

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 14 (2004) 4615-4621

Discovery of thiadiazoles as a novel structural class of potent and selective PDE7 inhibitors. Part 2: Metabolism-directed optimization studies towards orally bioavailable derivatives

Fabrice Vergne,^{a,*} Patrick Bernardelli,^a Edwige Lorthiois,^a Nga Pham,^a Emmanuelle Proust,^a Chrystelle Oliveira,^a Abdel-Kader Mafroud,^a Pierre Ducrot,^a Roger Wrigglesworth,^a Françoise Berlioz-Seux,^a Francis Coleon,^a Eric Chevalier,^a François Moreau,^a Moulay Idrissi,^a Anita Tertre,^a Arnaud Descours,^a Patrick Berna^a and Mei Li^b

> ^aPfizer Global Research and Development, 3-9 Rue de la loge 94265 Fresnes, France ^bPfizer Global Research and Development, Eastern Point Road, Groton CT 063409, USA

> > Received 23 January 2004; revised 18 June 2004; accepted 2 July 2004 Available online 7 August 2004

Abstract—The synthesis and optimization of pharmacokinetic parameters of structurally novel small PDE7 inhibitors is discussed. © 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Phosphodiesterases (PDEs) are part of a family of enzymes, which play a role in signal transduction by regulating cellular concentrations of cAMP. Aberrant regulation of cAMP levels is implicated in many diseases like asthma, inflammation, immuno-related disorders, allergy and cancer.¹ And, it has been shown that inhibition of cAMP-specific PDE activity (e.g. with PDE4 inhibitors) causing an increase in intracellular concentrations of cAMP could be beneficial for the treatment of several diseases.² PDE7 is a recently described high affinity cAMP-specific PDE ($K_m = 200 \text{ nM}$) whose functional role in T-cells³ has been demonstrated. Recent findings on tissue distribution support the hypothesis that PDE7 could be a good target for the treatment of airway diseases,⁴ T-cell related diseases,³ CNS disor-ders,⁵ leukemia,⁶ cardiovascular diseases⁷ and fertility disorders.⁸ Therefore, the identification of selective inhibitors targeted against PDE7 enzyme has become an attractive area of research.⁹ In this context, we have

Figure 1. Schematic representation of 1.

decided to design bioavailable PDE7 inhibitors to pursue our studies in animal models.

In our previous publication,¹⁰ we described the discovery of highly potent and selective PDE7 inhibitors. Among them, 1 (Fig. 1) is the representative of one chemical sub-series. Herein, we would like to report our efforts directed towards the discovery of orally bioavailable PDE7 inhibitors starting from this compound (Fig. 1).

2. Chemistry

The thiadiazole derivatives exemplified in this report were prepared according to the routes described¹¹ in Scheme 1 (some of these compounds can also be synthesized by alternative pathways).¹⁰ The common reaction conditions leading to the key intermediate **5** were first

Keywords: PDE7; Phosphodiesterase; ADME; cAMP.

^{*} Corresponding author at present address: Aventis Pharma, 13 Quai Jules Guesde, 94400 Vitry-sur-Seine, France. Tel.: +33-158932962; fax: +33-158938014; e-mail: fabrice.vergne@aventis.com

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2004.07.009

Scheme 1. Reagents and conditions: (a) CS₂, MeI, KOH, EtOH, $0-15^{\circ}$ C; (b) R²PhCOCl, toluene, reflux; (c) Ac₂O, HClO₄, Et₂O, -5 to 5° C or TMSOTf, CH₂Cl₂, rt (compounds 17 and 20); (d) R¹NH₂, alcohol (EtOH), Et₃N, 40–80^{\circ}C; (e) H₂O₂ (30% in water), Na₂CO₃ (3N), EtOH, rt; (f) KOH (6N), isopropanol, reflux; (g) SOCl₂, toluene, reflux; (h) ammonia; (i) HNR³R⁴, BOP, *i*-Pr₂NEt, HOAt, DMF.

reported by Molina et al.¹² Methyl hydrazine (2) was reacted with carbon disulfide and with methyl iodide in presence of potassium hydroxide to form the hydrazine carbodithioate (3). Acylation of 3 followed by intramolecular cyclization in presence of acetic anhydride and perchloric acid in diethylether (or using TMSOTf in CH₂Cl₂) as reagents gives the corresponding intermediate 1,3,4-thiadiazolium salts 5 (ClO_4^- or OTf⁻, respectively). Compound **5** is then reacted with suitable amines to yield the targeted thiadiazoles (6, 10-12, 17, 20-21 and 21a). Reaction of the appropriate benzonitrile 6 with KOH (6N) in isopropanol at reflux gave the carboxylic acid derivative 7 and 8, respectively (7, when R^1 = cyclohexyl and 8, when R^1 = trans-3-hydroxycyclohexyl). Compounds 9, 13-16 and 16a-b were prepared from 6 by transformation of the nitrile to the amide function with H_2O_2 (30% in water) as reagent in presence of a solution of sodium carbonate. The cyclohexyl derivative 7 is easily converted to compound 1 by transformation to the corresponding benzoyl chloride 22 with thionyl chloride, followed by a condensation with ammonia. 18 and 19 were, respectively, prepared by reaction of 7 and 8 with the corresponding primary amines in presence of the BOP coupling agent in dimethylformamide.

3. Biological results¹³ and discussion

We have recently reported that the thiadiazole amide sub-series, represented by the general structure 23 (Fig. 2), show nanomolar inhibitory activities.¹⁰ However, in rats, low bioavailabilities (<20%) and high clearances (>100 mL/min/kg) were observed for some of these derivatives. Additional data (not shown) suggested that the marginal bioavailabilities were not related to permeability, physicochemical properties (such as solubility or dissolution) or to transporters issues therefore suggesting a predominant role for a clearance route. Most of the in vivo clearances were much higher than the clearances predicted from in vitro rat microsomal stability studies (<46.3 mL/min/kg). Therefore, the high in vivo total clearance was suspected to be a combination of an extra-hepatic and hepatic metabolism. Consequently, we decided to identify the major in vivo metabolites in order to remove or alter the functionalities associated with the rapid rate of metabolism. The identification of the major metabolites after po and iv rat administration of 1 revealed two principal sites of metabolism: oxidation of the cyclohexyl ring to form 9 and hydrolysis of the amide function to give 7 (Fig. 2).

Figure 2. Schematic representation of the principle sites of metabolism.

Hydroxylation occurs mainly at the 3-position of the cyclohexyl ring to form the *cis*-stereoisomer with a marginal formation of 4-hydroxylated derivatives (stereochemistry not confirmed for the latter). This result was anticipated because this region of the molecule was highly hydrophobic and could be a good substrate for cytochrome P-450's, which have lipophilic binding sites. The extra-hepatic metabolic pathway was the hydrolysis of the amide function in rat whole blood, which gave the carboxylic acid derivative 7, known to be a PDE7 inhibitor ($IC_{50} = 550 \text{ nM}$). It is worth noting that reduction of the global lipophilicity (decrease of $\log D$ by amino side chains as R groups (23), Fig. 2) resulted in an excellent in vitro metabolic stability (data not shown) but was without any effect on the in vivo total clearance.

These results reflected that the extra-hepatic route was the primary contributor to the higher rat in vivo clearance.

To improve these pharmacokinetic parameters, the combined strategies adopted were to: (a) study and optimize the pharmacokinetics of the previously identified metabenzoic acid sub-series (preceding publication)¹⁰ which do not have these structural metabolism sites; (b) prepare hydroxylated cyclohexyl derivatives (which are potential metabolites of **1**) to assess their properties in terms of inhibitory activities and pharmacokinetics; (c) find stable amide bioisosteres without loss of inhibitory activity. These metabolism-directed optimization studies should lead to appropriate modifications of the metabolically labile structural parts to generate compounds with improved pharmacokinetics.

We first assessed the pharmacokinetic profile of some benzoic acid derivatives illustrated by representative examples **10–12** of this chemical sub-series (Table 1).

Upon oral dosing of these compounds to rats, compound 10 exhibited the highest bioavailability (F=49%) with a 2h plasma half-life. As illustrated by 11 and 12, the nature and the relative position of \mathbb{R}^2 did not appear to affect the enzymatic activity, suggesting no or marginal favourable interactions with residues of the protein. The major contribution in terms of inhibitory activity probably resulted from interactions between the benzoic acid structural part and the enzyme. Then, in an attempt to increase the half-life of 10 the \mathbb{R}^2 groups were modified (with $\mathbb{R}^5=\mathbb{H}$) to reduce the plasma protein binding (PPB). Indeed, it is known that binding of acidic compounds to albumin is dependent on lipophilicity, hence lipophilic acids generally will tend to bind extensively and consequently will exhibit

Compd	O NH ₂		PDE7A1 IC ₅₀ , μM ^a	PDE4D3 IC ₅₀ , μM ^a	Cl (mL/min/kg) ^b	V _d (L/kg) ^b	<i>t</i> _{1/2} (h) ^c	F (%) ^c	Solubility pH7.4 (µg/mL) ^d
1			0.061	15.30	179.5	7.65	BLQ ^e	BLQ	4
	\mathbb{R}^5	\mathbf{R}^2							
10	4-F	4-Cl	0.16	39.66	3.9	0.187	1.96	49.3	145
11	Н	4-SO ₂ Me	0.12	65.5	15.8	7.58	2.7	29.3	370
12	Η	3-CN	0.19	35.67	2.65	0.994	4.75	37.0	295

^a Measured against the human full length enzyme produced in baculovirus infected sf9 cells. Values are means of three experiments.

^bDose 0.5 mg/kg iv.

^c Dose 2.5 mg/kg po.

^d Determined by stirring in pH7.4 Na₂HPO₄/NaH₂PO₄ buffer for 24h.

^e BLQ=Below limit of quantification.

volumes of distribution close to plasma or blood volume (0.1–0.2 L/kg).¹⁴ The highly hydrophobic compound 10 is a perfect representative example of this effect. As, the half-life is a function of the clearance and volume of distribution (according to the following equation: half-life = $0.693 \times V_{\rm d}$ /Cl), half-life of these related compounds can be improved by increasing the volume of distribution or reducing the plasma clearance.¹⁵ Since 10 displayed low clearance, we decided to increase the $V_{\rm d}$ by reducing the plasma protein binding of related analogues. The approach was to decrease the global lipophilicity by introduction of polar groups (\mathbf{R}^2) on the phenyl part of the molecule. These modifications illustrated by compounds 11 and 12 resulted indeed in a decrease of plasma protein binding (respectively 7%) and 2% less than the PPB for 10). Consequently 11 and 12 exhibited a 40-fold and 5.3-fold increase respectively in the volume of distribution (V_d) compared to 10 and accordingly improved the corresponding half-lives. Only a slight decrease of bioavailability was observed compared to 10. In conclusion from these first studies, the design of new benzoic acid derivatives allowed a significant improvement of the pharmacokinetic profiles $(t_{1/2} > 2h, F > 29\%)$ with good solubilities (>145µg/mL at pH7.4) compared to the reference compound 1.

We next examined another approach (c) directed towards the assessment of hydroxylated cyclohexyl derivatives in terms of inhibitory activities and pharmacokinetics. The objective was to identify within these new derivatives, potent PDE7 inhibitors with a reduced rate of metabolism at the cyclohexyl site. Table 2 summarizes a broad survey around the effect of cyclohexyl hydroxylation on PDE7 inhibitory activity, selectivity versus PDE4 and pharmacokinetics. Interestingly, some of the preliminary modifications based on the racemic forms of the hydroxylated derivatives resulted in a only moderate decrease in inhibitory activity (3-fold) as exemplified by **15** and **16** compared to **1**.

While a relatively more significant loss in activity was observed with compounds 13, 14 and 9 versus 1. It is worth noting that the position of the OH groups on the cyclohexyl ring and the stereochemistry modulate the level of inhibitory activity as exemplified by comparison of 13–14 (2-position) with 15 (4-position) or 16 (3-position) and by comparison of 9 (*cis*-isomer) with 16 (*trans*-isomer). The *trans*-isomer 16 displayed 190 nM IC₅₀ while the *cis* analog 9 (major in vivo metabolite) is around 9-fold less potent.

All the derivatives exhibited a high selectivity against the PDE4 enzyme. In conclusion from these preliminary studies, two new potent PDE7 inhibitors **15** and **16** (IC₅₀=190 nM) have been identified.

The in vivo rat pharmacokinetic profiles were determined for the selected racemic compounds 9 and 14– 16 (Table 2). All the hydroxylated derivatives tested led to a significant decrease in the total clearances (range of reduction between 62-81% compared to 1).

The optimal compounds combining good half-lives and bioavailabilities were the 3-hydroxy derivatives **9** and **16** with F=61.2% and 38.5%, respectively ($t_{1/2}=1.42$ and 1.80h, respectively). These studies clearly demonstrated that the rat in vivo clearance could be considerably reduced by introduction of an OH group at the 3-position. In addition, compound **16** was identified as a tool for in vivo experiments. Considering the real benefit of the 3-hydroxylation (**16**) in terms of pharmacokinetics and considering the importance of the stereochemistry (*trans*

Table 2. In vitro data and in vivo rat pharmacokinetic parameters for compounds 1, 9 and 13–16(a,b)

Compd	\mathbb{R}^6	Stereochemistry	PDE7A1 IC ₅₀ , μM ^a	PDE4D3 IC ₅₀ , µM ^a	Cl (mL/min/kg) ^b	Reduction in clearance versus 1 (%)	V _d (L/kg) ^b	$t_{1/2}$ (h) ^e	F (%) ^c
1	Н	_	0.061	15.30	179.5	0	7.65	BLQ	BLQ
13	2-OH	cis	0.61	28.50	ND	ND	ND	ND	ND
14	2-OH	trans	0.55	>101	38.2	79	1.47	0.31	24.7
15	4-OH	trans	0.19	46.33	66.9	62	0.98	0.27	7
9	3-OH	cis	1.65	>101	34.4	81	1.39	1.42	61.2
16	3-OH	trans	0.19	71.64	59.9	67	1.78	1.8	38.5
16a	3-OH	(R,R)	0.088	61.62	ND	ND	ND	ND	ND
16b	3-OH	(S,S)	1.74	>101	ND	ND	ND	ND	ND

^a Measured against the human full length enzyme produced in baculovirus infected sf9 cells. Values are means of three experiments.

^b Dose 0.5 mg/kg iv.

^cDose 2.5 mg/kg po.

vs *cis*) in terms of potency, we decided to assess the inhibitory activity of both enantiomers of **16**. These compounds **16a** and **16b** were evaluated and the results are indicated in Table 2. This study allowed to identify the potent enantiomer **16a** (eutomer) with an IC₅₀ of 88 nM (2-fold increase compared to **16**).

These new results led us to direct our efforts towards the discovery of hybrid structures combining stable amide bioisosteric groups with the novel (R)-hydroxy cyclohexyl part, to reduce more significantly the clearances and accordingly to increase again the half-lives and the bioavailabilities. Table 3 lists the structures, the inhibi-

tory activities and the pharmacokinetics of some selected analogs from this study.

Simple modifications of the amide function without changes at the cyclohexyl site, exemplified by 17 (reverse amide) and 18 (increased steric hindrance) showed better metabolic stability compared to 1 (clearance reduced by 58 % and 75 %, respectively). Interestingly, 17 displayed the same level of inhibitory activity compared to 1.

As illustrated by 18, the high oral bioavailability (F=85%) is likely to be the result of a lower clearance and a better solubility compared to compounds 1, 17

Table 3. In vitro data and in vivo rat pharmacokinetic parameters for compounds 1 and 16, 17–21(a)

Compd	R ⁶	Stereo- chemistry	R ²	PDE7A1 IC ₅₀ , µM ^a	PDE4D3 IC ₅₀ , µM ^a	Cl (mL/min/kg) ^b	Reduction in clearance versus 1 (%)	$V_{\rm d}$ (L/kg) ^b	$t_{1/2}$ (h) ^c	F (%) ^c	Solubility pH 7.4 (µg/mL) ^d
1	Н		4-CONH ₂	0.061	15.30	179.5	0	7.65	BLQ	BLQ	4
17	Н		4-NHCOMe	0.068	34.25	74.7	58	3.3	0.74	19.6	8
16	3-OH	trans	4-CONH ₂	0.19	71.64	59.9	67	1.78	1.8	38.5	40
18	Н		4-CO(4-methyl-	0.42	>101	44.8	75	2.59	1.37	85	350
			piperazin-1-yl)								
19	3-OH	trans	4-CONH(2-	0.38	>101	24.9	86	0.43	0.46	63	58
			hydroxy-1,1-								
			dimethylethyl)								
20	3-OH	trans	4-NHCOMe	0.085	40.80	13.3	92	2.02	2.3	76	350
21	3-OH	trans	4-SO ₂ Me	0.31	79.17	12.2	93	0.92	2	100	135
2 1a	3-OH	(R,R)	4-SO ₂ Me	0.052	20.0	15.1	91	0.62	2.5	100	160

^a Measured against the human full length enzyme produced in baculovirus infected sf9 cells. Values are means of three experiments. ^b Dose 0.5 mg/kg iv.

^cDose 2.5 mg/kg po.

^d Determined by stirring in pH7.4 Na₂HPO₄/NaH₂PO₄ buffer for 24h.

and also 16. This result reflects the benefit of amide modifications to optimize the pharmacokinetic profiles of thiadiazole derivatives. However, as mentioned in the preceding publication,¹⁰ the loss of HBD properties (18) caused a decrease in inhibitory activity. Compound 19 was then designed to assess the importance of the combination of a novel hindered amide function (with HBD property) with the hydroxy cyclohexyl ring on the rate of metabolism. As expected, this modification resulted in a more pronounced reduction in clearance (86%) compared to 16 (67%), 17 (58%) and 18 (75%). This result confirmed the choice of a combined approach. However, the moderate volume of distribution for **19** resulted in a short half-life ($t_{1/2} = 0.46$ h). Interestingly, the equivalent inhibitory activity displayed by 19 compared to 18, suggested that steric bulk at the proximity of the amide H atom, is also detrimental to the HBD property and consequently to potency. It is worth noting that compounds 20 and 21 (21a) offered the appropriate structural combination resulting in a significant improvement of pharmacokinetic profiles compared to the starting point 1. In addition, replacing the racemic form 21 by the enantiomer 21a proved to be favourable for inhibitory activity (6-fold increase to reach 52nM).

Compound 18 exhibited the higher V_d in contrast to some of the neutral compounds 16, 19-21 and (21a). This is probably due to the basic property of the 4-methylpiperazine moiety, suggesting that the half-lives could be again optimized by incorporation of basic functions into the molecules. As anticipated, the V_d of neutral hydroxy compounds such as 16, and 20 are lower compared, respectively, to 1 and 17 most probably reflecting a reduced lipophilicity (presence of polar functions) compared to compounds 1 and 17. As expected, this effect is even more pronounced with 19 or 21 (21a). These results are in agreement with the overall trend for neutral compounds to display increased V_d with higher log D,¹⁴ with the risk also to increase the susceptibility to hepatic clearance as observed with 1 and 17. The compounds 20-21 and 21a displayed very high bioavailabilities (76-100%) with acceptable half-lives $(t_{1/2} > 2h)$ resulting not only from optimized low clearances but also due to the enhanced solubilities $(>135 \mu g/mL)$ and to high permeabilities confirmed by measures across Caco-2 cells (Papp $>30 \times 10^{-6}$ cm/s).

4. Conclusion

In summary, we have rationally designed a structurally novel series of potent PDE7 inhibitors displaying good oral pharmacokinetics in rat. Compounds **20** and **21a** perfectly illustrated a successful metabolism-directed optimization approach that allowed to design derivatives with improved in vivo pharmacokinetics.

Acknowledgements

We thank the scientists from the Analytical Support Group for their help in compound characterization and the Evotec OAI scientists for their assistance in this project. We also thank Angus Nedderman and Michael Ritzau (PGRD, Sandwich) for their assistance in this project.

References and notes

- (a) Francis, S. H.; Turko, I. V.; Corbin, J. D. Prog. Nucleic Acid Res. Mol. Biol. 2001, 65, 1–52; (b) Conti, M. In Principles of Molecular Regulation; Conn, P. M., Means, A. R., Eds.; Humana, 2000; pp 261–275; (c) Soderling, S. H., J. A.; Beavo, J. A. Current Opinion in Cell Biology 2000, 12, 174–179.
- (a) Conti, M.; Jin, S. L. C. Prog. Nucleic Acid Res. Mol. Biol. 1999, 63, 1–38; (b) Essayan, D. M. J. Allergy Clin. Immunol. 2001, 108, 671–680.
- (a) Li, L.; Yee, C.; Beavo, J. A. Science 1999, 283, 848–851; (b) Nakata, A.; Ogawa, T.; Sasaki, T.; Koyama, N.; Wada, K.; Kotera, J.; Kikkawa, H.; Omori, K.; Kaminuma, O. Clin. Exp. Immunol. 2002, 128, 460–466.
- Smith, S. J.; Brookes-Fazakerley, S.; Donnelly, L. E.; Barnes, P. J.; Barnette, M. S.; Giembycz, M. A. Am. J. Physiol. Lung Cell. Mol. Physiol. 2003, 284, L279–L289.
- (a) Perez-Torres, S.; Cortes, R.; Tolnay, M.; Probst, A.; Palacios, J. M.; Mengod, G. *Exp. Neurol.* 2003, *182*, 322–334; (b) Miro, X.; Perez-Torres, S.; Palacios, J. M.; Puigdomenech, P.; Mengod, G. *Synapse* 2001, *40*, 201–214; (c) Sasaki, T.; Kotera, J.; Omori, K. *Biochem. J.* 2002, *361*, 211–220.
- Lee, R.; Wolda, S.; Moon, E.; Esselstyn, J.; Hertel, C.; Lerner, A. Cell. Signalling 2002, 14, 277–284.
- (a) Hetman, J. M.; Soderling, S. H.; Glavas, N. A.; Beavo, J. A. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 472–476; (b) Wang, P.; Wu, P.; Egan, R. W.; Billah, M. M. Biochem. Biophys. Res. Commun. 2000, 276, 1271–1277; (c) Sasaki, T.; Kotera, J.; Yuasa, K.; Omori, K. Biochem. Biophys. Res. Commun. 2000, 271, 575–583.
- (a) Kotera, J. *PDE7-news and views*, William Harvey Research Conferences, Porto, Portugal, December 5–7, 2001; (b) Kluxen, F. W. PCT Int. Appl. WO 0183772 A1, 2001.
- (a) Barnes, M. J.; Cooper, N.; Davenport, R. J.; Dyke, H. J.; Galleway, F. P.; Galvin, F. C. A.; Gowers, L.; Haughan, A. F.; Lowe, C.; Meissner, J. W. G.; Montana, J. G.; Morgan, T.; Picken, L. C.; Watson, R. *Bioorg. Med. Chem. Lett.* 2001, *11*, 1081–1083; (b) Castro, A.; Abasolo, M. I.; Gil, C.; Segarra, V.; Martinez, A. *Eur. J. Med. Chem.* 2001, *36*, 333–338; (c) Martinez, A.; Castro, A.; Gil, C.; Miralpeix, M.; Segarra, V.; Domenech, T.; Beleta, J.; Palacios, J. M.; Ryder, H.; Miro, X.; Bonet, C.; Casacuberta, J. M.; Azorin, F.; Pina, B.; Puigdomenec, P. *J. Med. Chem.* 2000, *43*, 683–689; (d) Pittz, W. J.; Vaccaro, W.; Huynh, T.; Leftheris, K.; Roberge, J. Y.; Barbosa, J.; Guo, J.; Brown, B.; Watson, A.; Donaldson, K.; Starling, G. C.; Kiener, P. A.; Poss, M. A.; Dodd, J. H.; Barrish, J. C. *Bioorg. Med. Chem. Lett.* 2004, *14*, 2955–2958.
- Vergne, F.; Bernardelli, P.; Lorthiois, E.; Pham, N.; Proust, E.; Oliveira, C.; Mafroud, A.-K.; Royer F.; Wrigglesworth, R.; Schellhass, J. K.; Barvian, M. R.; Moreau, F.; Idrissi, M.; Tertre, A.; Bertin, B.; Coupe, M.; Berna, P.; Soulard, P. *Bioorg. Med. Chem. Lett.* **2004**, *14*, preceding communication. doi:10.1016/j.bmcl.2004.07.008.
- 11. Vergne, F.; Ducrot, P.; Andrianjara, C.; Bernardelli, P.; Lorthiois, E. PCT Int. Appl. WO 0228847 A1, 2002.
- (a) Molina, P.; Tarraga, A.; Espinosa, A. Synthesis 1988, 690–693; (b) Molina, P.; Tarraga, A.; Espinosa, A. *Heterocycles* 1989, 29, 2301–2316.

- 13. All the compounds illustrated in this report were not selective for either enzyme subtype PDE7A or PDE7B. Consequently, only PDE7A inhibitory activities are presented.
- 14. Van de Waterbeemd, H.; Smith, D. A.; Beaumont, K.; Walker, D. K. J. Med. Chem. 2001, 44, 1-21.
- 15. Van de Waterbeemd, H.; Gifford, E. Nat. Rev. Drug Disc. 2003, 2, 192–204.