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Abstract: A highly diastereoselective three-component coupling
reaction has been used in a concise approach to the left-hand side of
batzelladine A. The stereoselectivity of this reaction, along with re-
lated observations described herein, provides insight into the mech-
anism of this reaction.
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The batzelladine alkaloids form part of a structurally and
biologically fascinating group of natural products ob-
tained from marine sources.1 Fifteen members of this
group have now been isolated,2 with representative struc-
tures shown in Figure 1. Batzelladines A (1) and B (2) in-
hibit the binding of HIV glycoprotein gp120 to the CD4
receptor, and so are of therapeutic interest for the treat-
ment of HIV. Batzelladines C–E, of which batzelladine D
(3) is structurally representative, are cytotoxic. Various
analogues of the batzelladine alkaloids have also been
shown to disrupt the gp120-CD4 interaction.3

These compounds have been the subject of a number of
synthetic studies, leading to the development of a wealth
of new methodology. In particular, batzelladines A,4 D,5

E,6 F,7 and dehydrobatzelladine C8 have been synthe-
sized.9

Our own work in this area10 has focused on the use of the
Kishi three-component coupling11 of an alkylidenepyrro-
lidine with a silyl isothiocyanate and an aldehyde to give
the key pyrrolo[1,2-c]pyrimidine core. However, with a
stereochemical directing-group at the 5-position of the
pyrrolidine, as shown in Scheme 1, the stereoselectivity is
typically 2:1, which falls far short of the total stereocon-
trol which we observed during the formation of similar
compounds by annulation of alkenylazolines with isocy-
anates.12

In order to improve the stereoselectivity of this reaction,
we sought an understanding of the reaction mechanism.
The mechanism originally proposed required initial N-
acylation of the alkylidenepyrrolidine by the isothiocyan-
ate, followed by condensation with the aldehyde and cy-

clisation. However, isothiocyanates only react with
alkylidenepyrrolidines under relatively forcing condi-
tions,13 giving only the product of acylation of the enam-
ine carbon. On this basis, we would tentatively exclude
this mechanism.

Figure 1

The reaction of trimethylsilyl isothiocyanate with alde-
hydes under Lewis acidic conditions is known to give
compounds of general structure 8.14 This provides prece-
dent for the nucleophilic addition of trimethylsilyl isothio-
cyanate onto aldehydes, so that generation of an
intermediate of structure 9 or 10 is not unreasonable. Such
species would presumably be capable of reacting with the
enamine carbon of alkylidenepyrrolidine 11 to give a
compound 12, which would undergo rapid tautomerism to
compound (Z)-13. Double-bond isomerisation could then
provide the E-isomer, which would cyclise to give the fi-
nal product 14 (Scheme 2).
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We felt that intermediates such as 13 could be stabilised
by additional hydrogen bonding, and therefore investigat-
ed the reaction of alkylidenepyrrolidine 11 with known
imine 15, and the corresponding ethyl ester 17 with the N-
cyanoimine formed in situ from hexanal and cyanamide.
These gave compounds 1615 and 18,16 respectively
(Scheme 3), thus lending support to our mechanistic hy-
pothesis. While compound 16 was stable, compound 18
reverted to the alkylidenepyrrolidine 17 over approxi-
mately three days.

If this stereogenic centre in the Kishi three-component
coupling reaction is formed by attack of an electrophile at
the alkene carbon adjacent to the ester, the closest site for
a stereochemical directing group would be the 3-position
of the pyrrolidine ring. A protected hydroxy directing
group was chosen, with the eventual goal of removal by
deoxygenation. Therefore, commercially available amino
acid 19 was readily converted into lactam 20 (Scheme 4).
The primary alcohol in this compound was silylated effi-
ciently under the conditions shown, whereas use of
TBSCl in CH2Cl2 with Et3N and DMAP gave mixtures of
the desired product and the silyl iminoether. Thionation of
lactam 21 was followed by Eschenmoser sulfide contrac-
tion to give the alkylidenepyrrolidine 23. This compound
was smoothly deprotected to give compound 24. To our
surprise, alkylidenepyrrolidine 23 is unreactive under the
conditions of the three-component coupling. However,
compound 24 underwent a completely diastereoselective
three-component coupling reaction with aldehyde 26 to
give pyrrolo[1,2-c]pyrimidine 25 corresponding to the
left-hand side of batzelladine A.17

This short and efficient sequence (6 steps, 9% overall
yield) compares extremely favourably with the three pre-
viously reported routes to this part of the natural prod-
uct.4,18 Compound 25 exhibited no diagnostic NOE
enhancements which would permit direct assignment of
the stereochemistry. However, the required stereoisomer
for the natural product could be formed by appropriate
choice of starting-material enantiomer followed by deox-
ygenation and guanidine formation from compound 25.19

While we had expected the bulky silyl ether in compound
23 to block one face of the alkylidenepyrrolidine, it actu-
ally prevents reaction completely. This is particularly per-
plexing, since Kishi has reported successful and high
yielding three-component coupling reactions with a diox-
ane 27 or a dithiane 28 at this position (Figure 2).11 Al-
though improved diastereoselectivity was anticipated in
the reaction of compound 24 compared to that of com-
pound 5, we were particularly delighted to see the forma-
tion of only one isomer of product 25. While the details
are presently unclear, we would attribute this high level of
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stereocontrol to a direct interaction between the reacting
electrophile and the hydroxy group.

Figure 2

In conclusion, we have completed a short synthesis of the
bicyclic guanidine core present in batzelladine A, and in
doing so gained insight into the mechanism of the Kishi
three-component coupling reaction. Further studies are
under way to delineate the mechanism of this fascinating
reaction.
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28.6 (CH2), 28.4 (CH2), 28.2 (CH2), 28.1 (CH2), 25.9 
[(CH3)3C], 24.8 (CH2), 23.0 (CH2), 18.2 [(CH3)3C]. MS 
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–30 (c 1, CH2Cl2).
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troublesome, and these studies are ongoing. (b) Buenger, G. 
S.; Nair, V. Synthesis 1990, 962.
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