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Abstract The compounds methyl 3-(benzoylamino)-6-

methyl-2-oxo-2H-pyran-5-carboxylate (1), C15H13NO5, and

N-[5-(3,4-dimethoxyphenyl)-6-methyl-2-oxo-2H-pyran-3-yl]

benzamide (2), C21H19NO5, crystallize as a centrosymmetric

hydrogen-bonded dimer facilitated by N–H���O interactions

involving the amide and carbonyl moiety of the lactone

group of adjacent molecules. Supramolecular aggregation in

1 is controlled by a combination of p–p interactions [cen-

troid–centroid distance = 4.0745(11) Å] and weak C–H���O
hydrogen bonding between the phenyl ring of the benzoyla-

mino group and the carbonyl atom of the methoxycarbonyl

group and in 2 by a combination of p–p interactions [centroid–

centroid distance = 4.0699(8) and 4.1556(10) Å], weak

C–H���O interactions between the methoxy substituents of

the adjacent dimethoxyphenyl group and weak C–H��� p
interactions.

Keywords 2H-Pyran-2-ones � Crystal structure �
Hydrogen bonds � C–H���p interaction � p–p interaction

Introduction

2H-Pyran-2-ones represent an important class of com-

pounds useful for various ring transformations [1, 2],

especially for those including nucleophiles [3] and as

dienes in Diels–Alder reactions [4]. Considering the recent

trends in organic synthesis it is desirable to conduct

the transformations of 2H-pyran-2-ones according to the

principles of green chemistry [5], including the application

of microwaves as an efficient mean of supplying necessary

energy for the activation of reactants [4, 6, 7] and executing

reactions in water as a benign solvent [8] or even under

solvent-free (neat) conditions [9].

When for cycloadditions with 2H-pyran-2-ones alkynes

are used as dienophiles the initial step gives the 7-oxabi-

cyclo[2.2.2]octadiene adducts, which are, however, unsta-

ble and spontaneously eliminate carbon dioxide to yield the

final benzene derivatives [10]. On the other hand, when

alkenes are applied as dienophiles, the initially formed

7-oxabicyclo[2.2.2]octenes are more stable and can be in

some cases isolated [11, 12]. Nevertheless, under thermal

reaction conditions the carbon dioxide is also often elimi-

nated yielding cyclohexadiene systems, which can either

serve as another diene to produce bicyclo[2.2.2]octene

products (double cycloadducts) [13] or can be oxidized

(aromatized) into benzene derivatives (formally analogous

to those obtained with alkynes). These oxidations can

be facilitated by the application of a heterogeneous

dehydrogenation catalyst (such as Rh/C) [14, 15]. Bicy-

clo[2.2.2]octenes easily prepared from 2H-pyran-2-ones

according to this methodology represent a very interesting

set of compounds for further studies of desymmetrization

[16] and also as rewarding systems for the investigations of

steric effects exhibited by fused rings of different sizes on

the stereochemistry of cycloadditions of maleic anhydride

and N-substituted maleimides [17]. Additionally, 2H-

pyran-2-ones can be used as useful precursors for the

preparation of substituted indoles [18].

Due to the wide applicability of 2H-pyran-2-ones, a

straightforward one-pot synthesis starting from the simple

commercially available compounds was desired [19–21].
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Examples given here include such a transformation

between a molecule containing an activated CH2 group,

a C1-synthon N,N-dimethylformamide dimethyl acetal

(DMFDMA) and hippuric acid as an N-acylglycine deriv-

ative taking place in acetic anhydride (or in a mixture

with acetic acid) as the solvent yielding methyl 3-(ben-

zoylamino)-6-methyl-2-oxo-2H-pyran-5-carboxylate (1) and

N-[5-(3,4-dimethoxyphenyl)-6-methyl-2-oxo-2H-pyran-3-yl]

benzamide (2) (Scheme 1).

Experimental

Materials and Measurements

Melting points were determined on a micro hot stage

apparatus and are uncorrected. 1H NMR spectra were

recorded with a Bruker Avance DPX 300 spectrometer at

29 �C and 300 MHz using Me4Si as an internal standard.
13C NMR spectra were recorded on the same instrument at

75.5 MHz and are referenced against the central line of the

solvent signal (CDCl3 triplet at 77.0 ppm). IR spectra were

obtained with a Bio-Rad FTS 3000MX as KBr pellets. MS

spectra were recorded with a VG-Analytical AutoSpec Q

instrument. Elemental analyses (C, H, N) were performed

with a Perkin Elmer 2400 Series II CHNS/O Analyzer.

TLC was carried out on Fluka silica-gel TLC-cards. All

reagents and solvents were used as received from com-

mercial suppliers.

Synthesis of Methyl 3-(benzoylamino)-6-methyl-2-oxo-

2H-pyran-5-carboxylate (1)

A mixture of methyl acetoacetate (23.22 g, 0.2 mol),

DMFDMA (23.83 g, 0.2 mol), acetic anhydride (200 mL)

and glacial acetic acid (50 mL) was heated on an oil bath at

80 �C for 150 min. Thereafter, hippuric acid (35.84 g,

0.2 mol) was added and heated on an oil bath at 80 �C for

further 4 h. After the removal of the volatile components the

residue was treated with ethanol (125 mL) and, after cooling,

the precipitate was filtered off and washed with a small

amount of ethanol (10 mL) to afford 35.93 g (63%) of the

title product 1. M.p. 164–167.5 �C (EtOH). Anal. calcd. for

C15H13NO5: C, 62.72; H, 4.56; N, 4.88. Found: C, 63.00; H,

4.49; N, 4.93. IR (KBr) 3370, 1735, 1711, 1674, 1638, 1600,

1580, 1531, 1492 cm-1. 1H NMR (300 MHz, CDCl3) d 2.69

(s, 3H, Me), 3.90 (s, 3H, CO2Me), 7.54 (m, 3H, Ph), 7.88

(m, 2H, Ph), 8.54 (s, 1H, NH), 8.87 (s, 1H, 4-H). 13C NMR

(75.5 MHz, CDCl3) d 19.3, 52.2, 109.5, 122.1, 123.6, 126.9,

128.7, 132.3, 133.2, 158.5, 162.8, 164.1, 165.6.

Synthesis of N-[5-(3,4-Dimethoxyphenyl)-6-methyl-2-

oxo-2H-pyran-3-yl]benzamide (2)

A mixture of (3,4-dimethoxyphenyl)acetone (16.68 g,

0.086 mol) and DMFDMA (21.46 g, 0.18 mol) was heated

on reflux for 4 h. The volatile components were removed

under reduced pressure, thereafter hippuric acid (15.81 g,

0.088 mol) and acetic anhydride (111 mL) were added and

the mixture heated on an oil bath at 90 �C for further 4 h.

After the removal of the volatile components the residue

was treated with ethanol (55 mL) and, after cooling, the

precipitate was filtered off and washed with a small amount

of ethanol (5 mL) to afford 18.384 g (59%) of the title

product 2. M.p. 161–162 �C (EtOH). [21].

Crystallography

Single-crystal X-ray diffraction data were collected at

room temperature on a Nonius Kappa CCD diffractometer

with the graphite monochromated Mo-Ka radiation

(k = 0.71073 Å). The data were processed by DENZO

[22]. Structures were solved by direct methods imple-

mented in SHELXS-97 and refined by a full-matrix least-

squares procedure based on F2 with SHELXL-97 [23]. All

non-hydrogen atoms were refined anisotropically. All

hydrogen atoms were readily located in a difference Fou-

rier maps and were subsequently treated as riding atoms in

geometrically idealized positions, with C–H = 0.93 (aro-

matic and alkenyl) or 0.96 Å (CH3), N–H = 0.86 Å and

with Uiso(H) = kUeq(C or N), where k = 1.5 for NH and

methyl groups, which were permitted to rotate but not to

tilt, and 1.2 for all other H atoms. Crystallographic data are

listed in Table 1. Selected bond lengths and bond angles

are listed in Table 2. All the bond lengths of compounds 1

and 2 are within normal ranges [24]. Hydrogen bonding

interactions are listed in Table 3.

Results and Discussion

In both compounds 1 and 2 the central 2H-pyran-2-one ring

is planar (Fig. 1). The maximum deviation from the

mean plane described by the ring atoms is 0.040(2) Å for

atom C1 in 1 and -0.017(1) Å in 2, again for atom C1. In

both crystal structures weak intramolecular C3–H3���O3
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Scheme 1 Molecular structures of 1 and 2
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hydrogen bonding is present. Furthermore, in compound 1

additional C6–H6C���O4 hydrogen bonding is present

(Table 3).

The mean plane through the amide group (O3–C7–N1–

C2–C8) in 1 is inclined to the 2H-pyran-2-one ring by

20.38(8)� and the dihedral angle between the 2H-pyran-2-

one and phenyl ring (C8–C13) is 33.35(9)� while these

angles in 2 are 12.15(8)� and 23.54(8)�, respectively. This

deviation of the amide group from planarity is similar also

in 3-benzoylamino-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-

coumarin being 12.95� [25], while in the other two known

structures it is much smaller, 4.17� [26] and 4.95� [27]. The

dihedral angle between the 2H-pyran-2-one and phenyl

ring of the benzoylamino group are in all three known

structures markedly smaller, ranging from 6.09� to 7.80�
[25–27].

The methoxycarbonyl group (C15/O5/O4/C14/C4) in 1

is nearly planar with the central 2H-pyran-2-one ring, the

dihedral angle is 9.09(8)�. Such small deviations of car-

boxylic group (either as an acid or ester functionality) from

the planarity of 2H-pyran-2-one [28–34] or benzene ring

[35–43] are often observed. When a bulky substituent is

present in the ortho position to the carboxylic group much

larger twist angles ranging from *20� up to *80� are

observed in the cases of 2H-pyran-2-one [44–48] or ben-

zene ring [49–58].

In the compound 2 a dimethoxyphenyl group is attached

to the central 2H-pyran-2-one ring instead of methoxy-

carbonyl group. The dihedral angle between the 2H-pyran-

2-one and phenyl ring (C14–C19) is 55.99(7)�. In CSD we

found no structure similar to 2 that would incorporate a

dimethoxyphenyl group at the position 5 of pyran-2-one

ring (as in 2) and neither at the positions 3 or 4. However, a

few structures that possess a dimethoxyphenyl group

attached at the position 6 of pyran-2-one ring were found

[59–62]. Wide variety of dihedral angles can be observed

in these cases, being either small (4.56� [59], 8.83� [60]) or

large (19.58� [61], 42.54� [62]).

Both compounds 1 and 2 crystallize as centrosymmetric

hydrogen-bonded dimers facilitated by the amide and car-

bonyl moiety of the lactone group of adjacent molecules

Table 2 Selected bond lengths [Å] and angles [�] for 1 and 2

1

O1–C1 1.3786(15) C5–O1–C1 124.25(10)

O1–C5 1.3653(16) O2–C1–O1 117.48(11)

O2–C1 1.2055(16) O2–C1–C2 126.53(12)

O3–C7 1.2173(17) C7–N1–C2 125.25(11)

O4–C14 1.2019(17) C3–C2–N1 127.05(12)

O5–C14 1.3316(17) N1–C2–C1 113.14(11)

O5–C15 1.4476(17) O3–C7–N1 122.00(12)

N1–C7 1.3661(17) O3–C7–C8 121.66(12)

N1–C2 1.4017(16)

2

O1–C1 1.3645(16) C1–O1–C5 123.45(11)

O1–C5 1.3800(16) O2–C1–O1 118.32(12)

O2–C1 1.2091(17) O2–C1–C2 125.14(12)

O3–C7 1.2206(18) C7–N1–C2 126.00(12)

O4–C16 1.3636(16) C3–C2–N1 127.63(13)

O5–C17 1.3605(16) N1–C2–C1 112.59(12)

N1–C7 1.3616(18) O3–C7–N1 121.39(13)

N1–C2 1.4015(17) O3–C7–C8 121.71(13)

Table 1 Crystal data and refinement parameters for the compounds 1
and 2

Compound 1 2

CCDC 834643 834644

Molecular formula C15H13NO5 C21H19NO5

Molecular weight 287.26 365.37

Crystal system Triclinic Triclinic

Space group P -1 P -1

Temperature (K) 293(2) 293(2)

a (Å) 8.4667(3) 8.1480(2)

b (Å) 8.4753(3) 9.5704(3)

c (Å) 10.9239(4) 12.2802(4)

a (�) 86.481(2) 83.255(2)

b (�) 72.282(2) 73.079(2)

c (�) 64.194(2) 77.758(2)

V (Å3) 669.91(4) 893.72(5)

Z 2 2

Dcalc (g cm-3) 1.424 1.358

Absorption coefficient

(mm-1)

0.108 0.097

F(000) 300 384

Crystal dimensions (mm) 0.50 9

0.25 9 0.25

0.40 9

0.20 9 0.13

Theta range (�) 5.47–27.47 3.55–27.46

Range/indices (h, k, l) -10, 10; -10,

10; -14, 14

-10, 10; -12,

12; -15, 15

Reflections collected 5390 6954

Independent reflections 3008

[Rint = 0.0193]

4030

[Rint = 0.0158]

Completeness 98.2% 98.4%

Tmax/Tmin 0.9734/0.9478 0.9874/0.9621

Data/restraints/parameters 3008/0/193 4030/0/248

R1, wR2 [I [ 2r(I)]a 0.0446, 0.1187 0.0464, 0.1193

R1, wR2 (all data)b 0.0551, 0.1297 0.0608, 0.1337

Goodness of fit on F2, Sc 1.037 1.017

Largest diff. peak

and hole (e Å-3)

0.222 and -0.213 0.156 and -0.188

aR =
P

||Fo| - |Fc||/
P

Fo|, b wR2 = {
P

[w(Fo
2 - Fc

2)2]/
P

[w(Fo
2)2]}1/2,

c S = {
P

[(Fo
2 - Fc

2)2]/(n/p}1/2 where n is the number of reflections and

p is the total number of parameters refined
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(Figs. 2,3; Table 3). The dimers in 1 and 2 can be descri-

bed by the graph-set motif R2
2(10) [63]. Dimers in both

crystal structures are further stabilized by weak C13–

H13���O2 interactions. In both compounds the two

2H-pyran-2-one rings involved in the dimer formation are

not coplanar. The separation of mean planes, which are

described by the atoms of each 2H-pyran-2-one ring in a

dimer is 1.431 Å in 1 and 1.569 Å in 2. In the Cambridge

Structural Database (CSD) [64] we found only three

structures with benzoylamino moiety attached to the 2H-

pyran-2-one ring, in two of them this moiety is attached at

the position 3 [25, 26] and in one structure at the position 6

[27]. Similar dimer formation is present only in 3-ben-

zoylamino-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydrocoumarin

with the separation of mean planes through the 2H-pyran-

2-one ring of adjacent molecules of 1.595 Å [25]. In other

two compounds dimer formation is not present because

N–H group is either not involved in the hydrogen bonding

[26] or is hydrogen-bonded to a 1,4-dioxane solvate mol-

ecule [27].

Dimers of 1 form ribbons by weak C11–H11���O4

(x, 1 ? y, 1 ? z) hydrogen bonding between the phenyl

ring of the benzoylamino group and the carbonyl atom of

the methoxycarbonyl group parallel to [011] (Fig. 2;

Table 3). Supramolecular aggregation is stabilized by p–p
interactions between two parallel C8–C13 rings (centroid

Cg1), with a Cg1���Cg1(1 - x, 2 - y, 1 - z) centroid-to-

centroid distance of 4.0745(11) Å, a perpendicular distance

from the centroid Cg1 to the plane of the other ring of

3.7354(8) Å and a centroid offset of 1.627 Å (Fig. 4).

Dimers of 2 also form ribbons by weak C21–H21B���O4

(-x, -1 - y, 1 - z) hydrogen bonding, but in this case

between the methoxy substituents of the adjacent dime-

thoxyphenyl group parallel to [011] (Fig. 3; Table 3).

Supramolecular aggregation is stabilized by weak C20–

H20C���Cg3(-x, -y, 1 - z) interactions (Cg3 is the cen-

troid of the C14–C19 ring) (Fig. 5) and p–p interactions

parallel to [100] between two parallel O1/C1–C5 rings

(centroid Cg1), with a Cg1���Cg1(-x, -y, 2 - z) centroid-

to-centroid distance of 4.0699(8) Å, a perpendicular dis-

tance from the centroid Cg1 to the plane of the other ring of

3.5648(6) Å and a centroid offset of 1.964 Å. Supramolec-

ular aggregation is further stabilized by p–p interactions

between O1/C1–C5 ring (centroid Cg1) and C8–C13 ring

(centroid Cg2), with a Cg1���Cg2(-1 ? x, y, z) centroid-to-

centroid distance of 4.1556(10) Å, a dihedral angle between

the rings of 23.54(8)�, a perpendicular distance from the

centroid Cg1 to the plane of the other ring of 2.8300(6) Å

Table 3 Hydrogen bond

geometry of 1 and 2 (Å and �)
D–H���A D–H (Å) H���A (Å) D���A (Å) D–H���A (�) Symmetry code

1

N1–H1���O2 0.86 2.42 3.2517(15) 162.8 1 - x, 1 - y, 1 - z

C3–H3���O3 0.93 2.31 2.843(2) 115.7

C6–H6C���O4 0.96 2.20 2.890(2) 128.0

C11–H11���O4 0.93 2.54 3.4321(19) 161.1 x, 1 ? y, 1 ? z

C13–H13���O2 0.93 2.43 3.3458(18) 167.6 1 - x, 1 - y, 1 - z

2

N1–H1���O2 0.86 2.52 3.3303(17) 156.5 -x, 1 - y, 2 - z

C3–H3���O3 0.93 2.26 2.8286(18) 118.8

C13–H13���O2 0.93 2.38 3.312(2) 176.5 -x, 1 - y, 2 - z

C21–H21B���O4 0.96 2.54 3.423(2) 153.1 -x, -1 - y, 1 - z

C20–H20C���Cg3 0.96 2.94 3.738(2) 141.0 -x, -y, 1 - z

Fig. 1 The molecular structure of 1 and 2, showing the atom-

labelling scheme. Displacement ellipsoids are drawn at the 50%

probability level
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and the angle between the intercentroid vector and the nor-

mal to the second ring of 23.54� (consequently the perpen-

dicular distance from the centroid Cg2 to the plane of the

first ring is 3.8096(7) Å and the angle between the inter-

centroid vector and the normal to the first ring is 47.08�)

(Fig. 6). These p–p interactions are consistent with well

defined p–p stacking interactions [65–68]. According to

Janiak [69], they can be regarded as medium strong, since

strong interactions exhibit rather short centroid–centroid

contacts (Cg���Cg \ 3.8 Å), small slip angles (\25�) and

small vertical displacements (\1.5 Å), which translate into a

sizeable overlap of the aromatic planes. In comparison,

medium-to-weak interactions exhibit rather long centroid–

centroid distances ([4.0 Å) together with large slip angles

([30�) and large vertical displacements ([2.0 Å) [69–71].

Fig. 2 1D framework

formation of dimers in 1.

Dashed lines indicate hydrogen

bonds, dimers are connected via

C11–H11���O4 hydrogen-

bonding

Fig. 3 1D framework formation of dimers in 2. Dashed lines indicate hydrogen bonds, dimers are connected via C21–H21B���O4 hydrogen-

bonding

Fig. 4 A packing diagram for 1. Dashed lines indicate p–p interactions and C11–H11���O4 hydrogen bonds. For the sake of clarity, H atoms not

involved in the motif shown have been omitted

Fig. 5 A packing diagram for 2. Dashed lines indicate C20–

H20C���Cg3 hydrogen-bonding
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Supplementary Material

Crystallographic data of 1 and 2 were deposited in the

Cambridge Crystallographic Data Center under the number

CCDC 834643-834644. CIF files containing complete

information on the studied structures may be obtained free

of charge from the Director, CCDC, 12 Union Road,

Cambridge, CB2 1EZ, UK, fax ?44-1223-336033; e-mail:

data_request@ccdc.cam.ac.uk or from the following web

site: www.ccdc.cam.ac.uk/data_request/cif.
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