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This account describes our recent work in the development of new methodologies to prepare rare and bio-

logically potent L-hexoses and 6-deoxy-L-hexoses, from cheapest D-glucose, via L-hexofuranoses and

1,6-anhydro-�-L-hexopyranoses as key building blocks. Their applications in the syntheses of heparin oligo-

saccharides, the carbohydrate moiety of bleomycin A2, and L-acovenose are also summarized here.
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INTRODUCTION

L-Hexoses and 6-deoxy-L-hexoses (Fig. 1), which are

known as rare sugars from natural sources, are key compo-

nents of numerous biologically potent oligosaccharides, anti-

biotics, glycopeptides, steroid glycosides, as well as terpene

glycosides.1 For example, L-idose and its derivatives form an

important group of vital structural elements of biomolecules.

Heparin, heparan sulfate, and dermatan sulfate, the linear sul-

fated polysaccharides of glycosaminoglycans covalently

bound to a core protein, play significant roles in a diverse set

of biological processes, including blood coagulation, cell

growth control, inflammation, wound healing, virus infec-

tion, tumor metastasis, and diseases of the nervous system.2

Heparin is widely used as an anticoagulant drug in clinics3

and contains a trisulfated disaccharide repeating unit 1 as the

major component consisting of alternating D-glucosamine

and L-iduronic acid with �1�4 linkages. The same unit also

occurs in cell surfaced-heparan sulfate as a minor but essen-

tial constituent, whereas dermatan sulfate is composed of a

D-galactosamine-�1�4-L-iduronic acid disaccharide repeat-

ing unit 2. Neomycin B 3, an aminoglycoside antibiotic pos-

sessing specific interaction with the A site of the prokaryotic

16S rRNA4 and inhibition for the binding of the HIV Rev pro-

tein to its viral RNA recognition site (RRE),5 has 2,6-diami-

no-2,6-dideoxy-L-idopyranose as the D-ring. 6-Deoxy-L-ido-

pyranose is found as a basic component of the diterpene

glycoside 4, isolated from Aster spathulifolius maxim.6

Some remarkable examples are presented by L-gulo-

pyranoside-containing compounds. Bleomycin A2 5
7 is a sig-

nificant antitumor drug exhibiting strong activity through

DNA binding and metal-dependent oxidative cleavage of nu-

cleotides in the presence of oxygen. It belongs to a family of

glycopeptide antibiotics and contains a disaccharide moiety

consisting of a �1�2 linked 3-O-carbamoyl-D-mannopyr-

anose with L-gulopyranose. Adenomycin 6,8 a nucleoside an-

tibiotic compound, has a L-gulosamine unit �-linked to chiro-

inositol. Alginate 7,9 which is a non-toxic linear polysac-

charide extracted from seaweed, comprises various propor-

tions of �-D-mannuronic acid and �-L-guluronic acid jointed

by 1�4 linkages. It has shown not only potent antitumor ac-

tivity in vivo9b but also antiviral activity against infection by

tobacco mosaic virus.9c

L-Talose 10 and its derivatives are also found in some

natural compounds. Amongst other antibiotics with promis-

ing antibacterial properties, capuramycin 8
10 contains a 3-O-

methyl-L-talofuranosyl sugar unit, whereas acovenosides11

and maduralide12 have 6-deoxy-3-O-methyl-L-talopyranose

9 (L-acovenose) as the carbohydrate motif.

Other notable examples include L-altrose 11 and L-

mannose 12. The former is a typical constituent of the extra-

cellular polysaccharides from Butyrivibrio fibrisolvens strain

CF3.13 The latter is found in some steroid glycosides,14 and its

phenol derivatives are potent substrates for measuring the

�-L-mannosidase activity of commercial naringinase.15

Since these frequently encountered L-hexoses and 6-

deoxy-L-hexoses are not commercially available, their syn-

thesis has been an area of intense investigation for chemists.16

To tackle this problem, we planned to first achieve the con-

version from D-gluco to L-ido configuration in the shortest
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possible way and then carry out the specific epimerization of

the L-ido sugars at C2, C3 and/or C4 to get to the whole set of

L-hexoses. Our idea, as illustrated in Scheme I, was to use

double ketal fixation on the 1,2- and 3,5-dihydroxy groups of

D-glucose to form the cis-anti-cis-fused tricyclic D-gluco-

furanose 13, which may undergo elimination to yield the enol

ethers 14 with the requisite 5-exo-double bond. Owing to the

steric congestion on the �-face, stereoselective hydrobora-

tion and hydrogenation of 14 are expected to furnish the de-

sired L-idofuranose 15 and 6-deoxy-L-idofuranose 16, re-

spectively.

RESULTS AND DISCUSSION

Synthesis of L-Idose

Scheme II outlines our efficient synthesis of L-idose. In

the initial attempt,17 3,5-O-benzylidenation (PhCHO, ZnCl2,

32%) of 1,2-O-isopropylidene-�-D-glucofuranose 17 fol-

lowed by sequential Mitsunobu-type iodination (Ph3P, DEAD,

MeI, 75%) and �-elimination (DBU, 92%) furnished the ole-

fin 18 in three steps. As per our expectation, hydroboration of

compound 18 led to the �-L-idofuranosyl sugar 19 (90%) as a

single diastereoisomer in excellent selectivity. Although the
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Fig. 1. Structures of some biologically potent compounds containing L-hexoses or 6-deoxy-L-hexoses as key components.



strategy works well, there are certain disadvantages of this

route, including (1) it takes four steps to generate the desired

L-ido product 19, (2) tedious purification of each intermedi-

ate is necessary, (3) the overall 22% yield from 17 to 18 is

low, and (4) the starting material 17 is more expensive than

common D-glucose derivatives. To improve these unsatisfac-

tory results, we have developed another convenient and prac-

tical synthesis of L-idose 23 from commercially available and

cheap diacetone �-D-glucose 20 in only three steps.18,19 Con-

secutive treatment of 20 with triphenylphosphine (PPh3),

N-bromosuccinimide (NBS), and DBU provided the enol

ether 21 (63%) in a one-pot manner via a tandem isopropyl-

idene rearrangement, regioslective C6-bromination, and �-

elimination.19 Hydroboration of compound 21 proceeded

well with expected high selectivity, and the corresponding al-

cohol 22 was obtained in 92% yield. Hydrolysis of 22 in 0.2 N

H2SO4(aq) at 35 �C successfully afforded L-idose 23 in excel-

lent yield (93%).

Synthesis of 6-Deoxy-L-idose and L-Acovenose

As anticipated, the high stereoselectivity observed in

the hydroboration of 21 was also realized in its hydrogena-

tion, and the 6-deoxy-�-L-idofuranose derivative 24 was ob-

tained as a single diastereoisomer in high yield (87%).18 This

result was exploited to synthesize two important 6-deoxy-L-

hexoses, as depicted in Scheme III.20 Compound 24 upon hy-

drolysis in the presence of an acidic resin provided the ex-

pected 6-deoxy-L-idose, which was directly per-O-acetylated

to its tetraacetate derivatives 25� (33%) and 25� (50%), in

order to circumvent its possible inter-conversion to 6-de-

oxy-L-sorbose. Alternatively, selective hydrolysis of 24 un-

der mild acidic conditions gave the 3,5-diol 26 (81%), which

underwent regioselectively silylation at O5 to furnish the cor-

responding alcohol 27 (TBDMSCl, imidazole, 86%). The

C3-epimerisation was then achieved through an oxidation-

reduction sequence to afford the 6-deoxy-�-L-talofuranosyl

sugar 28 (82% in two steps). 3-O-Methylation of compound

28 (NaH, MeI, 86%) followed by hydrolysis (Amberlite-120

acidic resin, 84%) yielded the desired target molecule L-

acovenose 9.

Synthesis of L-Talose, L-Altrose, and L-Mannose

For the preparation of other L-hexoses, it was realized

that the free hydroxy group at the C6 position of the L-ido-
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furanose 22 makes it an unsuitable precursor due to the diffi-

culties in epimerisation of the remaining chiral centers.

Regioselective hydrolysis of 22 followed by 5,6-O-isopro-

pylidenation furnished the 3-alcohol 29 in 65% overall yield

in two steps. With the appropriate synthon 29 in hand, the

synthesis of various L-hexoses (Scheme IV) was successfully

carried out taking advantage of the 5,5-cis-fused ring config-

uration that allows the nucleophilic and electrophilic addi-

tions only from the �-face.

Since L-talose 10 is a C3-epimer of L-idose 23, we em-

ployed a simple oxidation-reduction protocol for inversion of

compound 29 at C3. Oxidation of 29 with pyridinium dichro-

mate and acetic anhydride led to the ketone 30 (98%), which

was subjected to sodium borohydride reduction to give

1,2:5,6-di-O-isopropylidene-�-L-talofuranose 31 in 92%

yield. Hydrolysis of 31 using Amberlite-120 acidic resin

smoothly afforded L-talose 10
19 in quantitative yield. On the

other hand, methylation of 31 allowed us to introduce a

methyl group at O3, and the ether 32 was obtained in 93%

yield. Consecutive removal of the 5,6-O-isopropylidene

group (64% HOAc(aq), 92%) and regioselective 6-O-silyla-

tion (TBDPSCl, cat. DMAP, Et3N, 77%) furnished the corre-

sponding 5-alcohol, which is a key intermediate for the total

synthesis of capuramycin.10b

The difference between L-altrose 11 and L-idose 23 is

only at the C4 position. Epimerization of the 3-alcohol 29 to

the corresponding L-altrofuranosyl sugar was thought feasi-

ble via elimination of a water molecule to form a double bond

at C3 and C4 followed by stereoselective hydroboration of

the resulting olefin. Reaction of 29 with diethylaminosulfur

trifluoride (DAST) and pyridine afforded the enol ether 33

(51%), which upon hydroboration yielded the expected

L-altrofuranosyl sugar 34 (78%) as a single diastereoisomer.

Acidic hydrolysis of the alcohol 34 in the presence of

Amberlite-120 resin led to L-altrose 11
21 in excellent yield.

It was envisioned that the L-manno sugars could be ac-

cessed via simultaneous epimerisation of 29 at both C3 and

C4 chiral centers. Enolization of the ketone 30 with acetic an-

hydride in pyridine provided the enol acetate 35 (83%),

which was hydrogenated stereoselectively to provide the

L-mannofuranosyl derivative 36 (74%). Sequential deacet-

ylation (98%) and acidic hydrolysis (100%) of 36 gave the

desired L-mannose 12.21

Synthesis of 1,6-Anhydro-�-L-hexopyranoses

The D- and L-form 1,6-anhydro-�-hexopyranoses are

valuable building blocks in the synthesis of oligosaccharides,

glycoconjugates, as well as natural products.22 A straightfor-

ward synthesis of various rare 1,6-anhydro-�-L-hexopyr-

anosyl sugars is summarized in Scheme V. Reflux of com-

pound 22 in a 0.2 N ethanolic solution of HCl yielded the

1,6-anhydro-�-L-idopyranose 37 (88%) as a single product.23

Subsequently, we developed efficient protocols for regio-

selective protection and selective epimerisation of individual

chiral centers in the triol 37 that paved the way to other rare

1,6-anhydro sugars and consequently to L-hexoses.19,24

Benzoylation of the triol 37 afforded the 2,3-di-OBz 38

(53%) as a major compound. Triflation of the 4-alcohol 38

furnished the corresponding 4-OTf product 39 (90%), which

underwent nucleophilic substitution with NaNO2 in HMPA to

provide the expected 1,6-anhydro-�-L-altropyranosyl sugar

40 (77%). Acetolysis of compound 40 proceeded very well,

and the fully protected L-altrose derivative 41
23 was obtained

in 94% yield.
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Reaction of compound 37 with one equiv of trifluoro-

methanesulfonic anhydride in pyridine led to the 2-OTf com-

pound 42 as a single isomer in excellent selectivity. One-pot

triflation-benzoylation of 37 successfully yielded the corre-

sponding ester 43 (78%), which was treated with NaNO2 or

NaN3 to give the 1,6-anhydro-�-L-gulopyranose 44 and its

2-azido derivative 45. Conversion of 45 into the ring opened

adduct 46 (89%) was similarly carried out under acetolysis

conditions. It is believed that the fully protected L-gulos-

amine derivative 46
23 could be a potential precursor in the

synthesis of adenomycin 6.8

On the other hand, regioselective 3-O-benzylation of

the potent synthon 37 employing TMSOTf-catalyzed Et3SiH-

reductive etherification of its O-trimethylsilylated ether 47

(98%) gave the corresponding 3-OBn 48 (72%) in very good

selectivity.24,25 Alternatively, treatment of the 5-OMs-6-OBz

compound 49 with t-BuOK in t-BuOH followed by heating in

a 1:2 mixture of 0.2 N H2SO4(aq) and diglyme at elevated tem-

perature (160 �C) led to 48 in a moderate 52% yield in a one-

pot manner.26 Similarly, consecutive triflation and nucleo-

philic substitution of the diol 48 via the 2,4-di-OTf 50 as an

intermediate furnished the corresponding L-allo 2,4-diol 51

in 41% overall yield in two steps.

In comparison with compound 37, the regioselectivity

observed in the benzoylation and/or triflation of the diol 48 is

extremely high wherein the O3 position is fixed with a benzyl

group. Selective benzoylation of 48 with BzCl in pyridine at

0 �C led to the 2-OBz 52 (85%) as a single isomer. One-pot

benzoylation-triflation of 48 provided the 2-OBz-4-OTf de-

rivative 53 (88%), which was subjected to SN2 substitutions

with NaNO2 and NaN3 to afford the 1,6-anhydro-�-L-altro-

pyranosyl sugar 54 (84%) and its 4-azido derivative 55
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(97%), respectively. A mere reversal in the order of reagent

addition to the diol 48 (Tf2O, then BzCl) resulted in the for-

mation of the 2-OTf-4-OBz compound 56 (95%). Similar

substitutions were applied to synthesize the 1,6-anhydro-�-

L-gulopyranosyl sugars 57 and its 2-azido derivative 58 in

91% and 97% yields, respectively.

Synthesis of the Carbohydrate Moiety of Bleomycin A2

The construction of the disaccharide subunit in bleo-

mycin A2 requires the assembly of 3-O-carbamoyl-D-manno-

pyranosyl donor and L-gulopyranosyl acceptor with a �1�2

linkage. Scheme VI describes our concise synthesis of this

carbohydrate moiety using the 1,6-anhydro-�-L-gulopyr-

anosyl alcohol 44 as a key synthon.19 Commercially available

1,6-anhydro-�-D-mannopyranose 59 was treated with benzo-

yloxybenzotriazole (BzOBT) to yield the expected 2,4-di-

OBz adduct 60 (54%) as a major isomer, which was con-

verted into the corresponding 3-carbonate 61 (89%). Cu(OTf)2,

a cheap, water-stable, and reusable catalyst, can be used for a

variety of transformations.27 Cu(OTf)2-catalyzed acetolysis28

of compound 61 with Ac2O followed by addition of 30% HBr

in acetic acid gave the glycosyl bromide 62 (90%) in a one-

pot manner. Hydrolysis of this crude compound 62 with

AgOTf in water provided the 1-alcohol (93%) which, upon

sequential imidation (K2CO3, CCl3CN, 89%) and coupling

with 44 furnished the �-linked disaccharide 63 in 82% yield,

exclusively. Acetolysis of 63 in the presence of Cu(OTf)2 as

the catalyst afforded the expected diacetate 64 (74%), which

underwent one-pot nucleophilic displacement with ammonia

to get the desired product 65 (77%), a suitable precursor for

the total synthesis of bleomycin A2.
7

Synthesis of Heparin Oligosaccharides

The application of the versatile synthon 52 in the syn-

thesis of heparin oligosaccharides 85-88 is illustrated in

Scheme VII.26 The 1,3-diol 66, derived from D-glucosamine

via a two-stepped combination of amino-azido conversion

and 4,6-O-naphthylidenation, underwent consecutive O1-

benzoylation29 and O3-benzylation to afford the fully pro-

tected compound 67 (67% from 66). A highly regioselective

borane-reductive ring opening of the 4,6-O-benzylidene

acetals to the corresponding 4-OBn-6-OH derivatives em-

ploying VO(OTf)2 as the catalyst was recently developed by

us.30 Reaction of 67 under the same conditions provided the

desired 6-alcohol (84%), which was subjected to O6-benzo-

ylation (90%) followed by O1-debenzoylation (96%) to fur-

nish the 1-alcohol 68. Transformation of 68 into the corre-

sponding trichloroacetimidate and further coupling with 52

led to the expected �-linked disaccharide 69 in 61% yield.

Cu(OTf)2-catalyzed acetolysis of 69 with acetic anhydride

gave the 1,6-diacetate 70 (88%) which, upon O1-deacetyla-

tion and imidation yielded the desired glycosyl donor 71

(77%). The 4-alcohol 72, prepared from the known methyl

2-azido-3-O-benzyl-2-deoxy-�-D-glucopyranoside by selec-

tive benzoylation at O6,31 was coupled with 71 to get the

�-linked trisaccharide 73 (89%) as a single isomer. Further

chain-elongation sequence, involving selective removal of

the O4-NAP using DDQ and subsequent glycosylation with

the disaccharide donor 71, was successfully carried out, and

the pentasaccharide 74 was obtained in 58% yield. While re-
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action of compound 73 with HBF4�Et2O afforded the corre-

sponding 6�-alcohol in excellent yield, simultaneous removal

of two acetyl groups in 74 did not provide us the expected

6,6�-diol.

At this stage, we switched the acetyl groups to levu-

linoyl (Lev) esters. Thus, deacetylation of compound 70 fur-

nished the 1,6-diol (81%), which was reacted with Lev2O in

pyridine to yield the ester 75 (97%). A similar reaction se-

quence of anomeric deprotection and imidate formation led

to the glycosyl donor 76 (53% in 2 steps), which was coupled

with 72 in a likewise manner to construct the �-linked tri-

saccharide 77 (84%). The elongation cycle was then repeated

thrice to assemble the penta-, hepta- and nonasaccharides 78,

79, and 80, respectively. Cleavage of the Lev groups in 77-80

followed by TEMPO oxidation, individually, furnished the

acids 81-84 in good overall yields. The corresponding O-sul-

fates, obtained by consecutive deacetylaion and O-sulfona-

tion of 81-84, underwent hydrogenolysis to reduce the OBn,

O-2-NAP, and N3 groups simultaneously and subsequent

N-sulfonation to give the target molecules 85-88, respec-

tively.

CONCLUSIONS

We have successfully developed a straightforward

route to prepare the biologically important and rare L-hex-

oses and 6-deoxy-L-hexoses from the most abundant D-glu-

cose via their corresponding furanosyl and 1,6-anhydropyr-

anosyl derivatives as key intermediates. The method, being

amenable to scale-up operation, is expected to find a wide use

and provide a steady supply of rare sugars to those in its con-
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Scheme VII



stant need. Conceptually, in this synthetic endeavor, we also

have uncovered some interesting facets and reactivity pat-

terns exhibited by these conformationally biased synthons.

Applications of these new developments to the syntheses of

heparin oligosaccharides, the disaccharide moiety of bleo-

mycin A2, and L-acovenose have been demonstrated.
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