121.8, 121.0, 120.4, 120.1, 118.9, 115.7 (d, *J*_{CF} = 21.4 Hz), 110.3, 62.3, 31.6; MS (ESI) (*m*/*z*) 416.2 (M + H⁺); HRMS (EI) (*m*/*z*) calcd for C₃₀H₂₂FN 415.1736, found 415.1734.

3,4-Diethyl-7-nitro-1,3-diphenyl-3,4-dihydrocyclopenta[b]indole (3l). Yellow solid; 182 mg, 96% yield; mp 170.9–171.6 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.70 (d, *J* = 2.1 Hz, 1H), 8.06 (dd, *J* = 9.1, 2.2 Hz, 1H), 7.84–7.74 (m, 2H), 7.49 (t, *J* = 7.6 Hz, 2H), 7.38 (t, *J* = 7.4 Hz, 1H), 7.34–7.22 (m, 6H), 6.22 (s, 1H), 3.62 (s, 3H), 1.95 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 159.6, 143.7, 142.0, 139.4, 139.3, 138.4, 135.8, 129.2, 129.2, 128.4, 127.5, 127.3, 126.3, 121.2, 120.8, 117.0, 116.2, 109.9, 52.4, 31.5, 19.6; MS (ESI) (*m*/*z*) 381.1 (M + H⁺); HRMS (EI) (*m*/*z*) calcd for C₂₅H₂₀N₂O₂ 380.1525, found 380.1528.

3,3,4-Trimethyl-7-nitro-1-phenyl-3,4-dihydrocyclopenta[b] indole (3m). Yellow solid; 89 mg, 56% yield; mp 169.0–171.2 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.63 (d, J = 2.1 Hz, 1H), 8.04 (dd, J = 9.1, 2.1 Hz, 1H), 7.74 (d, J = 7.4 Hz, 2H), 7.50 (t, J = 7.6 Hz, 2H), 7.39 (t, J = 7.4 Hz, 1H), 7.31 (d, J = 9.1 Hz, 1H), 6.04 (s, 1H), 3.95 (s, 3H), 1.57 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 158.9, 143.7, 141.8, 138.9, 137.7, 136.2, 129.1, 128.2, 127.2, 120.8, 120.5, 116.8, 115.9, 109.7, 45.8, 31.6, 22.4; MS (ESI) (m/z) 391.1 (M + H⁺); HRMS (EI) (m/z) calcd for C₂₀H₁₈N₂O₂ 318.1368, found 318.1371.

3,3,4-Trimethyl-1-phenyl-3,4-dihydrocyclopenta[*b*]**indole-7carbonitrile (3n).** White solid; 85 mg, 57% yield; mp 159.6–161.0 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.02 (s, 1H), 7.70 (d, *J* = 7.4 Hz, 2H), 7.48 (t, *J* = 7.5 Hz, 2H), 7.44–7.30 (m, 3H), 6.01 (s, 1H), 3.93 (s, 3H), 1.56 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 158.0, 142.5, 139.0, 137.4, 136.3, 129.0, 128.1, 127.2, 125.1, 123.2, 121.4, 119.0, 110.7, 102.7, 45.6, 31.4, 22.4; MS (ESI) (*m*/*z*) 299.1 (M + H⁺); HRMS (EI) (*m*/*z*) calcd for C₂₁H₁₈N₂ 298.1470, found 298.1470. **3**, **3**, **4**-**Trimethyl-7**-**nitro-1**-(**perfluorophenyl**)-**3**, **4dihydrocyclopenta[b]indole (30).** Yellow solid; 151 mg, 74% yield; mp 188.7–189.5 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.92 (d, J = 2.0 Hz, 2H), 8.14 (dd, J = 9.1, 2.1 Hz, 1H), 7.32 (d, J = 9.1 Hz, 1H), 7.16 (s, 1H), 3.83 (s, 3H), 1.85 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 147.7 (d, J_{CF} = 245.5 Hz), 141.5 (d, J_{CF} = 256.0 Hz), 141.4, 140.8, 137.9 (d, J_{CF} = 251.4 Hz), 128.3, 125.1, 123.0, 118.2, 117.8, 109.7, 109.2, 100.5, 65.8, 33.5, 32.0, 30.5; MS (ESI) (m/z) 409.1 (M + H⁺); HRMS (EI) (m/z) calcd for C₂₀H₁₃F₅N₂O₂ [M⁺] 408.0897 (m/z), found 408.0893.

3 - E th y I - 3, **4 - d i m e th y I - 7 - n i tr o - 1 - p h e n y I - 3**, **4 - dihydrocyclopenta[b]indole (3p).** Yellow solid; 63 mg, 38% yield; mp 156.1–158.3 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.64 (d, *J* = 2.1 Hz, 1H), 8.05 (dd, *J* = 9.1, 2.2 Hz, 1H), 7.80–7.70 (m, 2H), 7.51 (t, *J* = 7.7 Hz, 2H), 7.40 (t, *J* = 7.4 Hz, 1H), 7.32 (d, *J* = 9.1 Hz, 1H), 6.00 (s, 1H), 3.93 (s, 3H), 2.04 (dt, *J* = 13.9, 6.5 Hz, 2H), 1.56 (s, 3H), 0.72 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 157.8, 143.8, 141.8, 140.4, 136.2, 135.4, 129.1, 128.2, 127.2, 121.7, 120.8, 116.7, 115.8, 109.6, 50.5, 31.6, 29.7, 21.2, 10.0; MS (ESI) (*m/z*) 333.1 (M + H⁺); HRMS (EI) (*m/z*) calcd for C₂₁H₂₀N₂O₂ 332.1525, found 332.1519.

4-Methyl-7-nitro-1-phenyl-4H-spiro[cyclopenta[b]indole-3,1'-cyclopentane] (**3q**). Yellow solid; 81 mg, 47% yield; mp 190.2– 191.3 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.62 (d, *J* = 2.1 Hz, 1H), 8.04 (dd, *J* = 9.1, 2.2 Hz, 1H), 7.74 (d, *J* = 7.1 Hz, 2H), 7.50 (t, *J* = 7.7 Hz, 2H), 7.39 (t, *J* = 7.4 Hz, 1H), 7.31 (d, *J* = 9.1 Hz, 1H), 6.26 (s, 1H), 3.93 (s, 3H), 2.40–2.23 (m, 2H), 2.14–1.91 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 156.8, 144.0, 141.9, 138.5, 136.3, 135.7, 129.1, 128.1, 127.2, 121.4, 120.8, 116.6, 115.8, 109.6, 55.7, 33.0, 31.6, 26.7; MS (ESI) (*m*/*z*) 345.1 (M + H⁺); HRMS (EI) (*m*/*z*) calcd for C₂₂H₂₀N₂O₂ 344.1525, found 344.1532.

4'-Methyl-7'-nitro-1'-phenyl-4'H-spiro[cyclohexane-1,3'-cyclopenta[b]indole] (3r). Yellow solid; 109 mg, 61% yield; mp 223.3–225.7 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.62 (d, *J* = 1.9 Hz, 1H), 8.02 (dd, *J* = 9.1, 2.0 Hz, 1H), 7.75 (d, *J* = 7.3 Hz, 2H), 7.50 (t, *J* = 7.6 Hz, 2H), 7.39 (t, *J* = 7.4 Hz, 1H), 7.29 (d, *J* = 9.1 Hz, 1H), 6.59 (s, 1H), 3.96 (s, 3H), 2.15 (td, *J* = 12.9, 3.0 Hz, 2H), 1.93 (t, *J* = 13.6 Hz, 3H), 1.81–1.63 (m, 4H), 1.60 (d, *J* = 12.8 Hz, 1H), 1.50–1.35 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 159.1, 143.8, 141.8, 139.9, 136.5, 132.2, 129.1, 128.2, 127.2, 120.9, 120.7, 116.7, 115.9, 109.6, 50.5, 32.2, 31.7, 26.1, 25.0; MS (ESI) (*m*/*z*) 359.3 (M + H⁺); HRMS (EI) (*m*/*z*) calcd for C₂₃H₂₂N₂O₂ 358.1681, found 358.1685.

4 - M e th y I - 7 - n i tr o - 1 - p en ty I - 3, 3 - d i p h en y I - 3, 4dihydrocyclopenta[*b*]indole (3s). Yellow oil; 89 mg, 41% yield; ¹H NMR (500 MHz, CDCl₃) δ 8.69 (s, 1H), 8.09 (d, J = 8.6 Hz, 1H), 7.29 (dd, J = 28.7, 6.7 Hz, 11H), 5.80 (s, 1H), 3.82 (s, 2H), 3.34 (s, 3H), 2.15 (d, J = 6.9 Hz, 2H), 1.50–1.35 (m, 4H), 0.91 (dd, J = 14.7, 7.8 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 156.0, 145.6, 145.3, 142.1, 133.6, 128.9, 128.3, 127.1, 122.9, 121.1, 117.7, 117.6, 117.2, 109.8, 57.0, 56.8, 32.3, 31.7, 29.4, 22.8, 14.4; MS (ESI) (*m*/*z*) 437 (M + H⁺); HRMS (EI) (*m*/*z*) calcd for C₂₉H₂₈N₂O₂ 436.2151, found 436.2133.

General Procedure for the Preparation of 4. To a solution of indole 1 (1 mmol) and propargylic alcohol 2 (1 mmol) in dichloromethane (5 mL) was added $Cu(OTf)_2$ (72 mg, 20 mol %). After being stirred at reflux temperature for 6 h, the mixture was evaporated under vacuum. The product was isolated by silica gel column chromatography with a hexane/dichloromethane mixture.

1-Methyl-3-(9-(phenylethynyl)-9H-fluoren-9-yl)-1H-indole (**4a**). White solid; 269 mg, 68% yield; mp 182.5–183.0 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.78 (d, J = 7.6 Hz, 2H), 7.57 (d, J = 7.6 Hz, 2H), 7.46–7.40 (m, 2H), 7.39–7.33 (m, 2H), 7.29 (s, 1H), 7.27–7.20 (m, 5H), 7.17 (d, J = 8.2 Hz, 1H), 7.10–7.04 (m, 1H), 6.90 (d, J = 8.0 Hz, 1H), 6.80 (t, J = 7.5 Hz, 1H), 3.66 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 149.8, 139.9, 138.1, 132.1, 128.5, 128.3, 128.2, 128.1, 125.5, 123.8, 121.8, 120.38, 120.35, 119.3, 116.0, 109.6, 91.6, 81.4, 49.6, 33.0; MS (ESI) (m/z) 396.2 (M + H⁺); HRMS (EI) (m/z) calcd for C₃₀H₂₁N 395. 1674, found 395. 1667.

1,5-Dimethyl-3-(1,1,3-triphenylprop-2-yn-1-yl)-1*H*-indole (4b). White solid; 37 mg, 9% yield; mp 185.7–185.9 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.51–7.42 (m, 6H), 7.38 (s, 1H), 7.34–7.22 (m,

9H), 7.17 (d, J = 8.3 Hz, 1H), 7.03 (d, J = 8.4 Hz, 1H), 6.17 (s, 1H), 3.62 (s, 3H), 2.34 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 145.5, 136.6, 132.0, 129.5, 129.0, 128.5, 128.3, 128.1, 127.2, 127.0, 124.3, 123.7, 121.9, 119.4, 109.2, 95.1, 84.8, 50.4, 33.1, 21.9; MS (ESI) (m/z) 412.2 (M + H⁺); HRMS (EI) (m/z) calcd for C₃₁H₂₅N 411.1987, found 411.1993.

3-(1,3-Diphenylprop-2-yn-1-yl)-1-methyl-5-nitro-1*H***-indole (4c).** Yellow solid; 223 mg, 61% yield; mp 155.3–156.1 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.66 (d, *J* = 1.9 Hz, 1H), 8.07 (dd, *J* = 9.1, 2.0 Hz, 1H), 7.53 (d, *J* = 7.4 Hz, 2H), 7.48 (dd, *J* = 6.5, 2.9 Hz, 2H), 7.35 (t, *J* = 7.6 Hz, 2H), 7.32–7.20 (m, 5H), 7.06 (s, 1H), 5.45 (s, 1H), 3.74 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 141.6, 140.8, 140.5, 132.0, 130.6, 129.1, 128.6, 128.4, 128.1, 127.6, 126.0, 123.5, 118.8, 117.8, 117.4, 109.7, 89.8, 84.3, 35.5, 33.5; MS (ESI) (*m*/*z*) 367.1 (M + H⁺); HRMS (EI) (*m*/*z*) calcd for C₂₄H₁₈N₂O₂ 366.1368, found 366.1370.

1-Methyl-5-nitro-3-(9-(phenylethynyl)-9H-fluoren-9-yl)-1Hindole (4d). Yellow solid; 370 mg, 84% yield; mp 213.4–214.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.09 (s, 1H), 7.97–7.90 (m, 1H), 7.82 (d, *J* = 7.6 Hz, 2H), 7.57 (d, *J* = 7.5 Hz, 2H), 7.51–7.44 (m, 2H), 7.40 (t, *J* = 7.5 Hz, 2H), 7.33–7.22 (m, 6H), 7.11 (d, *J* = 9.1 Hz, 1H), 3.67 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.0, 141.5, 140.7, 139.7, 132.1, 130.7, 128.8, 128.61, 128.55, 125.3, 124.9, 123.3, 120.7, 119.5, 117.8, 117.5, 109.6, 90.4, 82.3, 49.3, 33.4; MS (ESI) (*m*/*z*) 441.2 (M + H⁺); HRMS (EI) (*m*/*z*) calcd for C₃₀H₂₀N₂O₂ 440.1525, found 440.1528.

1,5-Diethyl-3-(9-(phenylethynyl)-9*H***-fluoren-9-yl)-1***H***-indole (4e**). White solid; 299 mg, 73% yield; mp 170.1–171.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.81–7.73 (m, 2H), 7.58 (dd, *J* = 7.5, 2.9 Hz, 2H), 7.46–7.39 (m, 2H), 7.39–7.30 (m, 2H), 7.23 (ddd, *J* = 6.6, 6.2, 2.0 Hz, 5H), 7.16 (d, *J* = 2.6 Hz, 1H), 7.06 (dd, *J* = 8.3, 1.9 Hz, 1H), 6.90 (d, *J* = 8.2 Hz, 1H), 6.79 (s, 1H), 3.62 (d, *J* = 0.8 Hz, 3H), 2.20 (d, *J* = 2.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.9, 139.8, 136.6, 132.1, 128.5, 128.33, 128.28, 128.2, 128.0, 125.9, 125.5, 123.9, 123.5, 120.3, 120.2, 115.4, 109.3, 91.8, 81.4, 49.7, 33.0, 21.9; MS (ESI) (*m*/*z*) 410.2 (M + H⁺); HRMS (EI) (*m*/*z*) calcd for C₃₁H₂₃N 409.1830, found 409.1828.

5-Methoxy-1-methyl-3-(9-(phenylethynyl)-9H-fluoren-9-yl)-1H-indole (4f). White solid; 247 mg, 58% yield; mp 172.3–173.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 7.5 Hz, 2H), 7.58 (d, *J* = 7.6 Hz, 2H), 7.48–7.42 (m, 2H), 7.38 (td, *J* = 7.5, 1.0 Hz, 2H), 7.31– 7.24 (m, 6H), 7.08 (d, *J* = 8.9 Hz, 1H), 6.73 (dd, *J* = 8.9, 2.4 Hz, 1H), 6.30 (d, *J* = 2.3 Hz, 1H), 3.70 (s, 3H), 3.48 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 153.7, 149.8, 139.9, 133.4, 132.2, 128.54, 128.48, 128.4, 128.3, 125.8, 125.6, 123.9, 120.2, 115.4, 112.1, 110.3, 102.1, 91.5, 81.5, 55.7, 49.6, 33.3; MS (ESI) (*m*/*z*) 426.2 (M + H⁺); HRMS (EI) (*m*/*z*) calcd for C₃₁H₂₃NO 425.1780, found 425.1781.

1-Methyl-3-(9-(phenylethynyl)-9H-fluoren-9-yl)-1H-indole-5-carbonitrile (4g). Pale solid; 391 mg, 93% yield; mp 205.8–206.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 7.6 Hz, 2H), 7.50 (dd, *J* = 6.8, 4.9 Hz, 2H), 7.47–7.33 (m, 5H), 7.23 (ddd, *J* = 18.1, 12.8, 4.9 Hz, 6H), 7.15–7.06 (m, 2H), 3.64 (d, *J* = 3.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.9, 139.6, 139.4, 132.0, 130.3, 128.7, 128.53, 128.48, 128.4, 125.7, 125.2, 125.0, 124.7, 123.2, 121.0, 120.6, 117.5, 110.5, 102.2, 90.6, 81.9, 49.2, 33.1; MS (ESI) (*m*/*z*) 421.2 (M + H⁺); HRMS (EI) (*m*/*z*) calcd for C₃₁H₂₀N₂ 420.1626, found 420.1627.

5-Bromo-1-methyl-3-(9-(phenylethynyl)-9H-fluoren-9-yl)-1H-indole (4h). White solid; 407 mg, 86% yield; mp 182.7–183.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 7.6 Hz, 2H), 7.56 (d, *J* = 7.6 Hz, 2H), 7.43 (dd, *J* = 6.5, 2.8 Hz, 2H), 7.38 (t, *J* = 7.5 Hz, 2H), 7.29–7.21 (m, SH), 7.17 (t, *J* = 3.7 Hz, 3H), 7.01 (d, *J* = 8.6 Hz, 1H), 3.60 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.4, 139.8, 136.7, 132.1, 128.9, 128.54, 128.52, 128.4, 127.3, 125.4, 124.8, 123.6, 123.0, 120.5, 115.9, 112.8, 111.2, 91.1, 81.8, 49.4, 33.2; MS (ESI) (*m*/*z*) 474.1 (M + H⁺); HRMS (EI) (*m*/*z*) calcd for C₃₀H₂₀BrN 473.0779, found 473.0782.

1-Methyl-3-(1,1,3-triphenylprop-2-yn-1-yl)-1H-indole (4i). White solid; 258 mg, 65% yield; mp 183.2–184.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.55 (d, *J* = 8.0 Hz, 1H), 7.48 (d, *J* = 7.1 Hz, 4H), 7.44 (dd, *J* = 6.6, 2.9 Hz, 2H), 7.33–7.17 (m, 11H), 6.99 (t, *J* = 7.5 Hz, 1H), 6.23 (s, 1H), 3.61 (s, 3H); 13 C NMR (100 MHz, CDCl₃) δ 145.3, 138.2, 132.0, 129.4, 129.2, 128.5, 128.3, 128.1, 127.04, 126.96, 124.2, 122.3, 122.0, 120.1, 119.3, 109.5, 95.0, 84.9, 50.3, 33.0; MS (ESI) (*m*/*z*) 398.2 (M + H⁺); HRMS (EI) (*m*/*z*) calcd for C₃₀H₂₃N, found 397.1829.

3-(1,1-Diphenyl-3-(*p***-tolyl)prop-2-yn-1-yl)-1-methyl-1***H***-indole (4j). White solid; 247 mg, 60% yield; mp 211.1–211.9 °C; ¹H NMR (400 MHz, CDCl₃) \delta 7.54 (d,** *J* **= 8.0 Hz, 1H), 7.48 (d,** *J* **= 7.8 Hz, 4H), 7.34 (dd,** *J* **= 8.0, 1.7 Hz, 2H), 7.31–7.17 (m, 8H), 7.05 (d,** *J* **= 7.3 Hz, 2H), 7.01–6.94 (t, 1H), 6.23 (d,** *J* **= 1.9 Hz, 1H), 3.61 (s, 3H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) \delta 145.4, 138.2, 138.1, 131.9, 129.4, 129.2, 129.0, 128.3, 127.0, 122.3, 122.0, 121.1, 120.2, 119.3, 109.5, 94.2, 85.0, 50.3, 33.0, 21.8; MS (ESI) (***m***/***z***) 412.2 (M + H⁺); HRMS (EI) (***m***/***z***) calcd for C₃₁H₂₅N 411.1987, found 411.1987.**

3-(3-(4-Fluorophenyl)-1,1-diphenylprop-2-yn-1-yl)-1-methyl-1H-indole (4k). White solid; 141 mg, 34% yield; mp 192.5–193.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, *J* = 8.1 Hz, 1H), 7.50–7.44 (m, 4H), 7.44–7.37 (m, 2H), 7.33–7.21 (m, 7H), 7.21–7.15 (m, 1H), 7.03–6.97 (m, 1H), 6.93 (td, *J* = 8.6, 1.7 Hz, 2H), 6.22 (d, *J* = 1.7 Hz, 1H), 3.62 (d, *J* = 1.7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.6 (d, *J*_{CF} = 248.6 Hz), 145.2, 138.2, 133.8 (d, *J*_{CF} = 8.3 Hz), 129.4, 128.9, 128.3, 127.1, 126.9, 122.2, 122.1, 120.22, 120.20 (d, *J*_{CF} = 3.4 Hz), 119.4, 115.7 (d, *J*_{CF} = 22.0 Hz), 109.6, 94.6, 83.8, 50.3, 33.0; MS (ESI) (*m*/*z*) 416.2 (M + H⁺); HRMS (EI) (*m*/*z*) calcd for C₃₀H₂₂FN 415.1736, found 415.1738.

3-(2,4-Diphenylbut-3-yn-2-yl)-1-methyl-1*H***-indole (4!).** White solid; 281 mg, 84% yield; mp 180.8–181.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.64–7.57 (m, 1H), 7.50 (d, *J* = 8.0 Hz, 2H), 7.47–7.43 (m, 1H), 7.43 (d, *J* = 2.0 Hz, 2H), 7.34–7.22 (m, 5H), 7.23–7.19 (m, 1H), 7.19–7.13 (m, 1H), 7.00 (s, 1H), 6.99–6.93 (m, 1H), 3.74 (s, 3H), 2.10 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 146.6, 138.1, 132.0, 128.5, 128.0, 127.0, 126.8, 126.6, 126.5, 124.2, 121.9, 121.6, 120.5, 119.2, 109.5, 95.5, 83.3, 40.2, 33.1, 31.4; MS (ESI) (*m/z*) 336.2 (M + H⁺); HRMS (EI) (*m/z*) calcd for C₂₅H₂₁N 335.1674, found 335.1675.

3-(9-Ethynyl-9H-fluoren-9-yl)-1-methyl-5-nitro-1H-indole (4m). Yellow solid; 135 mg, 37% yield; mp 203.6–204.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.94 (dd, *J* = 9.1, 2.0 Hz, 1H), 7.84 (d, *J* = 7.6 Hz, 2H), 7.72 (d, *J* = 1.7 Hz, 1H), 7.48 (d, *J* = 7.6 Hz, 2H), 7.42 (t, *J* = 7.5 Hz, 3H), 7.27 (t, *J* = 7.5 Hz, 2H), 7.16 (d, *J* = 9.1 Hz, 1H), 3.76 (s, 3H), 2.44 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 148.4, 141.5, 140.8, 139.8, 131.1, 129.0, 128.7, 125.1, 124.5, 120.8, 118.7, 117.6, 109.6, 85.2, 70.3, 48.5, 33.6; MS (ESI) (*m*/*z*) 365.1 (M + H⁺); HRMS (EI) (*m*/*z*) calcd for C₂₄H₁₆N₂O₂ 364.1212, found 364.1211.

1-Ethyl-2-phenyl-3-(9-(phenylethynyl)-9H-fluoren-9-yl)-1Hindole (4n). White solid; 340 mg, 70% yield; mp 159.8–161.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.73–7.47 (m, 4H), 7.45–6.64 (m, 18H), 3.91–3.69 (m, 2H), 1.25–1.04 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.1, 139.7, 138.0, 135.6, 132.4, 132.1, 131.4, 128.2, 128.1, 128.0, 127.9, 127.7, 125.7, 124.0, 121.7, 121.5, 120.1, 119.6, 111.1, 109.7, 92.4, 82.4, 50.2, 38.4, 15.6; MS (ESI) (*m*/*z*) 486.2 (M + H⁺); HRMS (EI) (*m*/*z*) calcd for C₃₇H₂₇N 485.2143, found 485.2141.

5-Methoxy-1-methyl-2-phenyl-3-(9-(phenylethynyl)-9H-fluoren-9-yl)-1H-indole (40). White solid; 286 mg, 57% yield; mp 179.2–180.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 7.5 Hz, 4H), 7.31–6.95 (m, 15H), 6.84 (d, *J* = 8.0 Hz, 2H), 3.59 (s, 3H), 3.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.0, 150.9, 139.7, 132.2, 132.1, 131.3, 128.3, 128.1, 127.93, 127.89, 127.7, 125.7, 123.9, 120.0, 112.3, 110.7, 110.2, 102.9, 92.3, 82.5, 56.0, 50.1, 30.7; MS (ESI) (*m*/*z*) 502.2 (M + H⁺); HRMS (EI) (*m*/*z*) calcd for C₃₇H₂₇NO[M⁺] (*m*/*z*) 501.2093, found 501.2097.

General Procedure for the Preparation of 5. To a solution of 4 (0.5 mmol) and 1-iodopyrrolidine-2,5-dione (NIS) (113 mg, 0.5 mmol) in dichloromethane (5 mL) was added a solution of BF_3 · Et_2O (72 mg, 0.5 mmol) in dichloromethane (3 mL) dropwise over 3 min. After being stirred at room temperature for 2 h, the mixture was evaporated under vacuum. The product was isolated by silica gel column chromatography with a hexane/dichloromethane mixture.

2-lodo-4-methyl-3-phenyl-4*H*-spiro[cyclopenta[*b*]indole-**1**,9'-fluorene] (5a). White solid; 120 mg, 46% yield; mp 210–5– 211.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 7.5 Hz, 2H), 7.85 (d, *J* = 7.6 Hz, 2H), 7.54 (t, *J* = 7.1 Hz, 3H), 7.45 (t, *J* = 7.6 Hz, 3H), 7.28–7.08 (m, 6H), 7.05 (d, *J* = 7.6 Hz, 2H), 2.97 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.9, 147.8, 143.0, 142.6, 140.7, 136.1, 129.3, 129.0, 128.7, 128.6, 128.4, 124.4, 121.9, 121.2, 121.0, 120.8, 120.4, 119.5, 110.2, 92.5, 67.7, 30.1; MS (ESI) (*m*/*z*) 522.1 (M + H⁺); HRMS (EI) (*m*/*z*) calcd for C₃₀H₂₀IN 521.0640, found 521.0641.

2-lodo-4-methyl-7-nitro-3-phenyl-4*H***-spiro**[**cyclopenta**[*b*]**-indole-1,9**'-**fluorene**] (**5b**). White solid; 88 mg, 31% yield; mp 245.2–246.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, *J* = 2.1 Hz, 1H), 8.05 (dd, *J* = 9.1, 2.2 Hz, 1H), 7.89 (t, *J* = 7.1 Hz, 4H), 7.60 (t, *J* = 7.6 Hz, 2H), 7.53 (d, *J* = 7.6 Hz, 1H), 7.49 (t, *J* = 7.6 Hz, 2H), 7.27 (t, *J* = 7.5 Hz, 2H), 7.21 (d, *J* = 9.1 Hz, 1H), 7.05 (d, *J* = 7.5 Hz, 2H), 3.02 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 153.1, 146.7, 143.2, 143.0, 142.3, 141.5, 135.3, 129.5, 129.3, 129.1, 128.7, 124.3, 124.0, 121.0, 120.0, 116.7, 116.5, 110.1, 95.3, 68.1, 30.6; MS (ESI) (*m*/*z*) 567.0 (M + H⁺); HRMS (EI) (*m*/*z*) calcd for C₃₀H₁₉IN₂O₂ 566.0491, found 566.0487.

2-Iodo-4,7-dimethyl-3-phenyl-4H-spiro[cyclopenta[b]indole-1,9'-fluorene] (5c). White solid; 144 mg, 54% yield; mp 225.4–226.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.93–7.88 (m, 2H), 7.83 (d, *J* = 7.6 Hz, 2H), 7.55 (t, *J* = 7.5 Hz, 2H), 7.50–7.40 (m, 3H), 7.31 (s, 1H), 7.26–7.20 (m, 2H), 7.05 (dd, *J* = 10.3, 8.1 Hz, 3H), 6.97 (dd, *J* = 8.4, 1.2 Hz, 1H), 2.93 (s, 3H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.9, 147.9, 142.9, 142.8, 139.1, 136.3, 129.8, 129.4, 129.0, 128.64, 128.61, 128.4, 124.4, 122.7, 121.3, 121.2, 120.7, 119.1, 109.9, 92.2, 67.7, 30.1, 21.9; MS (ESI) (*m*/*z*) 536.1 (M + H⁺); HRMS (EI) (*m*/*z*) calcd for C₃₁H₂₂IN 535.0797, found 535.0800.

2-Iodo-7-methoxy-4-methyl-3-phenyl-4H-spiro[cyclopenta-[b]indole-1,9'-fluorene] (5d). White solid; 105 mg, 38% yield; mp 221.3–222.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.94–7.88 (m, 2H), 7.84 (d, J = 7.6 Hz, 2H), 7.54 (dd, J = 10.3, 4.6 Hz, 2H), 7.48–7.42 (m, 3H), 7.25–7.21 (m, 2H), 7.06 (t, J = 7.8 Hz, 3H), 7.02 (d, J = 2.4 Hz, 1H), 6.81 (dd, J = 8.9, 2.5 Hz, 1H), 3.78 (s, 3H), 2.93 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.8, 150.4, 147.7, 142.9, 142.8, 136.1, 129.3, 129.0, 128.7, 128.6, 128.4, 124.4, 121.4, 121.3, 120.8, 110.8, 110.6, 102.2, 92.0, 67.7, 56.3, 30.2; MS (ESI) (m/z) 552.1 (M + H⁺); HRMS (EI) (m/z) calcd for C₃₁H₂₂INO 551.0746, found 551.0746.

2-Iodo-4-methyl-3-phenyl-4*H*-spiro[cyclopenta[*b*]indole-1,9'-fluorene]-7-carbonitrile (5e). White solid; 98 mg, 36% yield; mp 226.8–227.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.91–7.83 (m, SH), 7.59 (t, *J* = 7.4 Hz, 2H), 7.52 (d, *J* = 7.3 Hz, 1H), 7.49 (t, *J* = 7.6 Hz, 2H), 7.38 (dd, *J* = 8.5, 1.4 Hz, 1H), 7.31–7.21 (m, 3H), 7.04 (d, *J* = 7.6 Hz, 2H), 3.00 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 152.2, 146.8, 143.0, 142.0, 141.6, 135.4, 129.4, 129.2, 129.03, 129.01, 128.6, 124.9, 124.3, 124.1, 122.6, 121.0, 121.0, 120.6, 111.0, 103.5, 94.8, 67.9, 30.4. MS (ESI) (*m*/*z*) 547.1 (M + H⁺); HRMS (EI) (*m*/*z*) calcd for C₃₁H₁₉IN₂ 546.0593, found 546.0590.

7-Bromo-2-iodo-4-methyl-3-phenyl-4H-spiro[cyclopenta[b]indole-1,9'-fluorene] (5f). White solid; 129 mg, 43% yield; mp 221.8–222.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.88–7.81 (m, 4H), 7.63 (d, *J* = 1.8 Hz, 1H), 7.60–7.52 (m, 2H), 7.50–7.42 (m, 3H), 7.24 (qd, *J* = 7.7, 1.5 Hz, 3H), 7.06–7.00 (m, 3H), 2.93 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.0, 147.3, 143.0, 142.3, 139.4, 135.8, 129.2, 128.9, 128.8, 128.5, 124.4, 124.0, 122.4, 122.0, 121.4, 120.9, 113.9, 111.6, 93.3, 67.8, 30.2; MS (ESI) (*m*/*z*) 600.0 (M + H⁺); HRMS (EI) (*m*/*z*) calcd for C₃₀H₁₉BrIN 598.9746, found 598.9742.

2-lodo-4-methyl-1,3,3-triphenyl-3,4-dihydrocyclopenta[b]indole (5g). Pale solid; 63 mg, 24% yield; mp 194.8–195.6 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.78 (d, *J* = 7.3 Hz, 2H), 7.49 (t, *J* = 7.5 Hz, 2H), 7.43 (t, *J* = 7.1 Hz, 2H), 7.39 (dd, *J* = 6.1, 3.2 Hz, 4H), 7.34– 7.28 (m, 6H), 7.25 (d, *J* = 8.2 Hz, 1H), 7.15 (dd, *J* = 8.8, 6.3 Hz, 1H), 7.07 (t, *J* = 7.5 Hz, 1H), 3.48 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 154.4, 146.1, 140.6, 138.2, 136.5, 129.5, 129.4, 128.8, 128.6, 128.5, 128.0, 121.4, 120.8, 120.5, 119.9, 119.7, 110.2, 102.8, 66.2, 31.4; MS (ESI) (*m*/*z*) 523.1 (M ⁺); HRMS (EI) (*m*/*z*) calcd for C₃₀H₂₂IN 523.0797, found 523.0795.

2-lodo-4-methyl-1,1-diphenyl-3-(p-tolyl)-1,4dihydrocyclopenta[b]indole (5h). White solid; 121 mg, 45% yield; mp 204.6–205.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 8.0 Hz, 2H), 7.46 (d, *J* = 7.9 Hz, 1H), 7.38 (dd, *J* = 6.6, 3.1 Hz, 4H), 7.34–7.24 (m, 9H), 7.19–7.13 (m, 1H), 7.12–7.02 (m, 1H), 3.49 (s, 3H), 2.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.4, 146.0, 140.6, 138.4, 138.3, 133.6, 129.5, 129.3, 129.2, 128.7, 127.9, 121.3, 120.9, 120.5, 120.1, 119.8, 110.1, 102.4, 66.1, 31.4, 21.8; MS (ESI) (*m*/*z*) 538.1(M + H⁺); HRMS (EI) (*m*/*z*) calcd for C₃₁H₂₄IN 537.0953, found 537.0951.

3-(4-Fluorophenyl)-2-iodo-4-methyl-1,1-diphenyl-1,4dihydrocyclopenta[b]indole (5i). White solid; 105 mg, 39% yield; mp 207.1–208.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (dd, *J* = 8.5, 5.6 Hz, 2H), 7.42–7.24 (m, 12H), 7.23–7.13 (m, 3H), 7.09 (t, *J* = 7.5 Hz, 1H), 3.50 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.9 (d, *J*_{CF} = 247.6 Hz), 154.5, 145.2, 140.6, 138.1, 132.5 (d, *J*_{CF} = 3.2 Hz), 131.3 (d, *J*_{CF} = 8.1 Hz), 129.5, 128.8, 128.0, 121.5, 120.7, 120.6, 119. 8, 119.5, 115.6 (d, *J*_{CF} = 21.5 Hz), 110.3, 103.0, 66.2, 31.4; MS (ESI) (*m*/*z*) 541.1 (M + H⁺); HRMS (EI) (*m*/*z*) calcd for C₃₀H₂₁FIN 541.0703, found 541.0706.

2-lodo-4-methyl-7-nitro-4*H*-spiro[cyclopenta[*b*]indole-1,9'-fluorene] (5j). White solid; 39 mg, 16% yield; mp 192–194 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.98 (dd, *J* = 9.0, 2.1 Hz, 1H), 7.89 (d, *J* = 7.6 Hz, 2H), 7.57 (d, *J* = 2.1 Hz, 1H), 7.44 (t, *J* = 7.4 Hz, 2H), 7.38 (s, 1H), 7.34 (d, *J* = 9.1 Hz, 1H), 7.18 (t, *J* = 7.4 Hz, 2H), 6.81 (d, *J* = 7.5 Hz, 2H), 3.97 (s, 3H); ¹³C NMR (125 MHz, DMSO) δ 152.2, 143.4, 143.1, 142.8, 142.1, 131.4, 128.9, 128.1, 124.2, 123.4, 121.8, 120.9, 116.2, 113.8, 111. 6, 110.4, 68.7, 31.9; MS (ESI) (*m*/*z*) 491.0(M + H⁺); HRMS (EI) (*m*/*z*) calcd for C₂₄H₁₅IN₂O₂ 490.0178, found 490.0177.

N,6'-**Diethyl-4'-phenyl-[1,1':2',1"-terphenyl]-2-amine (6).** White solid; 124 mg, 71% yield; mp 175–178 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.66 (d, *J* = 7.5 Hz, 2H), 7.54 (s, 2H), 7.43 (t, *J* = 7.6 Hz, 2H), 7.33 (t, *J* = 7.3 Hz, 1H), 7.22–7.06 (m, 6H), 6.79 (d, *J* = 6.5 Hz, 1H), 6.58 (t, *J* = 7.3 Hz, 1H), 6.54 (d, *J* = 8.1 Hz, 1H), 3.48 (s, 1H), 2.67 (s, 3H), 2.18 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 147.1, 143.3, 141.8, 141.0, 140.8, 138.8, 136.1, 130.7, 129.3, 129.1, 128.6, 128.4, 127.8, 127.7, 127.4, 127.1, 126.9, 125.6, 117.0, 109.9, 31.0, 20.9; MS (ESI) (*m*/*z*) 350.2 (M + H⁺); HRMS (EI) (*m*/*z*) calcd for C₂₆H₂₃N 349.1830, found 349.1835.

1,2-Diethyl-3-(spiro[fluorene-9,1'-inden]-3'-yl)-1*H*-indole-(7a). White solid; 41 mg, 20% yield; mp 191.8–192.4 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.82 (d, *J* = 7.6 Hz, 2H), 7.64 (d, *J* = 7.8 Hz, 1H), 7.35 (dd, *J* = 17.0, 8.0 Hz, 4H), 7.21 (dt, *J* = 12.0, 7.0 Hz, 4H), 7.12 (t, *J* = 7.4 Hz, 1H), 7.07 (d, *J* = 7.4 Hz, 2H), 7.02 (t, *J* = 7.4 Hz, 1H), 6.70 (d, *J* = 7.4 Hz, 1H), 6.19 (s, 1H), 3.75 (s, 3H), 2.51 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 149.3, 146.2, 145.9, 142.4, 139.9, 137.7, 137.2, 135.0, 128.01, 127.95, 127.6, 127.2, 126.3, 124.1, 122.9, 121.8, 121.4, 120.5, 120.0, 119.8, 109.1, 107.7, 67.9, 30.1, 12.0; MS (ESI) (*m*/*z*) 410.2 (M + H⁺); HRMS (EI) (*m*/*z*) calcd for C₃₁H₂₃N 409.1830, found 409.1833.

5-Methoxy-1-methyl-2-phenyl-3-(spiro[fluorene-9,1'-inden]-3'-yl)-1H-indole(7b). White solid; 163 mg, 65% yield; mp 196.3–197.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 7.5 Hz, 2H), 7.47 (d, J = 7.1 Hz, 2H), 7.39–7.26 (m, 6H), 7.17 (d, J = 2.3 Hz, 1H), 7.13 (t, J = 7.7 Hz, 3H), 7.08 (d, J = 7.3 Hz, 1H), 6.99 (dd, J = 8.8, 2.4 Hz, 1H), 6.92 (dd, J = 11.7, 7.7 Hz, 3H), 6.61 (d, J = 7.4 Hz, 1H), 6.03 (s, 1H), 3.82 (s, 3H), 3.72 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.8, 149.0, 146.1, 145.7, 142.3, 139.9, 139.6, 138.6, 133.2, 132.3, 131.0, 128.6, 128.4, 128.2, 127.9, 127.8, 127.1, 126.0, 124.1, 122.6, 121.6, 120.3, 112.5, 110.8, 108.9, 102.7, 67.7, 56.4, 31.7; MS (ESI) (m/z) 502.2 (M + H⁺); HRMS (EI) (m/z) calcd for C₃₇H₂₇NO 501.2093, found 501.2090.

Procedure for the Preparation of 8. To a solution of indole 1k (119 mg, 0.5 mmol), propargylic alcohol 2n (103 mg, 0.5 mmol), and 1-iodopyrrolidine-2,5-dione (NIS) (113 mg, 0.5 mmol) in dichloromethane (5 mL) was added a solution of BF₃·Et₂O (72 mg, 0.5 mmol) in dichloromethane (3 mL) dropwise over 3 min. After being stirred at room temperature for 2 h, the mixture was evaporated under vacuum. The product was isolated by silica gel column chromatography with a hexane/dichloromethane mixture.

4-lodo-6-methoxy-1-methyl-2-phenyl-1*H*-spiro[benzo[*cd*]indole-3,9'-fluorene] (8). White solid; 55 mg, 20% yield; mp 212.1– 213.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.93 (s, 1H), 7.29 (d, *J* = 7.3 Hz, 2H), 7.27–7.14 (m, 6H), 7.12 (d, *J* = 8.8 Hz, 1H), 7.00 (t, *J* = 7.5 Hz, 1H), 6.86 (d, *J* = 8.8 Hz, 1H), 6.80 (t, *J* = 7.6 Hz, 2H), 6.12 (d, *J* = 7.9 Hz, 2H), 3.96 (s, 3H), 3.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.6, 148.1, 140.3, 138.6, 133.8, 130.8, 130.2, 129.6, 128.0, 127.8, 127.7, 127.4, 125.8, 124.8, 119.6, 113.8, 110.9, 110.4, 109.4, 108.2, 61.2, 57.9, 30.9; MS (ESI) (*m*/*z*) 552.1 (M + H⁺); HRMS (EI) (*m*/*z*) calcd for C₃₁H₂₂INO 551.0746, found 551.0735.

ASSOCIATED CONTENT

S Supporting Information

HPLC reports of reaction conditions, copies of ¹H and ¹³C NMR spectra, and crystallographic information in CIF format for compounds **3a**, **3c**, **4n**, **5j**, **6**, **7a**, and **8**. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*Corresponding Author E-mail: pinglu@zju.edu.cn; orgwyg@ zju.edu.cn

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the National Natural Science Foundation of China (Grants 21032005 and 20872128) for financial support.

REFERENCES

(1) Nakazawa, J.; Yajima, J.; Usui, T.; Ueki, M.; Takatsuki, A.; Imoto, M.; Toyoshima, Y. Y.; Osada, H. *Chem. Biol.* **2005**, *10*, 131.

(2) Churruca, F.; Fousteris, M.; Ishikawa, Y.; Rekowski, M. W.; Hounsou, C.; Surrey, T.; Giannis, A. Org. Lett. **2010**, *12*, 2096.

(3) Stratmann, K.; Moore, R. E.; Bonjouklian, R.; Deeter, J. B.; Patterson, G. M. L.; Shaffer, S.; Smith, C. D.; Smitka, T. A. J. Am. Chem. Soc. **1994**, 116, 9935.

- (4) Baran, P. S.; Maimone, T. J.; Richter, J. M. Nature 2007, 446, 404.
 (5) Baran, P. S.; Richter, J. M. J. Am. Chem. Soc. 2004, 126, 7450.
- (6) Richter, J. M.; Ishihara, Y.; Masuda, T.; Whitefield, B. W.; Llamas,
- T.; Pohjakallio, A.; Baran, P. S. J. Am. Chem. Soc. 2008, 130, 17938.
- (7) Gademann, K.; Bonazzi, S. Angew. Chem., Int. Ed. 2007, 46, 5656.
 (8) Moore, R. E.; Patterson, G. M. L. J. Org. Chem. 1988, 53, 5866.

(d) Moore, R. E., Fatterson, G. M. E. J. Org. Chem. 1766, 53, 3600.
(9) Chernyak, N.; Tilly, D.; Li, Z.; Gevorgyan, V. Chem. Commun. 2010, 46, 150.

- (10) Feldman, K. S.; Iyer, M. R. J. Am. Chem. Soc. 2006, 127, 4590.
- (11) Feldman, K. S.; İyer, M. R.; Hester, D. K. Org. Lett. 2006, 8, 3113.

(12) Barolo, S. M.; Lukach, A. E.; Rossi, R. A. J. Org. Chem. 2003, 68, 2807.

- (13) Tseng, N.; Lautens, M. J. Org. Chem. 2009, 74, 1809.
- (14) Banwell, M. G.; Ma, X.; Taylor, R. M.; Willis, A. C. J. Org. Chem. 2006, 8, 4959.
- (15) Wang, S.; Zhu, Y.; Wang, Y.; Lu, P. Org. Lett. 2009, 11, 2615.
- (16) Yin, G.; Zhu, Y.; Zhang, L.; Lu, P.; Wang, Y. Org. Lett. 2011, 13, 940.

(17) Zhu, Y.; Yin, G.; Hong, D.; Lu, P.; Wang, Y. Org. Lett. 2011, 13, 1024.

- (18) Yin, G.; Zhu, Y.; Lu, P.; Wang, Y. J. Org. Chem. 2011, 76, 8922.
- (19) Swaminathan, S.; Narayanan, K. V. Chem. Rev. 1971, 71, 429.
- (20) Edens, M.; Boerner, D.; Chase, C. R.; Nass, D.; Schiavelli, M. D. J. Org. Chem. **1977**, 42, 3403.

(21) Yamamoto, I.; Itoh, M.; Shimojo, M.; Yumiya, Y.; Mukaihira, T.; Akada, Y. Patent WO 9745410, 1997.

- (22) Bur, S. K.; Padwa, A. Org. Lett. 2002, 4, 4135.
- (23) Padwa, A.; Bur, S. K.; Zhang, H. J. Org. Chem. 2005, 70, 6833.
- (24) Uhle, F. C. J. Am. Chem. Soc. 1949, 71, 761.

- (25) Moore, R. E.; Cheuk, C.; Patterson, G. M. L. J. Am. Chem. Soc. 1984, 106, 6456.
- 1984, 100, 0450.
- (26) Fukuyama, T.; Chen, X. J. Am. Chem. Soc. 1994, 116, 3125.
- (27) Smitka, T. A.; Bonjouklian, F.; Doolin, L.; Jones, N. D.; Deeter, J. B. J. Org. Chem. **1992**, *57*, 857.
- (28) Raveh, A.; Carmeli, S. J. Nat. Prod. 2007, 70, 196.
- (29) Engel, D. A.; Dudley, G. B. Org. Lett. 2006, 8, 4027.