

0040-4039(95)01893-X

Synthesis of D-myo-P-1-(O-Aminopropyl)-Inositol-1,4,5-Trisphosphate Affinity Probes from α-D-Glucose

György Dormán, Jian Chen, and Glenn D. Prestwich*
Department of Chemistry
University at Stony Brook
Stony Brook, New York 11794-3400

Abstract: D-myo-P-1-(O-3-Aminopropyl)-Ins(1,4,5) P_3 has been synthesized from methyl α -D-glucopyranoside. This optically-pure tethered IP₃ derivative has been converted to a selective photoaffinity label for modification of the ligand binding site of IP₃ receptor proteins.

D-myo-Inositol 1,4,5-trisphosphate (Ins(1,4,5)P₃ or IP₃) is a second messenger in a vast number of important signal transduction processes.¹ IP₃ interacts stereospecifically with membrane receptors to promote the release of Ca²⁺ from intracellular stores.² Numerous methods have been developed to synthesize D-myo-1,4,5-IP₃ and other inositol polyphosphates and their analogues in racemic or optically-active forms.³⁻⁵ The 1-O-aminoalkyl-phospho-myo-inositol-4,5-bisphosphates, a family of aminoalkyl-tethered analogues of myo-inositol-1,4,5-trisphosphate, have been used to prepare IP₃-affinity probes for receptor purification and for photoaffinity labeling of the active sites of IP₃ receptors.⁶ The 1-O-aminoethyl⁷ and 1-O-aminopropyl⁸ tethered IP₃ materials showed significantly reduced receptor affinity relative to IP₃ itself. To date, these IP₃ analogues have only been available in racemic form. Thus, to reduce nonselective binding and to improve the efficiency of active site modifications, affinity reagents based on optically-active D-myo-inositol-1,4,5-trisphosphate derivatives were required. We report herein the synthesis of enantiomerically-pure 1-tethered Ins(1,4,5)P₃ via the Ferrier rearrangement⁹ of a suitably protected α-D-glucose derivative. Photoaffinity probes containing the 4-benzoyldihydrocinnamide group were prepared in both radioactive and radioinert forms.

The synthesis utilized a modified version of the Ferrier rearrangement route⁴ initially developed for 1-tethered Ins(1,3,4,5)P₄,^{5b} and subsequently applied to the preparation of P-5-tethered Ins(1,2,5,6)P₄,^{5c} and P-2-tethered Ins(1,2,4,5)P₄,^{5d} The intermediate 2 was obtained in seven steps from methyl α-D-glucopyranoside 1.^{5d} Introduction of two benzyloxymethyl (BOM) groups onto the two remaining hydroxyl groups required judicious selection of conditions^{5b} to avoid the migration of the acetyl group. This was achieved by stepwise etherification with BOM-Cl, Proton Sponge[®] and *n*-Bu₄NBr in CH₃CN (25 °C, 10 h; 35 °C, 10 h; and 55 °C, 10 h)¹⁰ giving the fully protected inositol 3 in 61% yield. Basic methanolysis of the acetate 3 gave the C-1 alcohol 4 in 90% yield, which served as the pivotal intermediate to the enantiomerically-pure P-1-modified IP₃ analogue.

Scheme 1. Reagents and Conditions: (a) BOM-Cl, Bu₄NBr, H⁺ sponge, CH₃CN, rt to 55 °C; (b) NaOH, MeOH, reflux, 2 h; (c) (1) (*i*-Pr₂N)(OBn)P(OCH₂CH₂CH₂NHCbz), 1-*H* tetrazole, CH₂Cl₂, rt; (2) *m*CPBA, -45 °C to 0 °C, 30 min; (d) DDQ, wet, CH₂Cl₂, rt, 6 h; (e) (1) (BnO)₂P(NPr₂-*i*), 1-*H* tetrazole, CH₂Cl₂, rt; (2) *m*CPBA, -45 °C to 0 °C, 2 h; (f) Pd-C, H₂, 95% EtOH, 5 atm, rt, 10 h; (g) BZDC-NHS ester, DMF-0.25 M TEAB buffer, rt, overnight, or Et₃N, DMF, rt, overnight, or [³H]BZDC-NHS ester, DMF-0.25 M TEAB buffer, rt, overnight.

Phosphitylation of 1-OH with (benzyloxy)[(3-N-carboxyamino)propyl] (diisopropylamino)phosphine^{6a} in the presence of 1-H-tetrazole, followed by oxidation, gave the protected aminopropyl-tethered inositol 5 in 75% yield as a mixture of two diastereoisomers due to the chiral phosphotriester. Two ³¹P resonances were clearly observed for P-1. Removal of the two p-methoxybenzyl (PMB) groups with DDQ in wet methylene chloride gave the diol 6 in 78% yield after silica gel chromatography. Condensation of the diol 6 with di(benzyloxy) (diisopropylamino) phosphine (as for 5) gave the fully protected IP₃ derivative 7¹¹ (75% yield). The ³¹P-NMR resonances for the diastereomeric P-1 were not resolved for 6 or 7. Hydrogenolysis with 10% Pd/C removed all protecting groups to provide the optically-active, P-1-(3-aminopropyl)-tethered D-myo-Ins(1,4,5)P₃ 7 (sodium salt) in nearly quantitative yield after ion-exchange chromatography on Chelex (sodium form)^{6a} (Scheme 1).

Reaction of the P-1-(3-aminopropyl)-tethered D-myo-Ins(1,4,5)P₃ (7) with the N-hydroxysuccinimido ester of 4-benzoyldihydrocinnamic acid (BZDC-NHS ester) in DMF-0.25 M triethylammonium bicarbonate (TEAB) buffer⁸ or in pure DMF suspension with Et₃N¹² at rt for overnight gave, after purification on DEAE-cellulose, the BZDC derivative 8a in 70% yield. The radiolabeled [³H]BZDC probe 8b was prepared in 30% radiochemical yield using the DMF-TEAB method.⁸ Studies of inositol polyphosphate and phosphoinositide binding proteins using these probes will be described in due course.

Acknowledgment: We thank the NIH (NS 29632) for financial support, Dr. J.F. Marecek and Ms. A. Chaudhary for advice, and Dr. J.D. Olszewski, in conjunction with Dr. D.G. Ahern (Du Pont-New England Nuclear), for providing the BZDC-NHS reagents.

References

- (a) Berridge, M.J.; Irvine, R.F. Nature 1984, 312, 315-321.
 (b) Willcocks, A.L.; Cooke, A.M.; Potter, B.V.L.; Nahorski, S.R. Biochem. Biophys. Res. Commun. 1987, 146, 1071-1078.
- 2. (a) Berridge, M.J. Annu. Rev. Biochem. 1987, 56, 159-193. (b) Berridge, M.J. Molec. Cell. Endocrinol. 1994, 98, 119-124. (c) Downes, C.P.; Macphee, C.H. Eur. J. Biochem. 1990, 193, 1-18.
- (a) The Inositol Phosphates: Chemical Synthesis and Biological Significance, (Billington, D.C. Ed.),
 VCH, 1993. (b) Potter, B.V.L. Natural Product Reports, 1990, 1-24. (c) Beaucage, S.L.; Iyer, R.P.
 Tetrahedron, 1993, 49, 10441-10488. (d) Falck, J.R.; Yadagiri, P. J. Org. Chem. 1989, 54,
 5851-5852. (e) Ling, L.; Ozaki, S. Carbohydr. Res., 1994, 256, 49-58. (f) Gou, D.-M.; Liu, Y.-C.
 Carbohydr. Res., 1992, 234, 51-64.
- 4. Bender, S.L.; Budhu, R.J. J. Am. Chem. Soc. 1991, 113, 9883-9885.
- (a) Prestwich, G.D.; Marecek, J.F. in Inositol Phosphates and Derivatives: Synthesis, Biochemistry, and Therapeutic Potential (Reitz, A.B. Ed.) ACS Symposium Series, No. 463, American Chemical Society; Washington D.C. 1991 122-131. (b) Estevez, V.A.; Prestwich, G.D. J. Am. Chem. Soc. 1991, 113, 9885-9887. (c) Chaudhary, A.; Dormán, G.; Prestwich, G.D. Tetrahedron Lett. 1994, 35, 7521-7524.
 (d) Chen, J.; Dormán, G.; Prestwich, G.D. J. Org. Chem., submitted (1995).
- (a) Prestwich, G.D.; Marecek, J.F.; Mourey, R.J.; Theibert, A.B.; Ferris, C.D.; Danoff, S.K.;
 Snyder, S.H. J. Am. Chem. Soc. 1991, 113, 1822-1825. (b) Kanemastu, T.; Takeya, H.; Watanabe,
 Y.; Ozaki, S.; Yoshida, M.; Koga, T.; Iwanaga, S.; Hirada, M. J. Biol. Chem., 1992, 267, 6518-6525.
- 7. Schäfer, R.; Nehls-Sahabandu, M.; Grabowsky, B.; Dehlinger-Kremer, M.; Schulz, I.; Mayr, G. Biochem. J. 1990, 272, 817-825.
- 8. Mourey, R.J.; Estevez, V.A.; Marecek, J.F.; Barrow, R.K.; Prestwich, G.D.; Snyder, S.H. Biochemistry 1993, 32, 1719-1726.
- 9. Ferrier, R.J.; Middleton, S. Chem. Rev. 1993, 93, 2779-2831.
- 10. Evans, D.A.; Bender, S.L. Tetrahedron Lett. 1986, 27, 799-802.

11. Satisfactory spectroscopic and analytical data were obtained for all the compounds. ³¹P shifts are reported in ppm from 85% phosphoric acid as an external standard.

Compound 3 (an oil): ^{1}H NMR (250 MHz, CDCl₃) δ : 7.40-7.20 (m, 19H), 6.83, 6.78 (2 x d, 4H), 4.97-4.50 (m, 14H), 4.43(bs, 1H), 4.20 (t, 1H), 3.99 (t, 1H), 3.80-3.75 (m, 1H), 3.77 (s, 6H), 3.50-3.45 (m, 2H), 1.81 (s, 3H) ppm. FAB HRMS: $C_{47}H_{52}O_{11} + Na^{+}$ (M+Na⁺). (Note: Compounds acquired Na⁺ from the FAB matrix.) Anal. Calcd for 815.3407. Found: 815.3426.

Compound 4: mp 83-85 °C; ¹H NMR (250 MHz, CDCl₃) δ : 7.29-7.22 (m, 19H), 6.86-6.81 (m, 4H), 5.00-4.55 (m, 14H), 4.20 (bs, 1H), 3.97 (t, 1H), 3.8 (t, 1H), 3.79 (s, 6H), 3.72 (d, 1H), 3.50-3.45 (m, 3H) ppm. ¹³C NMR (63 MHz, CDCl₃) δ : 159.7, 138.4, 138.1, 130.4, 129.6, 129.3, 128.5, 128.1, 127.8, 127.7, 113.8, 96.6, 95.8, 82.7, 81.5, 80.0, 75.5, 72.6, 71.2, 70.1, 69.7, 55.3 ppm. FAB m/z: 750 (M⁺), 749 (M⁺ - 1). Anal. Calcd for C₄₅H₅₀O₁₀: C, 71.99; H, 6.71. Found: C, 72.16; H, 6.78.

Compound 5 (viscous colorless oil): 1 H NMR (300 MHz, CDCl₃) δ : 7.31-7.11 (m, 29H, phenyl), 6.81-6.72 (m, 4H, PMB), 5.2-4.99 (m, 31H), 3.78 (s, 6H, OMe), 3.41 (m, 2H), 3.17 (m, 2H), 1.66 (m, 2H) ppm. 13 C NMR (63 MHz, CDCl₃) δ : 159.0, 157.0, 138.0, 130.8, 130.7, 129.6, 129.2, 128.7, 128.5, 128.4, 128.3, 128.1, 128.0, 127.7, 127.6, 113.8, 96.2, 95.4, 82.6, 81.2, 79.7, 77.1, 75.5, 75.4, 74.0, 72.6, 70.2, 70.1, 69.7, 66.6, 55.3, 37.0 ppm. 31 P NMR (101 MHz, CDCl₃) δ : 0.75, 0.48 corresponding to two diastereoisomers. FAB HRMS: $C_{63}H_{70}NO_{15}P + Na^{+}$ (M+Na+). Anal. Calcd for 1134.4381. Found: 1134.4440.

Compound 6 (an oil): 1 H NMR (300 MHz, CDCl₃) δ : 7.32-7.26 (m, 25H, phenyl), 5.20-3.80 (m, 17H), 3.30-3.00 (m, 6H), 1.73 (m, 2H) ppm. 31 P NMR (101 MHz, CDCl₃) δ : 0.53 ppm. FAB HRMS: $C_{47}H_{54}NO_{13}P + Na^{+}$ (M+Na⁺). Anal. Calcd for 894.3231. Found: 894.3216.

Compound 7 (a syrup): 1 H NMR (300 MHz, CDCl₃) δ : 7.22-9.19 (m, 45H, phenyl), 5.2-3.8(m, 30H), 3.52(m, 1H), 3.15(m, 2H), 1.57 (m, 2H) ppm. 13 C NMR (63 MHz, CDCl₃) δ : 159.0, 138.0, 130.8, 130.6, 129.7, 129.3, 128.7, 128.5, 128.4, 128.3, 128.1, 128.0, 127.9, 127.8, 127.5, 127.4, 113.8, 96.2, 95.4, 82.6, 81.2, 79.7, 77.1, 75.5, 75.4, 74.0, 72.6, 70.2, 70.1, 69.7, 66.6, 55.3, 37.0 ppm. 31 P NMR (101 MHz, CDCl₃) δ : 0.33, 0.10, -0.27 ppm. FAB HRMS: $C_{75}H_{80}NO_{19}P_3 + Na^+$ (M+Na+). Anal. Calcd for 1414.4435. Found: 1414.4360.

Compound 8 (a colorless glass): ¹H NMR (300 MHz, D_2O) δ : 4.15-3.65 (m, 7H), 3.58 (d, J = 9.6 Hz, 1H), 3.02 (t, J = 6.9 Hz, 2H), 1.90-1.86 (m, 2H) ppm. ¹³C NMR (63 MHz, D_2O) δ : 79.5, 79.0, 77.5, 74.4, 73.4, 66.5, 66.3, 40.1, 30.4 ppm. ³¹P NMR (101 MHz, D_2O) δ : 8.57, 8.44, 3.44 (1:1:1) ppm. FAB m/z: 563 M+-2), 541 (M+-Na-1), 519 (M+-2Na).

Compound 9a (a glass): ¹H NMR (250 MHz, D_2O) δ : 7.70-7.55 (m, 5H), 7.40 (t, 2H), 7.26 (t, 2H), 4.8-3.4 (m, 8H), 3.06 (t, J = 6.5 Hz, 2H), 2.90 (t, J = 7.5 Hz, 2H), 2.45 (t, J = 7.5 Hz, 2H), 1.65 (m, 2H) ppm. ³¹P NMR δ : 7.93, 7.32, 3.6 ppm.

12. Olszewski, J.D.; Dormán, G.; Elliott, J.T.; Hong, Y.; Ahern, D.G.; and Prestwich, G.D. Bioconjugate Chem., 1995, 6, 395-400.