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ABSTRACT: The first enantioselective total synthesis of (-)-
citrinadin A has been accomplished in 20 steps from com-
mercially available materials via an approach that minimizes
refunctionalization and protection/deprotection operations.
The cornerstone of this synthesis features an asymmetric
vinylogous Mannich addition of a dienolate to a chiral pyri-
dinium salt to set the initial chiral center. A sequence of sub-
strate-controlled reactions, including a highly stereoselective
epoxidation/ring opening sequence and an oxidative rear-
rangement of an indole to furnish a spirooxindole, are then
used to establish the remaining stereocenters in the pentacy-
clic core of (-)-citrinadin A. The successful synthesis of
citrinadin A led to a revision of the stereochemical structure
of the core substructure of the citrinadins.

Citrinadin A (1), citrinadin B (2), and PF1270 A-C (3-5) are
members of a small family of novel spirooxindole alkaloids
that exhibit potentially useful biological activities (Figure 1)."”
Citrinadins A and B, which were isolated by Kobayashi from a
culture broth of Penicillium citrinum, are active against mu-
rine leukemia L1210 and human epidermoid carcinoma KB
cells." The absolute and relative stereochemistry of citrinadin
A (1) was assigned based upon a combination of 1D and 2D
NMR experiments, including ROESY, and CD studies. The
related alkaloids PF1270 A-C, which were isolated from Peni-
cillium waksmanii strain PF1270 by Kushida,> show submi-
cromolar affinities for the human H3 histamine receptor, with
3 being the most active (K; = 0.07 uM, EC50 = 0.12 pM). The
structure and relative stereochemistry of 3—5 were assigned
based upon crystallographic analysis of 3.

Figure 1. Citrinadin A, B and PF1270A-C

NMe,

PF1270A (3): R = (CH,),CHg
PF1270B (4): R = CH,CHg
PF1270C (5): R = CH3

Citrinadin A(1): R = 2{0
Citrinadin B (2): R=H o

The alkaloids 1—5 share a number of structural features, but
there are also some significant differences. For example,
both citrinadins and the PF1270s possess a pentacyclic core

structure comprising a spirooxindole motif with two contigu-
ous stereogenic centers (BC ring), a densely functionalized
quinolizidine (DE rings), and an a,-epoxycarbonyl moiety on
the A ring. The most notable difference in the assigned struc-
tures of citrinadins A and B and PF1270A-C is the relative
stereochemistry of the a,3-epoxy ketone and the pentacyclic
core. The complex molecular architecture of these alkaloids
coupled with their important biological activities have in-
spired several synthetic investigations, especially toward the
citrinadins, but none of these alkaloids have yet been pre-
pared by total synthesis.’ In this communication, we report
the first enantioselective total synthesis of citrinadin A (1),
and in the accompanying communication Wood and cowork-
ers report the first total synthesis of citrinadin B (2). These
investigations have also led to a revision in the structures of 1
and 2, and the reassignment of the absolute stereochemistry
of the pentacyclic core to correspond to that of PF1270 A-C.
In light of this discovery, the structures in the schemes that
follow will depict what we now know to be the correct stere-
ochemical structure of citrinadin A (1%).*

We have been interested in the synthesis of indole and
oxindole alkaloids for a number of years,® and in 2007, we
developed a method for the enantioselective synthesis of the
spiro oxindole ring system (ABC ring) present in citrinadin A
(2*) via a process in which (-)-8-phenylmenthol was utilized
as chiral auxiliary to promote the diastereoselective, oxida-
tive rearrangement of an indole to generate an oxindole.*
However, further investigations exploring the feasibility of
elaborating such intermediates toward the citrinadins by
introducing the requisite D and E rings were not successful.
Consequent to these findings, we formulated a new plan that
is outlined in retrosynthetic format in Scheme 1. We envi-
sioned that the spirocenter in 1* could be introduced by a
late-stage, stereoselective oxidative rearrangement of 6,
which would be assembled via

Scheme 1. Retrosynthetic Analysis of Citrinadin A
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a Fisher indole synthesis of the ketal 7. Introduction of the
trans amino-alcohol moiety in 7 would then be achieved via
substrate-controlled epoxidation/ring opening, whereas the
methyl and hydroxyl groups in 7 would be accessible from 8
by a diastereoselective Michael addition and reduction of the
carbonyl group. The sole stereocenter in 8, which was des-
tined to control the creation of all of the remaining chirality
in the pentacyclic core, would then be established by a dia-
stereoselective, vinylogous Mannich reaction® of the dieno-
late derived from 10 to the chiral pyridinium salt 11 to give 9.’

The total synthesis of citrinadin A thus commenced with
the preparation of 10 from commercially available 2,2-
dimethylcyclohexane-1,3-dione (12) in 64% overall yield for
the four steps (Scheme 2). With 10 in hand, the stage was set
for the key, diastereoselective, vinylogous Mannich reaction
involving the chiral pyridinium salt 14 to give 15. Although
we are not aware of any examples of the addition of dieno-
lates to chiral acyl pyridinium salts, we were cognizant of the
seminal work of Comins and Sahn, who added the zinc eno-
late of acetone to 14.”° After evaluating different vinylogous
enolates, solvents, and reaction temperatures, we discovered
that the addition of the zinc dienolate 13 to the pyridinium
salt 14, which was generated in situ by the reaction of 3-TIPS-
4-methoxypyridine and the chloroformate derivative of (+)-
trans-2-(x-cumyl)cyclohexanol [(+)-TCC], provided the ad-
duct 15 in 66% yield with a dr of 92/8. The absolute stereo-
chemistry at the newly created stereocenter at C(16) was
assigned at this point by analogy with the findings of
Comins.”™ Base-induced cleavage of the chiral auxiliary and
spontaneous cyclization afforded the tricyclic intermediate
16 in 84% ee together with about 70% of recovered (+)-TCC.
Gratifyingly, the optical purity of 16 was readily improved to
98% ee upon recrystallization.

Scheme 2. Vinylogous Mannich Reaction

1) Ethylene glycol, CSA,

(EtO)3CH, CH,Cl, i. LDA, THF, =78 °C
Oﬁyo 2) (Me0),CO, NaH, THF ii. ZnCly, THF, -78 °C
—_— —_—
3) NaH, ether, 4then TH,0 CO,Me
12 4) CuCN, Meli, ether 10
64%
i = OMe
@-tce N2 !
o Yo TIPS
( oCi TCC-(+)
o 14
X ~OMe
&z iv. 0.5 M aq HCI
" 66% (92:8 dr)
13
Cs,CO4

THF/MeOH (1:1), A
80%

Having established a reliable procedure to access 16 with
high enantioselectivity, we turned our attention to the prepa-
ration of aminoalcohol 7 (Scheme 3). Protiodesilylation of 16
employing excess TBAF and microwave heating afforded
enone 8. The stereoselective 1,4-addition of a methyl group
to 8 proved to be problematic, presumably owing to the rela-
tively planar nature of the tricyclic ring system of 8. Indeed,
conjugate additions of different methyl nucleophiles under a
variety of conditions were examined, and we eventually dis-
covered that the copper-mediated addition of (chlorome-
thyl)dimethylphenylsilylmethyl magnesium chloride® provid-
ed a mixture of 1,4-addition products. This mixture was di-
rectly reduced with high stereoselectivity using L-Selectride
to give the desired isomer 17 in 71% yield over the two steps;
19% of the C(12) epimer of 17 was also isolated. Heating 17
with TBAF in a microwave oven furnished the unsaturated
lactam 28.° Epoxidation of 18 with peroxytrifluoroacetic acid
in the presence of sodium carbonate gave a single epoxide

1% Although the epoxidation could be performed in un-
buffered media, the ketal moiety was cleaved. The diastere-
oselectivity of this epoxidation was apparently directed by
steric effects associated with the adjacent quaternary center
at C(129) in which the axial methyl group blocked the top face
of the alkene. Treatment of 19 with aqueous methylamine in
sealed tube furnished the amino-alcohol 7."""2

Scheme 3. Preparation of Tricyclic Aminoalcohol 7

1) PhSiMe,CH,MgCl,
o CuBr-DMS, BF4-OEt,

3
TBAF-3H,0
—= > 0
dioxane, 100 °C

2) L-Selectride, THF

73% 71%

(6]
8

TBAF-3H,0
—_—

DMF, 150 °C
81%

~OH MeNH,, 100 °C

[E—

95%

CF3CO3H, Na,CO;,
—_—

CH,Cly, 0°C
76%
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The next stage of the synthesis involved creation of the
pentacyclic core of citrinadin A (Scheme 4). In the event,
when 7 was heated with o-bromophenyl hydrazine hydro-
chloride in aqueous acid,” the desired indole 20 was ob-
tained. Although reduction of the lactam moiety using only
alane provided the desired product 6, the procedure with
alane followed by NaBCNH, gave superior yields of 6."* The
moment was now at hand to test the feasibility of creating
the critical spirocenter at C(3) by the substrate-controlled
oxidative rearrangement of 6. Although oxidative rear-
rangements of indoles to give spirooxindoles have been well
documented," inducing such a transformation on 6 proved
to be more challenging than

Scheme 4. Preparation of Pentacyclic Core 22 of Citrina-
din A

©:NHNHSCI
Br

aq. HySOy,, reflux
81%

i. AlEty, THF, =78 °C
~OH i, AlHg-EtNMe,, PhMe
—_—
iii. MeOH, AcOH,
NaCNBH;
97%

7

H PPTS, CHyClp
then
Davis oxaziridine

.0

AcOH, CH,Cl,
.

47%

0,
Davis oxaziridine

anticipated. Indeed, all attempts utilizing a variety of stand-
ard oxidants including tert-BuOCI, OsO, and NBS failed to
give 22. We eventually discovered that Davis’ oxaziridine,
which had been used by Williams to prepare spirooxindole
alkaloids,'® was effective. The indole 6 was first treated with
pyridinium p-toluenesulfonate (PPTS) to protect the amino
groups from oxidation, and an excess of Davis' oxaziridine
was added to afford a moderately stable epoxide, which was
tentatively assigned the structure 21.%*° When 21 was treated
with acetic acid, the anticipated semi-pinacol rearrangement
ensued to provide the spirooxindole 22.

At this juncture, it remained to install the requisite side
chains on the A and E rings (Scheme 5). In initial experiments,
we examined the possibility of directly converting the aryl
bromide moiety into an a,p-unsaturated ketone by a car-
bonylative cross-coupling reaction in analogy with prior work
in our laboratories.'” However, these efforts were to no avail,
and we resorted to a stepwise process that commenced with
the Sonogashira coupling between 22 and 3-methylbut-1-yne
to furnish the alkyne 23."® O-Acylation of the hydroxyl group
at C(14) with N,N-dimethyl-L-valine in the presence of EDCI
and DMAP provided 24," the absolute and relative stereo-
chemistry of which were unambiguously proven by X-ray
crystallography. The gold-promoted oxidation of 24 using 2-
bromopyridine N-oxide according to a method reported by
Zhang gave the enone 25.%° Finally, the diastereoselective
epoxidation of the enone moiety using a method reported by
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Enders for the enantioselective synthesis of (S)-epoxides
from a,B-unsaturated ketones delivered a separable mixture
(5:1) of 1* and 26 in 81% yield.” The CD spectrum of the syn-
thetic 1* thus obtained as the free base is identical with that
reported for (-)-citrinadin A,'® whereas the CD spectrum for
26 is different (see Supporting Information).”> The *H and =C
NMR data of the free base forms of 1* and 26 are wholly con-
sistent with their assigned structures, and the 'H and =C
NMR data of 1* as its putative bis-hydrochloride salt, which
was formed

Scheme 5. Endgame: Completing the Total Synthesis of
1%

NMe,
3-Methylbut-1-yne, HO
Pd(PPh3),Cl,, Cul o
. —_—
DMF, i-ProNH, 80 °C EDCI, DMAP
86% CH,Clp

97%

—_—
AU(PPhg)NT,,
THF

NMe, 75%

24:R= 20
o)

OH NMe,
8 _NMe, e
) +
—_— S NHMe :
EtoZn, O,, PhMe 0.
81%, (dr=5:1) citrinadin A (1*)

NMe,

24

upon standing in CDCl,, are in good agreement with those
reported for a bis-salt of (-)-citrinadin A (see Supporting In-
formation). Because we were unable to obtain an authentic
sample of (-)-citrinadin A or its bis-salt, a direct comparison
with the synthetic sample was not possible. Nevertheless,
the CD spectra of synthetic 1* coupled with the crystallo-
graphic data for 24 strongly suggest that the correct stereo-
chemical structure of (-)-citrinadin A is represented by 1%,
not 1 as originally assigned by Kobayashi." This revised struc-
ture, in which the stereocenters in the pentacyclic core are
opposite those depicted in 1, is in agreement with the find-
ings of Wood and coworkers, who completed the first total
synthesis of (+)-citrinadin B.*

In summary, we completed the first total synthesis of (-)-
citrinadin A and revised its stereochemical structure to be
that depicted in 1*. The synthesis, which requires only 20
steps from commercially available starting material, features
a highly diastereoselective vinylogous Mannich reaction of a
dienolate with a chiral pyridinium salt to establish the first
stereogenic center. The chirality at this critical center was
then used to control the introduction of the remaining stere-
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ocenters in the pentacyclic core by substrate control. Further
applications of this strategy to the syntheses of citrinadin B
(2) and the related alkaloids PF1270 A-C (3-5) are in pro-
gress, and the results of these investigations will be reported
in due course.
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Complete experimental procedures, full characterization of new
compounds, X-ray crystallographic data for 24, comparison of
CD spectra of 1*and 26 with those published for (-)-citrinadin A,
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