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ABSTRACT: Here, we describe a selective palladium catalyst system for chemodivergent functionalization of alkynes with syngas. 
In the presence of the advanced ligand L2 bearing 2-pyridyl substituent as a built-in base, either hydroformylation or semi-
hydrogenation of diverse alkynes occurs with high chemo- and stereoselectivity under comparable conditions. Mechanistic studies 
including DFT calculations, kinetic analysis and control experiments revealed that the strength and concentration of the acidic co-
catalysts play a decisive role in controlling the chemoselectivity. DFT studies disclosed that the ligand L2 not only promotes a 
heterolytic activation of hydrogen similar to FLP (frustrated Lewis pair) systems in the hydrogenolysis step for hydroformylation, 
but also suppresses CO coordination to promote semi-hydrogenation under strong acid condition. This switchable selectivity provides 
a strategy in designing catalysts for desired products.

INTRODUCTION
Precise control of selectivity in chemical transformations is 
amongst the most important subjects in organic chemistry, since 
this is crucial for the economic and green synthesis of any 
desired products. Nevertheless, achieving high chemo-, regio-, 
and/or stereoselectivity even for simple substrates continues to 
be difficult.[1] While for stoichiometric organic synthesis only 
limited possibilities exist to regulate selectivity issues, e.g. 
temperature and solvents, catalytic reactions offer many more 
possibilities by varying metals, ligands, acids, bases, and 
additives. Advantageously, for substrates with several reactive 
centers, applying different catalysts allows one to access 
different products from the same substrate. This concept is 
efficiently used in diversity-oriented synthesis for a variety of 
applications.[2] Notably, in the vast majority of these reactions 
diverse catalyst systems under completely different conditions 
are used.[3] In contrast, here we describe a single molecularly-
defined catalyst, which allows for either hydrogenation or 
hydroformylation of alkynes with extremely high selectivity 
under nearly identical conditions. 
Transition metal catalyzed hydroformylation is recognized as 
the most powerful tool to produce aldehydes in industry.[4] 
Compared to the well-studied reaction of olefins with 
syngas,[5][6] the corresponding reaction of alkynes has proven to 
be many more difficult, although it permits for an atom-
economic access of α,β-unsaturated aldehydes.[7][8] The main 
problem of this latter transformation is the concomitant 
generation of alkanes and/or alkenes due to side hydrogenation 
reactions (Scheme 1a). Thus, only few Rh-based catalysts were 
successfully developed by the groups of Buchwald,[7b] Alper,[7c-

d] Breit,[7e] Zhang,[7f] You,[7g] and Girard[7h]. In addition, 
Pd/phosphine catalysts were introduced for this process by 
Hidai[8a] and Tao[8b] and co-workers as well as our group[8c]. 

Scheme 1. Transition metal catalyzed semi-hydrogenation 
and hydroformylation of alkynes
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Despite all this progress, a detailed understanding of the factors 
influencing different reaction pathways is missing so far. 
Notably, these (unwanted) hydrogenation processes also offer 
interesting possibilities, as the semi-hydrogenation of alkynes 
represents an important transformation for the synthesis of 
various olefins.[9] 
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Since the original report of Lindlar[10], both hetero- and 
homogeneous catalysts based on noble[11] and earth-abundant 
base[12] metals have been developed for the stereoselective 
synthesis of Z- and/or E-alkenes in the presence of various 
hydrogen sources such as hydrogen gas, formic acid, 
stoichiometric amounts of reductants in water, alcohols and 
ammonia borane (Scheme 1b). Compared to pure hydrogen gas, 
syngas (CO/H2 = 1/1) is scarcely used for reduction reactions, 
except for its application in the sequential hydroformylation-
hydrogenation[13] processes as well as aldehyde reduction[14]. 
So far, the industrial production of pure hydrogen gas mainly 
relies on fossil resources leading initially to mixtures of CO and 
H2, which are purified afterwards. Therefore, the development 
of a selective semi-hydrogenation of alkynes with direct 
utilization of syngas would be interesting, but also challenging. 
In fact, only few examples were reported using Nb[15], supported 
Pd,[16] and Rh[17] as catalysts. However, in all these cases the 
main products are Z-alkenes. Complementary to all these 
works, we disclose highly tunable Pd catalysts, which permit 
the synthesis of E-alkenes (Scheme 1c). 
Recently, we introduced a series of bidentate phosphine ligands 
by incorporating 2-pyridyl substitutents as a built-in base on the 
phosphorus atoms.[18] Applying some of them in Pd-catalyzed 
alkoxycarbonylation of alkenes,[18a] dienes[18d] and alkynes[18c], 
significant improvement of reactivity was achieved. 
Mechanistic studies revealed the role of the basic nitrogen atom 
on the 2-pyridyl group as proton shuttle, which accelerates the 
alcoholysis of the Pd-acyl intermediate and increases the rate of 
overall reaction.[19] We envisioned that these ligands might also 
improve the reactivity in Pd-catalyzed hydroformylation of 
alkynes affording α,β-unsaturated aldehydes in a similar 
manner.
RESULTS AND DISCUSSION
Condition optimization: Initial studies began with the 
examination of selected phosphine ligands with built-in base 
L1-L4 using diphenylacetylene (1) as model substrate to 
produce α,β-unsaturated aldehyde (2). Inspired by previous Pd-
catalyzed alkoxycarbonylations 1.0 mol% Pd(acac)2, 4.0 mol% 
ligand, 16.0 mol% p-toluenesulfonic acid monohydrate 
(PTSA·H2O) were used under 50 bar syngas (CO/H2 = 1/1)]. As 
shown in Table 1, in the presence of 1,2-bis((tert-butyl(pyridin-
2-yl)phosphanyl)meth-yl)benzene L1 as ligand, 2 was obtained 
in 81% yield with 92/8 stereoselectivity. However, around 10% 
of a stilbene mixture (3) was observed. The yield of 2 was 
increased to 92% (E/Z = 94/6), while that of 3 was surpassed to 
less than 5% by using 1,1'-ferrocenediyl-bis(tert-butyl(pyridin-
2-yl)phosphine) L2 as ligand. In the presence of 1,4-bis(tert-
butyl(pyridin-2-yl)phosphanyl)butane L3 or 2,2'-bis(tert-
butyl(pyridin-2-yl)phosphaneyl)-1,1'-binaphtha-lene L4 
(Neolephos), more 3 as side-product was generated without the 
improvement in stereoselectivity. 
For comparison, L5-L8, which do not have the built-in base but 
have the same ligand backbone to L1-L4, were also tested. 
Interestingly, in all cases the 2/3 ratio decreased, demonstrating 
the superiority of L1-L4 in controlling the chemoselectivity 
towards 2. The best result for achieving 2 in high activity and 
selectivity was found for using L2. Thus, this ligand was used 
in further studies.  
Table 1. Pd-catalyzed hydroformylation of 
diphenylacetylene: Variation of ligands and acids a

Ph

Ph
Ph

Ph

CHO

Pd(acac)2 (1.0 mol%)
Ligand (4.0 mol%)
Acid (x mol%)

CO/H2 (25/25 bar),THF
100 oC, 20 h

Ph

1 2 3

Fe

P

P

PtBu2

PtBu2
Fe

PPh2 PPh2

PPh2

L1 L2 L3

PPh2

Ph

P

P

N
N N

N P

P

N
N

L4

L5 L6

P

P

N
N

PPh2

PPh2

L7 L8

+

Entry Ligand Acid (x) 2/3[b] Yield of 2 (%)
(E/Z)[b]

1 L1 PTSA (16) 87/13 81 (92/8)

2 L2 PTSA (16) 94/6 92 (94/6)

3 L3 PTSA (16) 80/20 76 (94/6)

4 L4 PTSA (16) 83/17 67 (95/5)

5 L5 PTSA (16) 75/25 21 (99/1)

6 L6 PTSA (16) 70/30 58 (96/4)

7 L7 PTSA (16) 55/45 45 (93/7)

8 L8 PTSA (16) 71/29 57 (95/5)

9 L2 TFA (16) 89/11 75 (93/7)

10 L2 MeSO3H (16) 94/6 92 (94/6)

11 L2 PTSA (8) 95/5 94 (97/3)[c]

12 L2 PTSA (32) 82/18 79 (95/5)

13 L2 CF3SO3H (16) <1/>99 98 (>99/1)[d]

[a] Unless otherwise noted, all reactions were performed in THF (1.0 mL) 
at 100 ˚C for 20 h in the presence of diphenylacetylene (1, 0.3 mmol), 
Pd(acac)2 (0.91 mg, 0.003 mmol), acid (x mol%), ligand (0.012 mmol) and 
CO/H2 (25/25 bar). [b] The ratio of 2/3, the E/Z selectivity and the yield 
were determined by GC analysis using isooctane as the internal standard. 
[c] The isolated yield of aldehyde 2 was 90%. [d] The isolated yield of 
alkene (E)-3 was 97%.

Apart from investigating the effect of solvents, temperature, 
palladium precursors, the impact of the acidic co-catalyst was 
tested with L2. As expected, there was no conversion of 
substrate without acid. Using trifluoroacetate acid afforded 2 in 
75% yield with 89/11 chemoselectivity. Lowering the loading 
of PTSA to 8.0 mol% gave slight improvement of both chemo- 
and stereoselectivity (2/3: 95/5, 94% yield, 97/3 E/Z). 
Surprisingly, when triflic acid (HOTf) was used instead of 
PTSA under otherwise identical reaction conditions, the 
chemoselectivity switched drastically and 3 is obtained with 
high yield (98%) and selectivity (E/Z, >99/1). Notably, no over 
reduction to the corresponding alkane was detected. 

Page 2 of 15

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Figure 1. Kinetic studies of Pd-catalyzed hydroformylation of 1 and two proposed possible mechanism: (a) Distribution of 
compounds for Pd-catalyzed hydroformylation in the presence of L2; (b) Comparison of aldehyde yield using L2 (red) and L6 (blue) 
as ligand; (c) Proposed Pd hydride (Pd-H Cycle) and bifunctional (NH-Pd Cycle) mechanism.

Mechanistic studies: To shed more light on this interesting 
chemoselectivity, mechanistic studies including kinetic 
analysis, control experiments and DFT calculations were 
performed. First, the hydroformylation of 1 was investigated 
under standard conditions. As shown in Figure 1a, (E)-2 is 
generated from the very beginning along with the gradual 
consumption of 1 and the distribution of (E)-2 was 94% with 
5% of (E)-3 after 3 hours. These results demonstrated clearly 
that the hydroformylation of 1 was faster than we presented in 
Table 1 (20 hours).   For L6, lower activity and selectivity were 
found (Figure 1b). 
To understand the experimentally observed differences in 
activity and selectivity of L2 and L6, density functional theory 

computations were carried out (see Supporting Information for 
more details). Here, we used the M06L-SCRF/def2-TZVP[20] 
computed Gibbs free energies (G, at 373 K) under the 
consideration of solvation effect (THF) on the basis of the 
B3PW91-SCRF/TZVP[21] optimized geometries in THF 
solution for discussion. In all our calculations, we used the real-
size systems without constrains and simplifications for both 
ligands, L2 and L6, as well as their corresponding Pd 
complexes, [L2PdII-H]+ and [L6PdII-H]+. The analysis into the 
detailed Gibbs free energy profiles and the critical transition 
state structures with selected bond parameters are given in 
Supporting Information. For the complexes of L2, we used the 
same diastereomer as rationalized in our previous work.[19a]
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Figure 2. Gibbs free energy (G, 373 K) profile for [L6PdII-H]+ catalyzed hydroformylation of 1
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Figure 3. Gibbs free energy (G, 373 K) profile of [L2PdII-H]+ and [NH-L2Pd0]+ catalyzed hydroformylation of 1 (NH-TS3B' and 
NH-TSB2-CO, in pink, represents the transition states of hydrogenolysis and CO coordination under protonation)

Figure 1c shows the two proposed mechanisms, the well 
accepted Pd-H cycle [19a, 22] (left side) and the bifunctional NH-
Pd cycle [19a, 19c] (right side), in which the built-in 2-pyridyl 
moiety can facilitate the nucleophilic attack on the Pd-acyl 
intermediate. Starting from the cationic [LPdII-H]+ complex, 
the first step is alkyne coordination and Pd-H insertion with the 

formation of the alkenyl complex [LPdII(C(Ph)=CHPh)]+; and 
the second step is CO coordination and insertion with the 
formation of the corresponding acyl complex [LPdII(-CO-
C(Ph)=CHPh)]+. The last step is hydrogenolysis of the acyl 
complex resulting in the formation of 2,3-
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diphenylacrylaldehyde (2) and the regeneration of the active 
[LPdII-H]+ catalyst. 

Figure 4. Pd-catalyzed hydroformylation vs semi-hydrogenation of 1 under syngas conditions: Influence of acid concentration on the product 
distribution. Reaction conditions: all reactions were performed in THF (1.0 mL) at 100 ˚C for 20 h in the presence of 1 (0.3 mmol), Pd(acac)2 
(0.91 mg, 1.0 mol%) and L2 (6.1 mg, 4.0 mol%) under CO/H2 (25/25 bar) atmosphere with specified acid. The distribution of 2 (aldehyde), 
3 (olefin) and 2' (dialdehyde) were determined by GC and GC-MS analysis. (a) The distribution of products using varied amount of 
PTSA·H2O; (b) The distribution of products using varied amount of CF3SO3H; (c) The distribution of products using varied amount of 
MeSO3H; (d) The distribution of products using varied amount of CF3CO2H. 

For L6 as ligand, the computed Gibbs free energy profile is 
given in Figure 2. It shows that the Pd-H insertion via TS1A 
represents the highest point on Gibbs free energy profiles and 
has a barrier of 48.7 kJ/mol; the acyl complex (A3) represents 
the resting state and the hydrogenolysis via TS3A has an energy 
span of 98.6 kJ/mol, which is also the effective barrier, and the 
total reaction is exergonic by 55 kJ/mol. 
For L2 as ligand, both catalytic cycles, Pd-H (black line) and 
NH-Pd (blue line), are computed (Figure 3). It shows that both 
cycles differ in two points; the first one is the formation of 
alkenyl complex via either Pd-H insertion or N-H proton shuttle 
transfer. It is found that the N-H proton shuttle transfer is more 
energetically favored than the Pd-H insertion pathway, not only 
in alkyne coordination (23.5 kJ/mol) but also in the transition 
state (32.1 kJ/mol). The barrier of NH-Pd cycle is lower than 
that of the Pd-H cycle by 32.1 kJ/mol, demonstrating the role of 
the built-in base in lowering the barrier and accelerating the 
overall reaction. The second point is the product formation 
either via the direct one step hydrogenolysis of acyl complex 
through Pd coordination (Pd-H2, TS3B) or by 2-pyridyl-
assisted heterolytic dissociation of H2 forming N-H and Pd-H 

(TS3B' and B4'), followed by the Pd-H insertion (TS4B'). It 
shows again that the built-in base assisted pathway is lower in 
energy than the Pd-H2 pathway by 41.6 kJ/mol. In both 
pathways, the transition state of alkenyl complex formation 
(TS1B and TS1B') represents the highest point on the potential 
energy surface, and the acyl complex (B3) is the resting state, 
and the corresponding effect barrier of rate-determining step of 
hydrogenolysis is 131.0 and 89.4 kJ/mol, respectively. This 
demonstrates once more the barrier-lowering role of the built-
in base (41.6 kJ/mol). Comparing the more favored pathways 
using L2 and L6 shows that the reaction in the presence of L2 
has lower apparent barrier (41.2 vs. 48.7 kJ/mol) and lower 
effective barrier (89.4 vs. 98.6 kJ/mol) than that with L6. Such 
differences in barriers agree with the observed activity in Figure 
1b, which shows that reaction with L2 is more active than with 
L6.
It is interesting to note that the transition state (TS3B') for H2 
activation can be regarded as a type of Frustrated Lewis Pair 
like (FLP) as proposed by Stephan,[23] where the Pd(II) center 
acts as Lewis acid and the built-in nitrogen atom of the 
hemilabile 2-pridyl group as Lewis base. In TS3B’, the 

Page 5 of 15

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



breaking H–H distance is 0.90 Å and formation N–H distance 
is 1.57 Å as well as that of Pd–H is 1.72 Å. Apart from the role 
in lowering the barriers, the built-in base in L2 also stabilizes 
the intermediates, i.e., B2 and B3, as compared with the 
corresponding intermediates (A2 and A3) by using L6.
Since the chemoselectivity can be completely switched from 2 
to 3 by varying the acid co-catalyst (Table 1), we performed the 
model reaction in the presence of different acids and studied the 
effect of acid loading on the product distribution (Figure 4). All 
these reactions were conducted under similar conditions except 
the amount of acid. At lower concentration of PTSA·H2O (<5.0 
mol%), the main product was the aldehyde 2 and only very 
small amounts of olefin 3 were observed (Figure 4a). Slightly 
increasing the acid concentration to 8 mol%, the yield of 2 
reached its maximum along with an increase of 3 and (2') via 
double hydroformylation (Figure 4a). With a further increase of 
acid concentration (>40 mol%), the yield of 2 drops drastically, 
while at the same time, the yields of 3 and dialdehyde (2') 
increased strongly. At very high acid concentration the 
formation of the respective acid via hydro-carboxylation 
due to the presence of H2O as hydrate in acid can be 
observed, too. Importantly, for the reaction of (E)- or (Z)-
stilbene in the presence of 1 eq. of PTSA there was no 
hydroformylation product detectable (Scheme S2). 

Ph Ph
Ph

CHO

Ph

Pd(acac)2 (1.0 mol%)
L2 (4.0 mol%)
CF3SO3H (16.0 mol%)

CO/H2 (25/25 bar), THF
100 oC (E)-2

Ph
Ph

(E)- and (Z)-3

+

1

Figure 5. Reaction profile of Pd-catalyzed semihydrogenation 
of 1

An even more pronounced chemoselectivity change was 
observed when using triflic acid (Figure 4b). In fact, in the 
presence of 2-6 mol% of acid loading, 2 is obtained in high yield 
as the main product. With increasing CF3SO3H concentration, 
the yield of 2 drops drastically. In contrast, the yield of 3 is 
negligible at low acid concentration; however, rose rapidly with 
increasing amount of acid and reached a maximum at about 16 
mol% acid. Similar selectivity effects were found for 
methanesulfonic acid (CH3SO3H, Figure 4c) and trifluoroacetic 
acid (CF3CO2H, Figure 4d). Comparing all four acids reveals 
that PTSA and MeSO3H have the same distribution patterns, 

which differ strongly from those of CF3SO3H and CF3CO2H. In 
general, the observed chemoselectivity differences can be 
explained by the strength and concentration of the used acid. 
For example, triflic acid as the strongest acid (most negative pKa 
value 5.21) has the highest chemoselectivity towards the 
alkene (3), while CF3COOH has the lowest pKa value (0.23) and 
led mainly to the aldehyde (2) even at high acid 
concentration.[24] The computed proton affinity of the 
conjugated bases have the same order (see Supporting 
Information).
To get more information about the observed changes in 
chemoselectivity, a reaction profile of the model reaction was 
performed using triflic acid under the standard conditions. As 
shown in Figure 5, with increasing reaction time both (Z)-3 and 
(E)-3 are formed. The concentration of (Z)-3 increased fast to 
maximum at about 80 minutes and then decreased quickly and 
vanished at about 270 minutes. In contrast, the concentration of 
(E)-3 increased steadily and at about 270 minutes it is nearly the 
single product obtained. This clearly indicates a semi-
hydrogenation reaction accompanied with a slower 
isomerization process from (Z)-3 to (E)-3. Additional control 
experiment under the same conditions using (Z)-3 and (E)-3 as 
starting substrates showed indeed that (Z)-3 is completely 
isomerized to (E)-3, while (E)-3 did not react at all (Scheme S3). 
In the whole reaction period (up to 500 minutes), neither 
hydroformylation products (aldehydes) nor over hydrogenation 
product (alkane) were observed.
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Scheme 2. Proposed mechanism for generation of alkene 
from Pd-alkenyl complex
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Figure 6. Gibbs free energy profile of [NH-L2Pd0]+ catalyzed semi-hydrogenation of 1 without excess acid.
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
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Figure 7. Gibbs free energy profile of [NH-L2Pd0]+ catalyzed semi-hydrogenation of 1 by using CF3SO3H and PTSA (red part in 
square brackets) as co-catalyst

According to the proposed reaction mechanism in Figure 1, the 
first step of the semi-hydrogenation and hydroformylation 
reaction is the same. In this respect, the Pd-alkenyl complex 
(B2', Figure 3) is the key intermediate for either hydrogenolysis 
or follow up carbonylation reaction. Starting from the alkenyl 
intermediate (B2'), both hydrogenolysis (paths I and II) and 
protonation (paths III-IV) are proposed (Scheme 2). Since the 
chemoselectivity is drastically influenced by the acid co-
catalyst, we computed the hydrogenolysis step without excess 
acid and with excess acid to rationalize the observed effects. On 

the basis of alkenyl complex (B2') without excess acid, both the 
direct one step hydrogenolysis (path I) and the ligand-promoted 
stepwise H2 activation and hydride transfer process (path II) are 
computed (Figure 6). It is found that path I via TS5B has lower 
apparent barrier than path II via TS5B' (31.2 vs. 38.5 kJ/mol).
Comparing the Gibbs free energy profiles in Figures 3 and 6 
shows that the ligand-promoted H2 activation and aldehyde (2) 
formation is lower in energy than the direct hydrogenolysis for 
the formation of (Z)-3 (5.4 vs. 31.2 kJ/mol); and the formation 
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of 2 is more preferred kinetically than that of (Z)-3. Considering 
the fact that the transition state of CO coordination (TSB2-CO, 
8.9 kJ/mol) is higher in energy than the ligand-promoted H2 
activation (TS3B', 5.4 kJ/mol) (Figure 3), the energy 
difference to discriminate the chemoselective formation of 2 
over 3 is 22.3 kJ/mol (8.9 vs. 31.2 kJ/mol); and this will give an 
exclusive formation of 2 (>99%) over 3 (<1%). Although 
slightly overestimated on the basis of the experimentally 
detected chemoselectivity (Table 1 and Figure 1a, 94%/6%), the 
computed result is reasonable. Under the conditions with excess 
acid, the reaction pathways either via direct protonation to the 
Pd center followed by reductive elimination (path III) or via the 
2-pyridyl-assisted protonation and reductive elimination (path 
IV) was computed (Figure 7, blue lines). It is found that path 
IV is much favored compared to path III in the protonation step 
(16.7/[B2-NH]2+ vs. 108.3/[B2-PdH]2+ kJ/mol) and the 
reductive elimination transition state (12.1/TS7B vs. 
105.0/TS7B' kJ/mol). Comparison with the hydrogenolysis step 
without excess acid (Figure 6), the ligand-assisted protonation 
and reductive elimination is 19.1 kJ/mol more favored 
kinetically (12.1 vs. 31.2 kJ/mol); and this reveals that the 
excess of acid can accelerate the formation of (Z)-3 by lowering 
the barrier.
Since the strong acid in solution can have dissociation 
equilibrium (CF3SO3H → CF3SO3

 + H+), we computed the 
effect of CF3SO3H in the formation of alkene either via only H-
O in mono-dentate form (path V) or bidentate chelating form 
via both H-O and another O at sulfur center (path VI). As shown 
in Figure 7 (red lines), path V is more favored in energy than 
path VI by 25.9 kJ/mol (33.1 vs. 59.0 kJ/mol); and the more 
favored transition state (TS9B) is higher in energy that the 2-
pyridyl ligand-assisted protonation and hydrogenation (TS7B) 
(33.1 vs. 12.1 kJ/mol). Using less acidic PTSA, the barrier is 
even higher (> 80 kJ/mol). All these results indicate the decisive 
role of acid strength in determining the observed 
chemoselectivity. 
To compare the role of acid strength and loading in more detail, 
we recomputed transition state (TSB2-CO) and product (B2-
CO) in the presence of a proton (NH-TSB2-CO and NH-B2-
CO) as well as the following hydroformylation reaction (see 
Supporting Information). The transition states for 
hydrogenolysis and CO coordination under protonation, NH-
TS3B' and NH-TSB2-CO, are given in Figure 3 (in pink). It is 
observed that protonation raises the energy of TSB2-CO and 
B2-CO by 14.1 and 31.5 kJ/mol. Taking NH-TSB2-CO as 
reference (23.0 kJ/mol), the barrier (12.1 kJ/mol) for the 
formation of alkene (Z)-3 is lower than CO coordination by 10.9 
kJ/mol. Besides, the energy barrier of hydrogenation (74.0 
kJ/mol) is lower than hydroformylation (111.0 kJ/mol for B3 as 
reference state) by 37.0 kJ/mol in the presence of triflic acid. 
This indicates that strong acid lowers the barrier of 
hydrogenation and raises the barrier of hydroformylation to a 
large extent, which ultimately results in a chemoselectivity 
switch. In addition, the regeneration of the active catalyst is 
lower in energy and does not affect the reaction rate and the 
chemoselectivity (Figure 7).
To understand the effect of the acid in more detail, several 
control experiments were also performed: When D2 was used 
instead of H2 in the presence of 1.0 equiv. of triflic acid, 42% 
protium was incorporated into the product of (E)-3, 
demonstrating the involvement of the acid in the protonation of 

the Pd-alkenyl complex (Scheme 3, a). In addition, the (E)-
alkene is afforded without hydrogen gas in the presence of 100 
mol% of Pd(0), 120 mol% of ligand and 200 mol% of triflic 
acid (Scheme 3b, entry 1). Notably, there was no reaction 
without acid or when using Pd(II) as catalyst precursor (Scheme 
3b, entries 2 and 3). Besides, when using a large excess of 
CF3SO3H (4.0 equiv.) minor amounts (5%) of the fully 
hydrogenated product (1,2-diphenylethane) was observed 
(Scheme 3b, entry 4), which hints towards the possibility to 
protonate also the corresponding Pd alkyl complex. 
Scheme 3. Pd-catalyzed semi-hydrogenation of 
diphenylacetylene: Mechanistic experiments.

Ph Ph Ph
Ph

D(H)

Pd(acac)2 (1.0 mol%), L2 (4.0 mol%)
CF3SO3H (100 mol%)

D2 (8 bar), THF, 100 oC, 20 h

(a) Deuterated labeling experiments

D(H)

95% yield, E/Z >99/1
H/D = 42/58

1

(b) Stoichiometric experiments

Ph Ph Ph
Ph

Pd(dba)2 (1.0 equiv.), L2 (1.2 equiv.)
CF3SO3H (2.0 equiv.)

N2 (20 bar), THF, 100 oC, 20 h

95% (>99/1)

1 (0.1 mmol)

entry variation from standard conditions yield of 3 (E/Z)

1 none

2

3

4

no acid 0%

Pd(acac)2 was used instead of Pd(dba)2 0%

4.0 equiv. CF3SO3H was used 95% (>99/1)

"standard conditions" 3

(c) Reactions using weak acid

Ph Ph Ph

Pd(acac)2 (1.0 mol%)
L2 (4.0 mol%)
PhCO2H (x mol%)
H2 (25 bar), THF
100 oC, 20 h1 Ph

entry

1

2

x conv.
(%)

yield of 3
(E/Z)

16

32

58

97

55 (5/95)

94 (2/98)
3

To demonstrate that protonation of the intermediate Pd-alkenyl 
complex releases the cis-alkene (Z)-3 first, the hydrogenation of 
the model substrate was performed in the presence of a weaker 
carboxylic acid (benzoic acid). Indeed, (Z)-3 was detected in 94% 
yield with 98% stereoselectivity under these conditions(Scheme 
3c, entry 2). At this point, it should be noted that this 
observation also provides the basis for the development of 
stereodivergent hydrogenations of alkynes depending on acidic 
co-catalyst. 
Scheme 4. Isomerization from (Z)-3 to (E)-3: Control 
experiments

Pd(acac)2 (1.0 mol%), L2 (4.0 mol%)
CF3SO3H (16.0 mol%)

H2 (25 bar), THF, 100 oC, 20 h Ph
Ph

(E)-3

Ph

(Z)-3

Ph

>99%

entry variation from standard conditions yield of (E)-3

1 none

2

3

4

no acid 6%

no ligand 0%

no [Pd] <5%
5 no acid, no [Pd] 0%

"standard conditions"

6 no acid, no ligand 0%

7 no [Pd], no ligand 7%

[a]Reaction conditions: (Z)-3 (0.3 mmol), Pd(acac)2 (0.91 mg, 1.0 mol%), 
CF3SO3H (4.1μL, 16.0 mol%), L2 (6.1 mg, 4.0 mol%) and H2 (25 bar), 100 
˚C, 20 h, THF (1.0 mL). The yield of (E)-3 was determined by GC analysis.

Scheme 5. Plausible catalytic cycle for hydroformylation and semi-hydrogenation
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To further probe the isomerization process, (Z)-3 was exposed 
to various catalytic reaction conditions. As shown in Scheme 4, 
the isomerization occurred smoothly under standard conditions 
to afford (E)-3 in quantitative yield (Scheme 4, entry 1). Almost 
no conversion was observed without acid or palladium 
precursor or ligand, which indicated that all of them are crucial 
for this isomerization step. It is worth noting that during the 
isomerization of Z-alkene to E-alkene, there is no alkane 
generated via the protonation of alkyl-Pd intermediate. The 
probable reason is that the β-hydrogen elimination of alkyl-Pd 
complex is faster than protonation, which should be one of the 
main factors to  achieve the alkene products selectively. 
On the basis of all these experiments and DFT calculations we 
propose the following catalytic cycle for both hydroformylation 
and semi-hydrogenation of 1 in the presence of ligand L2 
(Scheme 5). This proposal is also supported by previous 
mechanistic work on alkoxycarbonylations using ligands L1-
L4[18,19a] as well as related mechanistic studies by Cole-
Hamilton,[19c] Drent[19b] and Sparkes[19d]. 
Initially, the stable Pd(II) precursor is in situ reduced to Pd(0) 
in the presence of excess amount of phosphine ligands,[25] 
followed by protonation to afford the active palladium hydride 
complex B1, which is probably in equilibrium with the N-
protonated pyridinium complex B1’.[19a] Subsequently, alkyne 
coordination to palladium center occurs, leading to the 
formation of palladacycloppropene complex B1’-PhCCPh. 
Then, proton transfer takes place via the transition state TS1B’ 
to afford the Pd-alkenyl complex B2’, which is the key 
intermediate for both hydroformylation and semi-
hydrogenation. In the presence of weak acids or low 
concentration of stronger acids, the CO coordination and 

insertion process are kinetically favored, providing the acyl Pd-
complex B3. Afterwards, N-assisted hydrogenolysis of B3’ via 
transition state TS3B’ affords the aldehyde 2 and regenerates 
the active N-protonated pyridinium species B1’ to finish the 
cycle A. In the presence of sufficient concentration of strong 
acid, the direct protonation of the Pd-alkenyl complex B2’ 
occurs to give the intermediate [B2-NH]2+. After the transfer 
protonation via transition state TS7B, the olefin (Z)-3 and Pd 
complex B8 are afforded. N-Assisted hydrogenolysis of B8 
regenerates the acid and active Pd species B1’ to conclude cycle 
B, and isomerization of (Z)-3 in the presence of Pd/ligand/acid 
provides the final product (E)-3. It should be pointed out that 
after formation of [B2-NH]2+, subsequent CO coordination to 
afford NH-B2-CO is disfavored compared with the proton 
transfer to give (E)-3 and B8 (23.0 kJ/mol vs. 12.1 kJ/mol). It is 
noted that in proposal a very important factor is the presence of 
neutral and mono cationic species in the hydroformylation cycle 
versus the dicationic complexes in the semi-hydrogenation 
cycle. Increasing the positive charge on the Pd complex, even if 
it is associated with a pendent protonated pyridine, should 
probably increase the positive charge on the Pd center and make 
the second pyridine coordination more likely that blocks CO 
coordination. That will slow hydroformylation and increase the 
protonation of the Pd-alkenyl intermediate to kick off alkene[26].
A general catalytic hydroformylation of alkynes: Following 
our original goal discussed in the introduction vide supra, we 
explored the general compatibility of this chemodivergent 
catalyst/co-catalyst system to a broader scope of alkynes. First, 
we studied the hydroformylation of various alkynes in the 
presence of PTSA as co-catalyst. As shown in Table 2, an array 
of symmetrical diaryl-substituted alkynes bearing neutral, 
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electron-deficient, and electron-rich substituents on the phenyl 
ring, underwent efficient hydroformylation to afford the 
corresponding α,β-unsaturated aldehydes (6-12, and 15) in 60-
92% yield with excellent E stereoselectivity. As an example, the 
thiofuran-substituted alkyne proved to be feasible in this 
reaction, providing product 13 in 62% yield. Pleasingly, a bulky 
substrate smoothly gave the corresponding product 14 in 82% 
yield with 95/5 stereoselectivity. Since unsymmetrical alkynes 
are more attractive from the viewpoint of organic synthesis, a 
series of such alkynes were investigated under standard 
conditions to afford the regioselective hydroformylation 
products in good yield and selectivity. More specifically, 
dialkyl-substituted internal alkyne led to the single isomer 16 in 
58% yield and excellent stereoselectivity (>20/1); albeit with 
only moderate regioselectivity (70/30). Using unsymmetrical 
internal alkynes with aryl and alkyl substituents, 
hydroformylation mainly took place at the benzylic position, 
which can be attributed to the formation of the energetically 
favored vinyl palladium species, which is stabilized by aryl 
groups. 

Table 2.  Pd-catalyzed hydroformylation of various alkynes 
under syngas conditions a

CHO

Ph

N

O

O

CHO
2, R = H, 90% (97/3);
6, R = Me, 90% (94/6);
7, R = OMe, 91% (97/3);
8, R = F, 75% (98/2);
9, R = CF3, 92% (97/3);
10, R = Br, 72% (96/4);
11, R = CO2Me, 90% (>20/1);

CHO

13, 62% (>20/1)

S S

CHO

O O
15, 60% (>20/1)

O O

CHO

14, 82% (95/5)

R R

18, 80% (>20/1)
regioselectivity:93/7

R1 R2
R1 CHO

R2

Pd(acac)2 (1.0 mol%), L2 (4.0 mol%)
PTSA.H2O (8.0 mol%)
CO/H2 (25/25 bar), THF, 100 oC, 20 h

yield (E/Z)

CHO

Ph

22, 74% (>20/1)
regioselectivity:86/14

NC

CHO

Ph

N

O

O

17, 61% (>20/1)
regioselectivity:92/8

CHO

Ph

N

19, 71% (>20/1)
regioselectivity:>20/1

O

O

CHO

Ph

N

20, 70% (>20/1)
regioselectivity:>20/1

O

O

CHO

Ph

O

O

21, 72% (>20/1)
regioselectivity:>20/1

Me

Ph

CHO

N
N

O

O

23, 64% (>20/1)
regioselectivity: >20/1

24, 51% (>20/1)
regioselectivity: >20/1

Cl
O

N

N

O

O Ph

CHO
F

Ph

CHO

N
HN

O

O

25, 57% (>20/1)
regioselectivity: >20/1

CHO

12, 82% (95/5)

Me Me

CHO

Me

N

O

O
16, 58% (>20/1)

regioselectivity:70/30

[a] Unless otherwise noted, all reactions were performed in THF (1.0 mL) 
at 100 ˚C for 20 h in the presence of alkynes (0.3 mmol), Pd(acac)2 (0.91 
mg, 1.0 mol%), PTSA·H2O (4.8 mg, 8.0 mol%), L2 (6.1 mg, 4.0 mol%) and 
CO/H2 (25/25 bar). The E/Z selectivity were determined by GC and GC-
MS analysis. The regioselectivity was determined by 1H NMR analysis of 
crude products.
Thus, several aldehydes (17-25) were provided in 51-80% yield 
with 86/14->20/1 regioselectivity. Notably, this methodology 
showed excellent functional group tolerance, since bromide, 
ester, cyano, imide and ketone substituents were not touched. In 
addition, reactions of alkynes derivatized from uracil, one of the 
nucleobases of RNA, progressed well to give the corresponding 
aldehydes (23-25). However, using standard conditions, simple 

phenylacetylene gave only less than 5% of the corresponding 
aldehyde. 
A general catalytic semi-hydrogenation of alkynes: Next, 
most of these alkynes were submitted to semi-hydrogenation 
under exactly the same conditions except using triflic acid 
instead of PTSA. As shown in Table 3, the corresponding 
alkenes were efficiently produced in good to high yield with 
excellent E stereoselectivity. In all cases, the corresponding 
aldehydes were only detected in trace amounts (<5%). With 
regard to synthetic applications, it is interesting that reducible 
functional groups such as ester, cyano, imide and even ketone 
survived in this hydrogenation process and the corresponding 
products (31, 34-41) were obtained in good yield with excellent 
E stereoselectivity. Notably, alkyl-substituted alkynes may 
undergo further isomerization to provide a mixture of olefins; 
no such by-products were observed in presented cases because 
of the conjugation effect. Nevertheless, when using 4-octyne 
and 5-decyne, a mixture of alkenes was obtained (Scheme S4). 
Finally, it should be pointed out that alkene 41 was generated 
from the corresponding nucleoside derivative by semi-
hydrogenation of the alkyne and direct removal of the 2-furanyl 
group. This cascade sequence is explained by the acid-catalyzed 
hydrolysis of the N,O-acetal structure.
Table 3.  Pd-catalyzed E-selective semi-hydrogenation of 
various alkynes under syngas conditions a

PhN

O

O

(E)-3, R = H, 97% (>99/1);
27, R = Me, 92% (>99/1);
28, R = F, 80% (98/2)
29, R = CF3, 93% (>99/1);
30, R = Br, 89% (>99/1);
31, R = CO2Me, 81% (>99/1);

O
32, 72% (>20/1)

O

37, 93% (>99/1)

R1 R2

Pd(acac)2 (1.0 mol%), L2 (4.0 mol%)
CF3SO3H (16.0 mol%)
CO/H2 (25/25 bar), THF, 100 oC, 20 h

yield (E/Z)

N

O

O

36, 78% (>20/1)

34, 74% (>20/1)

Ph

NC

R

R

O

O

33, 87% (>99/1)

Ph

Cl

R1

H R2

H

Ph

O

O

35, 82% (>99/1)

Me

N

O

O

38, 73% (>99/1)

Ph

PhN

O

O

39, 78% (>99/1)

PhN

O

O

40, 80% (>99/1) 41, 61% (>99/1)

N
H

N

O

O

Ph
F

[a] Unless otherwise noted, all reactions were performed in THF (1.0 mL) 
at 100 ˚C for 20 h in the presence of alkynes (0.3 mmol), Pd(acac)2 (0.91 
mg, 1.0 mol%), CF3SO3H (4.1μL, 16.0 mol%), L2 (6.1 mg, 4.0 mol%) and 
CO/H2 (25/25 bar). The E/Z selectivity were determined by GC, GC-MS 
and 1H NMR analysis.  

CONCLUSION
In summary, we describe the critical effect of acid strength and 
concentration for controlling the selectivity in palladium-
catalyzed reactions of alkynes. This observation allowed for 
developing chemodivergent functionalizations of alkynes to 
afford a range of α,β-unsaturated aldehydes and alkenes in the 
presence of the same catalyst under similar conditions 
(temperature, solvent, pressure). Excellent selectivity control is 
achieved by employing an advanced Pd catalyst with L2 as the 
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specified ligand. Mechanistic instigations and detailed DFT 
calculations provide rational explanation for this behavior. The 
insight of this tunable transformation comes from the specific 
role of the built-in 2-pyridyl substituent as base, which can 
lower the barrier of the hydrogenolysis step via a Frustrated 
Lewis Pair like process and accelerate the hydroformylation on 
one hand; and on the other hand, as a proton shuttle to suppress 
CO coordination to promote semi-hydrogenation under strong 
acid condition. This switchable selectivity using co-catalyst 
provides a new strategy in designing new catalysts for desired 
transformation and products.  
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