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Abstract 2′-O-Methylation of nucleotides is well-known to increase
siRNA stability against nuclease activities. Recently, selenium-contain-
ing biomolecules have been recognized as unique biological and medic-
inal agents for humans. In this study, 2′-alkylselenouridine derivatives
were prepared through 2-(trimethylsilyl)ethylselenation at the C2′ posi-
tion of 5′-DMT-2,2′-O-cyclouridine, followed by alkylation with various
haloalkanes utilizing the characteristics of a Si atom. Overall, we
demonstrated the versatility of a 2-(trimethylsilyl)ethylselenyl group for
the synthesis of 2′-alkylselenouridines.

Key words selenium-containing biomolecule, 2-(trimethylsilyl)ethyl-
selenyl group, selenation, 2′-alkylselenouridine derivative, phosphora-
midite monomer

Small interfering RNAs (siRNAs) play an important role
in the cellular RNA interference (RNAi) pathway to regulate
gene expression.1,2 RNA is unstable compared to DNA, be-
cause 2′-OH group in RNA promotes RNA hydrolysis under
acidic and basic conditions.3 Although this 2′-OH group in
the pentose sugar is not very necessary for siRNAs activity,4
the C2′ position holds the possibilities to strengthen nucle-
ase resistance and to enhance duplex stability. Improve-
ment of siRNAs stability is a primary factor direction for the
therapeutic advantages.5 Chemical modifications at the C2′
position have been intensively investigated;6–10 especially,
2′-O-methylation stabilized siRNAs in serum with mainte-
nance of RNA interference potency.11

The element selenium is essential in the nutrition of hu-
mans.12,13 The glutathione peroxidase (GPx) having Se in its
catalytic center14 reduces hydroperoxides and participates
in the antioxidant protection of cells.15 In recent years, sele-
nium-containing biomolecules have been documented as
promising pharmacological agents.16 Minor changes in mo-
lecular structures can cause extensive changes in biological

activity. The replacement of an oxygen atom by homolo-
gous sulfur and selenium atoms affects the chemical prop-
erties and often leads to useful alterations of its efficacy.
Within the scope of our ongoing program aimed at the syn-
thetic study of selenium-containing nucleosides,17,18 we
herein describe the strategy for the synthesis of 2′-al-
kylselenouridine derivatives.

For alkylselenation, most of previous reports employed
alkyl diselenides (R–Se–Se–R).19–21 However, in this meth-
odology, alkyl diselenides must be prepared with respect to
each alkyl functional group. Depending on the functional-
ities, it is difficult to prepare respective alkyl diselenides.
We therefore planned to use 2-(trimethylsilyl)ethyl (TSE)
diselenide (TSE–Se–Se–TSE, 1) as a selenating reagent
which has two latent sites of reactivity. Our strategy is out-
lined in Scheme 1. The initial step commences with in situ
generation of a TSE selenolate anion (TSE–Se–) from TSE
diselenide (1) by hydride reduction. This anion is expected

Scheme 1  Synthetic strategy for the synthesis of 2′-alkylselenouridine 
derivatives
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to attack to the C2′ position of 2,2′-O-cyclouridine, resulting
in introduction of TSE selenyl moiety onto ribose in uridine
skeleton. The second step involves Se-alkylation using high
affinity of Si to F.

TSE diselenide (1) was prepared according to our proce-
dure as reported previously;17 following treatment of ele-
mental selenium with sodium borohydride (NaBH4), alkyla-
tion of the activated selenium with 2-(bromoethyl)trimeth-
yl silane provided the desired selenating reagent 1 in 71%
yield. Since 2,2′-O-cyclouridine (2) has a primary alcohol at
the C5′ position, 4,4′-dimethoxytrityl (DMT) protection was
initially conducted.20 It is noteworthy that treatment of 5′-
DMT-2,2′-O-cyclouridine (3) with TSE diselenide (1, 1.2
equiv) in the presence of NaBH4 (1.2 equiv) at 60 °C for one
hour proceeded smoothly to afford 2-(trimethylsilyl)eth-
ylselenated uridine (4) in 98% yield.22 The 77Se NMR signal
observed at δ = 150.3 ppm clearly revealed that a TSE sele-
nolate anion attacked to the C2′ position rather than the C2
position. Methylation of 4 by means of iodomethane (MeI,
5.0 equiv) and tetrabutylammonium fluoride (TBAF, 3.0
equiv) at room temperature for one hour gave an unsolicit-

ed N-methylated uridine analogue 5 as a major product, in-
dicating the need to protect an imide group. It was consid-
ered that basicity of TBAF accelerates N-methylation. Fol-
lowing N3-protection using benzyloxymethyl chloride
(BOMCl, 1.5 equiv) and 1,8-diazabicyclo[5.4.0]undec-7-ene
(DBU, 2.0 equiv), we tried Se-methylation again. Under
slightly modified conditions (40 °C for 5 h), N3-BOM-pro-
tected compound 6 favorably accepted a methyl group on
the Se atom in 92% yield (7a, Scheme 2).23

After successful methylation of 6, the stage was now set
for the comparative screening of the reactivity of 6 with
various alkyl halides. Results are summarized in Table 1.
Reactions with MeI, EtI, i-PrI, allyl bromide, and propargyl
bromide afforded the corresponding Se-alkylated products
(7a–e) in good to excellent yields (Table 1, entries 1–5).
Comparing with these results, treatment with bromoaceto-
nitrile furnished the respective product 7f in 19% yield,
while the yield was decreased considerably (Table 1, entry
6). With 3-bromopropionitrile (an additional one carbon of
bromoacetonitrile), 6 did not react at all (Table 1, entry 7).
When 2-bromoethyl methyl ether was used, the good yield
of 72% (7h) was achieved (Table 1, entry 8).

Table 1  Reactivity of 6 with Various Alkyl Halides

In order to verify the practical effectiveness of a TSE
group, we next examined the reactivity of 6 with benzyl
bromides bearing a variety of functional groups on the ben-
zene ring. Upon treatment of benzyl and 4-methylbenzyl
bromides, the Se-benzylated products (7i and 7j) were ob-
tained in 81% and 69% yields, respectively (Table 2, entries 1
and 2). With 2-, 3-, and 4-nitro-substituted benzyl bro-
mides, the yields were reduced (Table 2, entries 3–5). The
electron-withdrawing properties of nitro substitutionsScheme 2  Synthesis of 2′-methylselenouridine derivatives
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Entry Electrophile (equiv) Time (h) Yield (%)

1 MeI (5.0) 1.0 7a 92

2 EtI (5.0) 0.5 7b 98

3 i-PrI (3.0) 5.0 7c 70

4 CH2=CHCH2Br (3.0) 1.5 7d 73

5 CH≡CCH2Br (3.0) 0.5 7e 65

6 N≡CCH2Br (3.0) 4.0 7f 19

7 N≡CCH2CH2Br (3.0) 4.0 7g 0

8 MeOCH2CH2Br (3.0) 4.0 7h 72
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have a negative effect on the reaction progress. Chloro sub-
stitutions on the benzene ring slightly increased the yields
(Table 2, entries 6–8). When 2-(bromomethyl)naphthalene
was used, the reaction could easily access to the product
(7q) in 76% yield (Table 2, entry 9). Furthermore, by using
α-haloketone (phenacyl bromide) and ester (methyl bro-
moacetate), the yields were poor in both cases (Table 2, en-
tries 10 and 11).

In addition, we attempted Se-acetylation of 6 to expand
the feasibility of the approach, however, the reaction with
acetyl chloride using TBAF under the same conditions with
Table 2 produced the 3′-OAc product instead of 2′-Se-acetyl-
ated compound. Even when silver(I) tetrafluoroborate
(AgBF4)24 was employed as a promoter, 2′-Se-acetylation did
not progress.

Interest in oligonucleotide phosphoramidite synthetic
chemistry has grown over last thirty years.25–27 Nucleosidic
phosphoramidites are powerful tools for the automated sol-
id-phase synthesis of oligonucleotide-based antisense
drugs. With 4 in hand, we turned our attention to synthe-
size a fully protected phosphoramidite monomer of 2′-
methylselenouridine for the assembly of its oligonucle-
otide. (Pivaloyloxy)methyl (POM) as a suitable protective
group for an imide group was employed.28 From 4 as the
starting point, treatment with POMCl (1.5 equiv) in the
presence of K2CO3 (2.0 equiv) for five hours afforded the N3-
POM product 8 in 31% yield. Subsequent Se-methylation of-
fered easy access to the N3-POM-2′-Se-methylated uridine
(9, 83% yield), which was phosphitylated by the standard
procedure,11,29 to yield the corresponding phosphoramidite
(10, 56% yield) as a diastereomeric mixture (Scheme 3).30

In conclusion, we have demonstrated a valuable route
for the synthesis of 2′-alkylselenouridine derivatives. The
simplified methodology in this article has a wide applica-

Scheme 3  Synthesis of a 2′-methylselenouridine phosphoramidite
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Table 2  Reactivity of 6 with Various Benzyl Bromides, α-Bromoketone, 
and α-Bromoester

Entry Electrophile Yield (%)

 1 BnBr 7i 81

 2 4-MeC6H4CH2Br 7j 69

 3 2-O2NC6H4CH2Br 7k 39

 4 3-O2NC6H4CH2Br 7l 11

 5 4-O2NC6H4CH2Br 7m 45

 6 2-ClC6H4CH2Br 7n 82

 7 3-ClC6H4CH2Br 7o 72

 8 4-ClC6H4CH2Br 7p 55

 9 NaphCH2Br 7q 76

10a Ph(C=O)CH2Br 7r 30

11a MeO(C=O)CH2Br 7s 22
a 10 equiv of electrophiles were used for 0.5 h.
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tion for incorporation of an alkylselenyl moiety into bio-
molecule frameworks. Our findings highlight the great ver-
satility and limitations of a 2-(trimethylsilyl)ethylselenyl
group.
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