Total Synthesis of Pacidamycin D by Cu(I)-Catalyzed Oxy Enamide Formation

Kazuya Okamoto,[†] Masahiro Sakagami,[†] Fei Feng,^{†,||} Hiroko Togame,[†] Hiroshi Takemoto,[†] Satoshi Ichikawa,*^{,‡} and Akira Matsuda^{*,‡}

Shionogi Innovation Center for Drug Discovery, Shionogi & Co., Ltd., Kita-21 Nishi-11 Kita-ku, Sapporo 001-0021, Japan, and Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan

ichikawa@pharm.hokudai.ac.jp; matuda@pharm.hokudai.ac.jp

Received August 5, 2011

The first total synthesis of pacidamycin D, which is expected to be a good candidate as an antibacterial agent against *P. aeruginosa*, is described. The key elements of our approach feature an efficient and stereocontrolled construction of the *Z*-oxyvinyl iodide and copper-catalyzed cross-coupling with the tetrapeptide carboxamide.

Uridylpeptide antibiotics are nucleoside natural products sharing a common structural feature, namely, a 3'-deoxyuridine with an enamide linkage at the 5'-position that is attached to a tetrapeptide moiety via a central α , β diaminobutyric acid that connects the *N*-terminal amino acid, the ureadipeptide, and the 3'-deoxyuridine moieties (Figure 1).^{1,2} Among the class of uridylpeptide antibiotics, the pacidamycins (1),³ isolated from the fermentation broth of the *Streptomyces coeruleorubiduns* strain, showed potent and selective antibacterial activity against strains of *Pseudomonas* (MIC 1.5–12.5 μ g/mL). The biological target of the pacidamycins is believed to be phospho-MurNAc-pentapeptide transferase (MraY),^{4,5} which is responsible for the formation of lipid I in the peptidoglycan biosynthesis pathway.^{6–9} Since MraY is an essential enzyme in bacteria,^{1,2} it is a potential target for the

ORGANIC LETTERS

2011 Vol. 13, No. 19

5240-5243

[†]Shionogi & Co., Ltd.

[‡]Hokkaido University.

^{II} Present address: Faculty of Advanced Life Sciense, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo 001-0021, Japan.

⁽¹⁾ Winn, M.; Goss, R. J. M.; Kimura, K.-I.; Bugg, T. D. H. Nat. Prod. Rep. 2010, 27, 279–304.

⁽²⁾ Kimura, K.-I.; Bugg, T. D. H. Nat. Prod. Rep. 2003, 20, 252–273.
(3) (a) Karwowski, J. P.; Jackson, M.; Theriault, R. J.; Chen, R. H.; Barlow, G. J.; Maus, M. L. J. Antibiot. 1989, 42, 506–511. (b) Chen, R. H.; Buko, A. M.; Whittern, D. N.; McAlpine, J. B. J. Antibiot. 1989, 42, 512–520. (c) Fernandes, P. B.; Swanson, R. N.; Hardy, D. J.; Hanson, C. W.; Coen, L.; Rasmussen, R. R.; Chen, R. H. J. Antibiot. 1989, 42, 521–526. (d) Fronko, R. M.; Lee, J. C.; Galazzo, J. G.; Chamberland, S.; Malouin, F.; Lee, M. D. J. Antibiot. 2000, 53, 1405–1410.

⁽⁴⁾ Isono, F.; Inukai, M. Antimicrob. Agents Chemother. 1991, 35, 234–236.

⁽⁵⁾ Inukai, M.; Isono, F.; Takatsuki, A. Antimicrob. Agents Chemother. 1993, 37, 980–983.

^{(6) (}a) Bugg, T. D. H.; Lloyd, A. J.; Roper, D. I. *Infect. Dis. Drug Targets* **2006**, *6*, 85–106. (b) Kimura, K.; Bugg, T. D. H. *Nat. Prod. Rep.* **2003**, *20*, 252–273.

⁽⁷⁾ Bouhss, A.; Mengin-Lecreulx, D.; Le Beller, D.; Van Heijenoort, J. Mol. Microbiol. **1999**, *34*, 576–585.

⁽⁸⁾ Bouhss, A.; Trunkfield, A. E.; Bugg, T. D.; Mengin-Lecreulx, D. FEMS Microbiol. Rev. 2008, 32, 208–33.

⁽⁹⁾ Al-Dabbagh, B.; Henry, X.; El Ghachi, M.; Auger, G.; Blanot, D.; Parquet, C.; Mengin-Lecreulx, D.; Bouhss, A. *Biochemistry* **2008**, *47*, 8919–8928.

development of general antibacterial agents. Consequently, uridylpeptide antibiotics which have a novel mode of action are expected to be good candidates as antibacterial agents effective against *P. aeruginosa*.

Figure 1. Structure of uridylpeptide natural products.

Despite extensive efforts to prepare analogues of the uridylpeptide antibiotics, including 1,^{10–16} no total synthesis has yet been accomplished. The difficulty in the chemical synthesis 1 involves the *Z*-oxyenamide moiety, which is chemically labile and therefore a challenging chemical structure to construct. Moreover, analogues having the enamide functionality have been prepared only by semisynthesis from natural sources¹⁷ and by biosynthesis.¹⁸ Herein we describe the first total synthesis of pacidamycin D (1). Scheme 1 highlights the key elements of our retrosynthetic approach to the synthesis of 1, which features an efficient and stereocontrolled construction of the *Z*-oxyvinyl iodide 4 and a copper-catalyzed cross-coupling¹⁹ of the iodide 4 with the highly functionalized

(12) Boojamra, C. G.; Lemoine, R. C.; Blais, J.; Vernier, N. G.; Stein, K. A.; Magon, A.; Chamberland, S.; Hecker, S. J.; Lee, V. J. *Bioorg.*

- Med. Chem. Lett. 2003, 13, 3305–3309.
 (13) Gruschow, S.; Rackham, E. J.; Elkins, B.; Newill, P.; Hill, L. M.;
 Goss, R. J. M. ChemBioChem 2009, 10, 355–360.
- (14) Gentle, C. A.; Harrison, S. A.; Inukai, M.; Bugg, T. D. H. J. Chem. Soc., Perkin Trans. 1 1999, 1287–1294.
- (15) Howard, N. I.; Bugg, T. D. H. Bioorg. Med. Chem. 2003, 11, 3083–3099.
- (16) Bozzoli, A.; Kazmierski, W.; Kennedy, G.; Pasquarello, A.; Pecunioso, A. *Bioorg. Med. Chem. Lett.* **2000**, *10*, 2759–2763.
- (17) Roy, A. D.; Grüschow, S.; Cairns, N.; Goss, R. J. M. J. Am. Chem. Soc. 2010, 132, 12243–12245.
- (18) Zhang, W.; Ntai, I.; Bolla, M. L.; Malcolmson, S. J.; Kahne, D.; Kelleher, N. L.; Walsh, C. T. J. Am. Chem. Soc. 2011, 133, 5240–5243.

Scheme 1. Retrosynthetic Analysis of Pacidamycin D

tetrapeptide carboxamide **3**. The tetrapeptide carboxamide **3** contains a number of potentially reactive functional groups that render selective synthetic modification difficult. We first planned to remove the allylic 3'-hydroxyl group at the uridine moiety by Barton deoxygenation after the cross-coupling.

Preparation of the tetrapeptide is described in Scheme 2. The carboxylic acid 5^{20} and the pentafluorophenyl (Pfp) ester of the unsymmetrical urea 7^{21} were prepared as previously described. Deprotection of the Boc group of 5 and the subsequent condensation of the liberated amine 6 with 7 gave the tripeptide 8. N-O Bond breakage was achieved by catalytic hydrogenation, and the resulting secondary amine 9 (quant. over three steps from 5) was further reacted with the Pfp ester of *N*-Boc-L-Ala 10 to afford the tetrapeptide carboxylic acid 11 in 69% yield. Finally, the carboxyl group of 11 was converted to the carboxamide (HATU, NH₄Cl, NMM, DMF) to give 3 in 82% yield.

The Z-oxyvinyl ioide **4** was prepared as shown in Scheme 3. After protecting group manipulation of the uridine derivative 12^{22} (BOMCl, DBU, DMF, 99%, TFA-THF-H₂O, 0 °C, 83%), the primary alcohol of **14** was converted to the iodide (I₂, PPh₃, pyridine, dioxane, 99%). Elimination of HI from **15** was promoted by DBU to afford the *exo*-olefin **16**²³ in 93% yield. Previously, vinyl halide derivatives of nucleoside were generally prepared from an *exo*-olefin derivative by a rather lengthy conversion, where the terminal hydrogen atom was substituted sequentially with a phenylthio, a tributylstannyl, and an

(22) Ogilvie, K. K.; Beaucage, S. L.; Shifman, A. L.; Threiault, N. Y.; Sadana, K. L. *Can. J. Chem.* **1978**, *56*, 2768–2780.

⁽¹⁰⁾ Boojamra, C. G.; Lemoine, R. C.; Lee, J. C.; Léger, R.; Stein, K. A.; Vernier, N. G.; Magon, A.; Lomovskaya, O.; Martin, P. K.; Chamberland, S.; Lee, M. D.; Hecker, S. J.; Lee, V. J. *J. Am. Chem. Soc.* **2001**, *123*, 870–874.

⁽¹¹⁾ Lemoine, R. C.; Magon, A.; Hecker, S. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 1121–1123.

⁽¹⁹⁾ Review: Evano, G.; Blanchard, N.; Toumi, M. *Chem. Rev.* **2008**, *108*, 3054–3131.

⁽²⁰⁾ Boojamra, C. G.; Lemoine, R. C.; Lee, J. C.; Lger, R.; Stein, K. A.; Vernier, N. G.; Magon, A.; Lomovskaya, O.; Martin, P. K.; Chamberland, S.; Lee, M. D.; Hecker, S. J.; Lee, V. J. *J. Am. Chem. Soc.* **2001**, *123*, 870–874.

⁽²¹⁾ Majer, P.; Randad, R. S. J. Org. Chem. 1994, 59, 1937-1938.

^{(23) (}a) Jenkins, I. D.; Verheyden, J. P. H.; Moffatt., J. G. J. Am. Chem. Soc. **1971**, 93, 4323–4324. (b) Verheyden, J. P. H.; Moffatt., J. G. J. Org. Chem. **1974**, 39, 3573–3579.

⁽²⁴⁾ Kumamoto, H.; Onuma, S.; Tanaka, H. J. Org. Chem. 2004, 69, 72–78.

Scheme 2. Preparation of the Tetrapeptide Carboxamide 3

iodo group.²⁴ Extensive efforts to obtain **4** directly from **16** revealed that the use of the iodonium dicollidinium triflate^{25,26} (IDCT) was indeed effective. The desired Z-vinyl iodide **4** was obtained in 79% yield as the sole product when **16** was treated with 1.0 equiv of IDCT in CH₂Cl₂ at room temperature. The geometry of the olefin was confirmed by a 500 MHz NOE experiment in CDCl₃, where the correlation to H-3' was observed upon irradiation at H-5' (7.2%).

Then, the key coupling of 4 with the tetrapeptide carboxamide 3 was investigated. First, the iodide 4 was reacted with 3 under the following conditions: 0.2 equiv of CuI, 0.4 equiv of MeNHCH₂CH₂NHMe (A), Cs₂CO₃, THF, 70 °C.^{27,28} However, a large amount of the iodide remained unreacted, and only a trace amount of the desired 17 was obtained. On the other hand, the tetrapeptide 3 was consumed, and cyclic products such as 18 were obtained from the reaction mixture indicated by MS analysis although not fully confirmed. In general, the copper-mediated C-N cross-coupling reaction proceeds through initial formation of the nitrogen-copper complex followed by an oxidative insertion into the halide and then reductive elimination.²⁹ It is presumed that if the oxidative insertion is slow, the nitrogen atom, activated by formation of the carboxamide-copper(I) complex, reacts Scheme 3. Initial Attempt to Synthesize 1

with the *tert*-Bu ester at the *C*-terminus to form the cyclic product **18**. In order to suppress the approach of the nitrogen atom to the *tert*-Bu ester, we increased the size of the ligand coordinating to the copper atom using ligands such as **B**. As expected, the use of the ligand resulted in an increased yield (32%). The yield of **17** was improved up to 86% by increasing the catalyst loading (0.8 equiv). Of note is the highly selective reaction at the *N*-unsubstituted carboxamide moiety in spite of the presence of a number of potential reactive sites, including the primary amide, the carbamate, and the urea groups.

Next, a selective deoxygenation of the allylic 3'-hydroxyl group on the model cyclic thiocarbonate 20^{30} was then investigated (Scheme 4). Thus, TBS groups of 19 were removed (TBAF, THF, 99%), and the resulting diol was reacted with phenyl chlorothionocarbonate to afford the cyclic thiocarbonate 20 in 75% yield. However, exposure of 20 to either Bu₃SnH and AIBN in toluene at reflux or Bu₃SnH and V-70³¹ in CH₂Cl₂ at room temperature led to a complex mixture of products, and the desired deoxygenated compound 21 was not isolated.

Since the model study in Scheme 4 suggested that the late stage deoxygenation of the 3'-hydroxyl group may be difficult, the total synthesis of 1 was pursued with the 3'-deoxyvinyl iodide 27 (Scheme 5). As in the synthesis of 4,

⁽²⁵⁾ Smith, T. H.; Wu, H. Y. J. Org. Chem. 1987, 52, 3566-3573.

⁽²⁶⁾ Gómez, A. M.; Pedregosa, A.; Valverde, S.; López, J. C. *Tetrahedron Lett.* **2003**, *44*, 6111–6116.

⁽²⁷⁾ Pan, X.; Cai, Q.; Ma, D. Org. Lett. 2004, 6, 1809–1812.

⁽²⁸⁾ Jiang, L.; Job, G. E.; Klapars, A.; Buchwald, S. L. Org. Lett. **2003**, *5*, 3667–3669.

⁽²⁹⁾ Klapars, A.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 7421–7428.

⁽³⁰⁾ The model compound **19** was prepared in 89% yield in a similar manner to the synthesis of **17** from **4** and the corresponding dipeptide carboxamide.

^{(31) (}a) Kita, Y.; Sano, A.; Yamaguchi, T.; Oka, M.; Gotanda, K.; Matsugi, M. *Tetrahedron Lett.* **1997**, *38*, 3549–3552. (b) Kita, Y.; Gotanda, K.; Murata, K.; Suemura, M.; Sano, A.; Yamaguchi, T.; Oka, M.; Matsugi, M. *Org. Process Res. Dev.* **1998**, *2*, 250–254.

the *exo*-olefin **26**, which was obtained from **22**,² was treated with IDTC in CH₂Cl₂. However a significant amount of E-exo-olefin (10% yield) and endo-olefin (39%) were also produced in addition to the desired Z-exo-olefin 27 (28%). The observed decrease in selectivity could be attributed to the absence of the substituted hydroxyl group at the 3'-position. The yield of 27 was improved up to 53% by conducting the reaction in MeCN at -20 °C although the effect of solvent on the selectivity remains unclear. The iodide 27 and the tetrapeptide 3 were coupled using the optimized conditions (0.8 equiv of CuI, 1.6 equiv of ligand B, Cs₂CO₃, THF, 70 °C) to afford the fully protected pacidamycin D 28 in 82% yield. Finally, deprotection of the BOM, Cbz, and tert-Bu groups (BCl₃, CH_2Cl_2 , -78 °C) and the TBS group (5HF·NEt₃, 30%) over two steps) successfully afforded pacidamycin D (1). Analytical data for the synthetic compound were in good agreement with those reported for the natural material.^{3d} Preliminary biological evaluation indicated that 1 showed potent inhibitory activity (IC50 22 nM) against isolated MraY from S. aureus and antibacterial activity selectively against a range of P. aeruginosa strains (MIC 16 µg/mL for P. aeruginosa ATCC 25619 and P. aeruginosa SR 27156 and 64 µg/mL for *P. aeruginosa* PAO1, respectively).

In conclusion, the first total synthesis of pacidamycin D (1) has been accomplished. By virtue of the assemblage, via cross-coupling, of the Z-oxyvinylhalide 27 and the tetrapeptide 3 at a late stage in the synthesis, and despite the challenges this imposes because of the inherent lability with

Scheme 5. Total Synthesis of 1

potential epimerization, this approach provided ready access to a range of uridylpeptide antibiotics and their analogs simply by altering the tetrapeptide moiety. Results of further studies will be forthcoming.

Acknowledgment. We thank Mr. Kouichi Uotani (Medicinal Research Laboratories, Shionogi & Co., Ltd.) for evaluating the antibacterial activities and Ms. Fumiyo Takahashi (Shionogi Innovation Center for Drug Discovery, Shionogi & Co., Ltd) for evaluating the MraY inhibitory activity.

Supporting Information Available. Full experimental procedures and characterization data for all new compounds are available. This material is available free of charge via the Internet at http://pubs.acs.org.