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ABSTRACT: Diboron-mediated rhodium-catalyzed transfer hydrogenation of
functionalized arenes is reported. In addition to good functional group
tolerance, the reaction features operational simplicity and controllable
chemoselectivity. The general applicability of this procedure is demonstrated
by the selective hydrogenation of a range of arenes, including functionalized
benzenes, biphenyls, and polyaromatics.

Hydrogenation of unsaturated compounds is arguably one
of the most useful transformations in organic synthesis.1

In particular, hydrogenation of arenes provides a convenient
approach to access saturated carbo- and heterocycles.2

Nevertheless, because of the inherent resonance stabilization
energy, hydrogenation of arenes is far more challenging than
those nonaromatic substrates.3 Harsh reaction conditions such
as high reaction temperature and highly pressurized H2 gas
were traditionally employed to overcome the higher kinetic
barrier, which inevitably resulted in poor functional group
(FG) tolerance.1,2 As a result, in contrast to the remarkable
advances of hydrogenation of simple arenes, the selective
hydrogenation of functionalized arenes remained an unsolved
problem.4 Recently, with the use of cyclic (alkyl)(aminol)-
carbene/rhodium catalyst (CAAC-Rh, Scheme 1), selective

hydrogenation of diversely functionalized arenes, including
aromatic ketones,5 fluoroarenes,6 silylated arenes,7 di/trifluor-
omethylated arenes,8 borylated arenes,9 and phenol deriva-
tives10 were successfully achieved, mainly by the groups of
Zeng and Glorius. These breakthroughs greatly improve the
chemoselectivity and scope of arene hydrogenation. However,
mild and selective arene hydrogenation methods that avoid the
use of pressurized H2 gas and elaborate setups, which is highly
desirable for laboratory synthesis, are still underdeveloped.
Transfer hydrogenation represents a practically useful

hydrogenation strategy. It uses easy to handle hydrogen source
other than hazardous H2 gas and avoids the elaborate
experimental setups, thus featuring operational simplicity and
safety. Despite the extensive studies on transfer hydrogenation
of various unsaturated substrates,11 progress on transfer
hydrogenation of arenes largely lags behind. Not surprisingly,
the known reports mainly focus on the reactive azaarenes,12

but the transfer hydrogenation of challenging benzene
derivatives, especially the functionalized benzenes, remains
scarce.13 To realize the operationally simple and selective
transfer hydrogenation of functionalized arenes, there are
several prerequisites to be considered. First, the reducing
reagent is supposed to be nontoxic, bench stable, and easy to
handle; second, the catalyst should be reactive enough for
hydrogenation under mild conditions while inert to labile
functional groups. Diborons have been recently explored as
effective and user-friendly mediators for transition-metal-
catalyzed transfer hydrogenation reactions.14 At the same
time, rhodium-based catalysts have shown high reactivity and
good functional group tolerance in hydrogenation reactions.1
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Scheme 1. Hydrogenation of Functionalized Arenes
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We recently studied the rhodium-catalyzed diboron-mediated
transfer hydrogenation reaction of alkenes and carbonyls, and
high reactivity of the catalytic system was observed.15 Given
the unique reactivity and selectivity of rhodium in hydro-
genation, we envisioned the rhodium/diboron system might
work for the selective transfer hydrogenation of functionalized
arenes. During the course of our study, the Glorius group
reported the transfer hydrogenation of arenes and heteroarenes
with ammonia borane/TFE (2,2,2,-trifluoroethanol) as the
hydrogen donor, and several types of functionalized arenes
were efficiently hydrogenated.16 Herein, we report the transfer
hydrogenation of functionalized arenes using B2(OH)4/EtOH
as the hydrogen donor. This new protocol shows good
functional group tolerance, operational simplicity, and control-
lable chemoselectivity (Scheme 1).
We commenced the investigation with phenylboronic acid

pinacol ester 1a (Table 1). With cyclooctodiene (cod)-

coordinated rhodium(I) chloride as the catalyst, the desired
cyclohexylboronic acid pinacol ester 2a was obtained using
tetrahydroxydiboron as the reducing reagent in ethanol, and
the conversion was higher by using the hydroxorhodium
catalyst (Table 1, entries 1 and 2). In contrast to the high
conversion of 1a in these two reactions, the yield of 2a was
low. Given that other arylboronic esters undergo trans-
metalation with rhodium catalyst much easier than the
corresponding pinacol ester17 and no side product was
detected by 1H NMR analysis of the crude reaction mixture,
we reasoned that solvolysis of 1a/2a with EtOH followed by
rhodium-catalyzed protodeboronation can be the possible side
reaction to give volatile side products. Additional pinacol was
then added to minimize the possible solvolysis of substrate/
product, and gratifyingly the isolated yield of 2a was improved
to 74% (entry 3). Rhodium phosphine complexes, including

the Wilkinson’s catalyst, were not active (entries 4−6). The
commercial Rh/C was found to be active for the transfer
hydrogenation but showed a lower efficiency (entry 7).
Different diborons were next investigated with [Rh(OH)-
(cod)]2 as the catalyst, and bis(catecholate) diboron B2(cat)2
was found to be ineffective while both bis(pinacolate) diboron
B2(pin)2 and bis(neopentylglycolate) diboron B2(neop)2 gave
low yield of the desired product (entries 8−10). Thus,
[Rh(OH)(cod)]2 was chosen as the catalyst and B2(OH)4 was
chosen as the diboron reagent for further studies.
With the established conditions for transfer hydrogenation

of arylboronic acid pinacol ester in hand (Table 1, entry 3), the
substrate scope was then studied. As shown in Scheme 2, a

range of arylboronic acid pinacol esters bearing diverse
substitutions (2b−2g) and substitutions at different positions
(2h−2i) were all tolerated, giving the cis products as the major
isomer. When the naphthyl substrates were employed, the
unsubstituted ring was preferentially hydrogenated (semi:full
>20:1) to give the tetrahydro-naphthylboronic acid pinacol
esters (2j−2k) in high yields, and no fully hydrogenated
product was observed. Note that the lower isolated yields of
some products than NMR yields were mainly due to their
instability on the silica gel column.

Table 1. Study on the Transfer Hydrogenation of Phenyl
Boronate Ester 1aa

entry catalyst and additive diboron
conv
(%)b yield (%)c

1 [RhCl(cod)]2 B2(OH)4 80 24 (23)
2 [Rh(OH)(cod)]2 B2(OH)4 >95 44 (41)
3 [Rh(OH)(cod)]2, pinacol B2(OH)4 >95 81 (74)
4 [Rh(OH)(binap)]2, pinacol B2(OH)4 <5 <5
5 [Rh(OH)(dppe)]2, pinacol B2(OH)4 7 <5
6 RhCl(PPh3)3, pinacol B2(OH)4 <5 <5
7 Rh/C, pinacol B2(OH)4 55 55 (53)
8 [Rh(OH)(cod)]2, pinacol B2(cat)2 <5 <5
9 [Rh(OH)(cod)]2, pinacol B2(pin)2 27 <5
10 [Rh(OH)(cod)]2, pinacol B2(neop)2 28 17

aReaction conditions: 1a (0.20 mmol), diboron (0.90 mmol), catalyst
(5 mol % Rh), pinacol (1.0 mmol, if added), EtOH (1.0 mL), 50 °C,
18 h. bConversion of 1a, determined by 1H NMR analysis of the
crude reaction mixture with 1,1,2,2-tetrachloroethane (0.20 mmol) as
the internal standard. cYield of 2a based on the crude 1H NMR with
1,1,2,2-tetrachloroethane (0.20 mmol) as the internal standard.
Isolated yield is shown in parentheses.

Scheme 2. Transfer Hydrogenation of Aryl Boronate Esterse

aiPrOH instead of EtOH. bEt3N (0.30 mmol) was added.
c[Rh(OH)(cod)]2 (10.0 μmol) was used. dB2(OH)4 (0.80 mmol)
was used. eGeneral conditions: aryl boronate ester (0.20 mmol),
B2(OH)4 (0.90 mmol), [Rh(OH)(cod)]2 (5.0 μmol), pinacol (1.0
mmol), EtOH (1.0 mL), 50 °C, 18 h. Conversion and NMR yields are
given (1,1,2,2-tetrachloroethane as the internal standard), and isolated
yields are shown in parentheses.
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The general applicability of the developed method was
further demonstrated by selective hydrogenation of diverse
functionalized arenes (Scheme 3). Benzenes bearing different
functionalities, including carboxylic acid (4a), ester (4b),
amide (4c−4d), alkyl chain with functional groups (4e−4g),
trifluoromethyl group (4h), amino acid moiety (4i), amino
group (4j), and phosphonate (4k), were all efficiently reduced

to the corresponding cyclohexanes, with functional groups
unperturbed. The current method showed moderate to good
selectivities for partial reduction of polyaromatic hydrocarbons
and biphenyls. For example, the functionalized naphthalenes
were selectively reduced on the less hindered ring (5a−5c)18
and 1,2,3,4,5,6,7,8-octahydroanthracene was obtained by
hydrogenation of anthracene (5d). Unusual chemoselectivity

Scheme 3. Transfer Hydrogenation of Diverse Arenesg

aThe corresponding ketone was used as substrate. bDetermined by 19F NMR of the reaction mixture; no side product was detected. cB2(OH)4
(0.60 mmol) was used. d[Rh(OH)(cod)]2 (10.0 μmol) was used. eB2(OH)4 (1.60 mmol) was used. fB2(OH)4 (1.80 mmol) was used. gGeneral
conditions: 3 (0.20 mmol), B2(OH)4 (0.90 mmol), [Rh(OH)(cod)]2 (5.0 μmol), EtOH (1.0 mL), 50 °C, 18 h. Conversion and NMR yields are
given (1,1,2,2-tetrachloroethane as the internal standard), and isolated yields are shown in parentheses.
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was observed in the case of 1-substituted isoquinoline, and
selective reduction of the fused benzene ring over pyridine ring
was observed (5e−5f). When biphenyl substrates were
employed, the phenyl ring with less substitution group was
preferentially reduced (5g−5i), and this semihydrogenation
provides a convenient route to prepare the key intermediate for
synthesizing the FDA approved new drug siponimod.19 One
important advantage of transfer hydrogenation is the easily
tunable amount of added reductant, which might be used to
control the degree of reduction. In this study, we achieved the
controllable hydrogenation of unbiased arenes in a substrate.
Products from semi- or full reduction of the unbiased
naphthalene ring in BINOL (5j and 5k) and unbiased phenyl
ring in 3,3′-Ph-SPINOL20 (5l and 5m) were attainable by
adjusting the amount of diboron reagent.
Although further investigation is required to fully understand

the reaction mechanism, successive homogeneous rhodium
catalysis for hydrogen generation−heterogeneous rhodium
catalysis for hydrogenation was considered as a working
model on the basis of our previous study15 and literature
reports21 (see Scheme S1 in the SI). Homogeneous rhodium
catalysis led to the fast generation of hydrogen gas from
diboron and ethanol (see Figure S1 in the SI), and the
rhodium catalyst was then reduced to heterogeneous rhodium
particles (see Figure S2 in the SI). The heterogeneous rhodium
catalyst catalyzed the hydrogenation of arenes with the
generated hydrogen gas.21

In summary, we have reported a new strategy for selective
hydrogenation of functionalized arenes by diboron-mediated
rhodium-catalyzed transfer hydrogenation. This protocol
showed broad substrate scope, good functional group
tolerance, and controllable chemoselectivity. Given the opera-
tional simplicity of the method, as well as commercial
availability of the catalyst and diboron reagent, it shall provide
a practically useful tool for laboratory synthesis. Further studies
on the detailed mechanism of this rhodium-catalyzed transfer
hydrogenation are currently ongoing in our laboratory.
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