Synthesis of 4-Acetylbenzoxazolin-2(3H)-one Reported from Zea mays

Michael Kluge and Dieter Sicker*

Institute of Organic Chemistry, University of Leipzig, Talstrasse 35, D-04103 Leipzig, Germany

Received November 21, 1997

A three-step alternative synthesis of 4-acetylbenzoxazolin-2(3*H*)-one (4) is reported. Starting from inexpensive 3-hydroxyacetophenone (1) 3-hydroxy-2-nitroacetophenone (2) is prepared by nitration followed by catalytic hydrogenation to yield 2-amino-3-hydroxyacetophenone (3) in which a C=O unit is inserted by means of bis(trichloromethyl)carbonate (triphosgene) in the presence of triethylamine to afford 4 in 35% overall yield.

Recently, the isolation and characterization of 4-acetylbenzoxazolin-2(3H)-one (4-ABOA, 4) was reported from kernels of a special *Zea mays* hybrid line. ¹ This hybrid is tolerant to Fusarium graminearum and has insecticidal activity against Sitophilus zeamais.² A biosynthetic relationship of 4-ABOA to benzoxazolin-2(3H)one (BOA) and 6-methoxybenzoxazolin-2(3H)-one (MBOA) known from gramineous plants³ has been postulated.² We have shown that, at least synthetically, 4-ABOA (4) can indeed be prepared from a benzoxazinoid precursor, that is, by ether cleavage and subsequent hydrolysis of 5-acetyl-4-hydroxy-2-methoxy-2H-1,4-benzoxazin-3(4*H*)-one.⁴ Therefore, we assume that the 4-ABOA isolated may have originated from the degradation of 5-acetyl-2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-one as the natural precursor. A four-step synthesis starting from the sensitive 3-hydroxyanthranilic acid has been reported⁵ to produce 4-ABOA (4) in quantities sufficient for biological tests. We now report on an alternative synthesis of 4-ABOA (4) (Scheme 1) on the gram scale, based on an inexpensive starting material and avoiding the handling of phosgene and of light- and air-sensitive intermediates.

3-Hydroxy-2-nitroacetophenone (2) was prepared by nitration of 3-hydroxyacetophenone (1) with a mixture of 67% nitric acid and 96% sulfuric acid as described. 6 Compound 2 was hydrogenated over Pt—C in THF to yield 2-amino-3-hydroxyacetophenone (3) in 96% yield; 4 amine 3 is stable and storable. It was carbonylated by means of bis(trichloromethyl)carbonate (triphosgene) in the presence of a tertiary amine in THF in 95% yield. Triphosgene has been rediscovered as a solid, safe, and convenient phosgene substitute. 7 4-ABOA (4) was finally obtained in 35% overall yield based on 1 by this procedure, which is similar to our synthesis of MBOA. 8

Experimental Section

General Experimental Procedures. The crude product obtained by nitration⁶ of 80 g (0.588 mol) commercial 3-hydroxyacetophenone (1) (Lancaster) was purified by crystallization from MeOH followed by column chromatography [Merck Si gel 0.063–0.200 mm, eluent toluene–EtOAc 5:1 (v/v)] to yield 3-hydroxy-2-nitroacetophenone (2) (41.0 g, 38%) of mp 134–136 °C

Scheme 1. Synthesis of 4-acetylbenzoxazolin-2(3H)-one (4-ABOA) (4)

(MeOH) (lit. 6 mp 131–132 $^\circ$ C), together with 3-hydroxy-4-nitroacetophenone (6.4 g, 6%) of mp 68–69 $^\circ$ C (MeOH) (lit. 6 mp 71.5–72.5 $^\circ$ C). 2-Amino-3-hydroxyacetophenone (3) obtained by hydrogenation 4 of 2 on the 20-mmol scale was used without recrystallization. Melting points were determined on a Boetius micro hot-stage apparatus and are corrected.

4-Acetylbenzoxazolin-2(3*H***)-one (4).** To a rapidly stirred solution of 2-amino-3-hydroxyacetophenone (3) (10 mmol, 1.51 g) in dry THF (150 mL) was added triethylamine (20 mmol, 2.02 g) and, in one portion, a solution of bis(trichloromethyl)carbonate (3.37 mmol, 1.00 g) in dry THF (10 mL) at 0 °C. After stirring at 0 °C for 1 h the solution was filtered, and the solvent was removed in vacuo. The remaining residue was recrystallized from H₂O (300 mL) to yield 4-acetylbenzoxazolin-2(3*H*)-one (4) (1.68 g, 95%) as pale yellow needles, pure according to TLC [Merck aluminum sheets Si gel 60 F₂₅₄, eluent toluene/EtOAc 1:1 (v/v), $R_f = 0.46$]: mp 202-204 °C (H₂O); mp 210-211° (MeOH) (lit. 1 mp 217-218 °C (Me₂CO-H₂O)]. Compound 4 proved to be identical with our synthetic sample previously reported by comparison of full spectroscopic data⁴ and with the natural product described.1

Acknowledgment. The financial support for this work by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged.

References and Notes

(1) Fielder, D. A.; Collins, F. W.; Blackwell, B. A.; Bensimon, C.; ApSimon, J. W. *Tetrahedron Lett.* **1994**, *35*, 521–524.

 $^{^{\}ast}$ To whom correspondence should be adressed: Tel.: 0049-341-9736574. Fax: 0049-341-9736599. E-Mail: sicker@organik.orgchem.unileipzig.de.

- Miller, J. D.; Fielder, D. A.; Dowd, P. F.; Norton, R. A.; Collins, F. W. *Biochem. Syst. Ecol.* 1996, *24*, 647–658.
 Niemeyer, H. M. *Phytochemistry* 1988, *27*, 3349–3358.
 Escobar, C. A.; Kluge, M.; Sicker, D. *J. Heterocycl. Chem.* 1997, *34*, 1407–1414.
 Fielder, D. A.; Collins, F. W. *J. Nat. Prod.* 1995, *58*, 456–458.

- (6) Butenandt, A.; Hallmann, G.; Beckmann, R. Chem. Ber. 1957,
- (6) Butchmath, A., Hamhath, G., Beckmath, R. Chem. Bel. 1997, 90, 1120–1124.
 (7) Eckert, H.; Forster, B. Angew. Chem., Int. Ed. Engl. 1987, 26, 894–895.
- (8) Sicker, D. Synthesis 1989, 875-876.

NP970525D