

Subscriber access provided by STEPHEN F AUSTIN STATE UNIV

C–N Bond Formation from Allylic Alcohols Via Cooperative Nickel and Titanium Catalysis

S. Hadi Nazari, Norma Tiempos-Flores, Kelton G. Forson, Jefferson E. Bourdeau, and David J. Michaelis

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.8b01474 • Publication Date (Web): 07 Aug 2018

Downloaded from http://pubs.acs.org on August 8, 2018

Just Accepted

Note

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

7 8

9 10

11

12 13

14 15

16

17

18 19

20

21

22

23

24 25 26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41 42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59

60

C–N Bond Formation from Allylic Alcohols Via Cooperative Nickel and Titanium Catalysis

S. Hadi Nazari,¹ Norma Tiempos-Flores,² Kelton G. Forson,¹ Jefferson E. Bourdeau,¹ David J. Michaelis^{1*}

¹Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, United States

² Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Pedro de Alba s/n, Ciudad Universitaria, 66451 San Nicolás de los Garza, Nuevo León, México.

Supporting Information Placeholder

ABSTRACT: Amination of allylic alcohols is facilitated via cooperative catalysis. Catalytic Ti(Oi-Pr)₄ is shown to dramatically increase the rate of nickel-catalyzed allylic amination and mechanistic experiments confirm activation of the allylic alcohol by titanium. Aminations of primary and secondary allylic alcohols are demonstrated with a variety of amine nucleophiles. Diene-containing substrates also cyclize onto the nickel allyl intermediate prior to amination, generating carbocyclic amine products. This tandem process is only achieved under our cooperative catalytic system.

Cooperative catalysis is a strategy for reaction engineering that involves the simultaneous use of multiple catalysts to improve reaction efficiency or facilitate different reaction mechanisms.¹ This approach provides unique opportunities for substrate activation that can enable catalysis under much milder conditions and enable new selectivity not observed in single catalyst systems. In addition, the catalytic activation of multiple reacting partners² can preclude the need for stoichiometric substrate activation, which is a common strategy in single catalyst systems. One application of cooperative catalysis is the in situ activation of alcohol electrophiles by Lewis acids for cross coupling reactions.³ This approach enables the use of readily available allylic alcohols as electrophilic partners for cross couplings without the need for stoichiometric activation of the alcohol as a carbonate, halide, or ester. Our group is interested in the discovery and development of cooperative catalysis systems, including those with heterobimetallic complexes.^{4,5} Our results presented herein demonstrate that catalytic activation of the allylic alcohol is a viable strategy for rapid allylic amination under nickel catalysis and that this approach provides unique substrate reactivity not observed in single catalyst systems.

Metal-catalyzed allylic functionalization reactions, including allylic aminations, are widely employed in modern catalysis due to the ability of these reactions to proceed with high product selectivity.⁶ The use of unactivated allylic alcohols in this transformation is attractive because it precludes the need for stoichiometric activation of the alcohol, but the acidity of the OH bond and the poor leaving group ability of alcohols makes this transformation difficult to achieve.⁷ Our previous studies have shown that bidentate NHC phosphine ligands enable selective nickel-catalyzed Suzuki-Miyaura cross couplings with allylic alcohols and boronic esters.⁸ Nickel-catalyzed allylic amination reactions with unprotected alcohols have also previously been demonstrated,⁹ including in work by Mashima and coworkers using nickel catalysts and acetate additives (Figure 1a).¹⁰ Kimura and Onodera¹¹ also recently reported allylic aminations with allylic alcohols under palladium catalysis with boronic ester-containing phosphine ligands, which activate the allylic alcohol (Figure 1b). In this report, we show that the *in situ* activation of allylic alcohols with catalytic amounts of titanium Lewis acids enables highly efficient nickel-catalyzed allylic aminations with a broad range of primary and secondary allylic alcohols and various primary and secondary amine nucleophiles. In addition, we demonstrate that diene-containing

Figure 1. Allylic amination under mild conditions via cooperative Ni/Ti catalysis.

substrates readily cyclize prior to amination only under our cooperative catalysis conditions, generating carbocyclic allylic amine products with good diastereoselectivity (Figure 1d).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38 39

40

41

42

43

44

45

46

47 48 49

50

55

56

57

58 59

60

During the course of our studies in C-C bond forming Suzuki-Miyaura couplings with allylic alcohols,⁸ we wondered whether the nickel allyl intermediate generated in the reaction could be trapped with amine nucleophiles to generate the allyl amine product. To begin our optimization studies, we found that addition of Ni(cod)₂ and bis-(diphenylphosphino)ferrocene (dppf) to the reaction of morpholine with cinnamyl alcohol resulted in very low yield of the amination product (Table 1, entry 1). However, the addition of a catalytic amount of titanium isopropoxide (30%) to the reaction dramatically improved the rate of product formation, presumably via alcohol activation (entry 2). Similar Lewis acid effects have been observed in allylic aminations with noble metal catalysts.¹² Importantly, this allylic amination occurs under very mild conditions at room temperature with inexpensive nickel catalysts. No conversion was observed in the absence of nickel and in the presence of titanium (entry 3) and lower amounts of titanium led to slower reactions (entry 4). Under conditions previously reported for nickel-catalyzed allylic aminations using tetrabutylammonium acetate (TBAA) as additive,¹⁰ only 12% yield was observed under the same conditions (Entry 5). Catalytic amounts of alternative Lewis acids also accelerated the transformation (entries 6-8),

Table 1. Optimization of cooperative catalysis system.

~	_ н	N 0.5%	% [Ni(cod) ₂] % ligand	Ph	^Ņ∕
Ph 💙	`он +		% additive olvent, rt		
entry ^a	ligand	additive	solvent	time (h)	conv. ^b (yield)
1	dppf	-	MeCN	24	3
2	dppf	Ti(Oi-Pr) ₄	MeCN	12	90(85)
3	-	Ti(O <i>i-</i> Pr) ₄	MeCN	20	-
4 ^c	dppf	Ti(O <i>i</i> -Pr) ₄	MeCN	20	36
5	dppf	TBAA	MeCN	12	14
6	dppf	TiCl ₄	MeCN	12	22
7	dppf	BF ₃	MeCN	12	45
8	dppf	AlCl ₃	MeCN	12	65
9	PPh ₃	Ti(O <i>i</i> -Pr) ₄	MeCN	12	46
10	dppe	Ti(Oi-Pr)4	MeCN	12	21
11	dppp	Ti(O <i>i-</i> Pr) ₄	MeCN	12	41
12	dppb	Ti(O <i>i</i> -Pr) ₄	MeCN	12	86
13	BINAP	Ti(Oi-Pr) ₄	MeCN	12	67
14	dppf	Ti(Oi-Pr)4	toluene	12	9
15	dppf	Ti(O <i>i-</i> Pr) ₄	THF	12	6
16	dppf	Ti(O <i>i-</i> Pr) ₄	dioxane	12	6
17	dppf	Ti(O <i>i</i> -Pr) ₄	DMF	12	1
18 ^d	dppf	Ti(O <i>i</i> -Pr) ₄	MeCN	4	96
19 ^e	dppf	Ti(O <i>i-</i> Pr) ₄	MeCN	2	99 (96)

a) Reaction run with 1.6 mmol alcohol, 2.4 mmol amine (1.5 equiv) in solvent (4 M). b) Conversion measured by ¹H NMR analysis of the crude reaction. c) With 10% $Ti(Oi-Pr)_4$. d) With 50% $Ti(Oi-Pr)_4$. e) With 100% $Ti(Oi-Pr)_4$

but not to the same degree as with titanium isopropoxide. We also investigated the impact of phosphine ligand structure on the rate of catalysis and found that various phosphines could be employed, but dppf provided the highest yield in the reaction (entries 9–13). Acetonitrile as solvent was also found to be important to obtaining good conversions (entries 14–17).

In order to further investigate the role of titanium, we also conducted the reaction with 0.5 and 1.0 equivalents of the Lewis acid and found that the rate increased as the amount of titanium increased (Table 1, entries 18–19). This supports our hypothesis that titanium activates the alcohol toward oxidative addition by the nickel catalyst, presumably via formation of the Ti(O-allyl)₄ species. Indeed, when titanium isopropoxide is mixed with cinnamyl alcohol in the presence or absence of morpholine, shifts in the ¹H NMR spectrum indicate coordination of the alcohol with the Lewis acid. However, when titanium isopropoxide was added to the preformed nickel dppf catalyst, no change in the ¹H NMR spectrum was observed (see supporting information). This final result suggests that the titanium does not impact the structure of the nickel catalyst.

Our next goal was to demonstrate that our catalytic system performed well across a wide variety of substrates. To this end. we screened a variety of allylic alcohol substrates and found that the reaction tolerates various substitutions at the alkene and alcohol carbons (Figure 2). For example, simple allyl alcohols that are unsubstituted or monosubstituted on the alkene react in high yield (2a–2c). Electron rich and electron poor cinnamyl alcohols also provide high yield of the allyl amine product (2d-**2h**). Secondary allylic alcohols are also well-tolerated and provide high vields of the secondary amine products (2i-2m). Substrates containing the thiophene heterocycle also react in high yield (2n). However, while trisubstituted alkenes do react (20), including Baylis-Hillman adducts (2p), they provide only modest yield of the product. For the majority of substrates, catalytic amounts of titanium are sufficient to obtain high yields. In certain cases much better yields were obtained with stoichiometric titanium Lewis acid, such as with secondary allylic alcohols (2i-k, 2m) and with other sensitive functional groups (2n-2p).

Figure 2. Amination of various primary and secondary alcohol substrates. a) Reaction run with 2 mol% Ni and 0.5 equiv Ti(O*i*-Pr)4. b) Reaction run with 5 mol% Ni and 1 equiv Ti(O*i*-Pr)4.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16 17

18

19

20

21 22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58 59

60

Our attention next turned to exploring the substrate scope with respect to the amine nucleophile (Figure 3). Secondary amines are excellent substrates for the allylic amination (**3a–3i**), including cyclic amines (**3g–3i**) and heterocyclic amine **3i**. Primary amines are also acceptable substrates and give mono-allylated products (**3j–3k**), but slightly reduced yields are observed due to the formation of overalkylated products. Alphabranched primary amines, however, provide high yields with primary alcohols (**3l**), and monosubstituted primary amines provide higher yields with secondary allylic alcohols (**3m**). In these last cases, steric hindrance around the amine product is essential for obtaining high yield of the mono-alkylated product. Very sterically hindered amines, on the other hand (**3n**), only provide modest yield in the reaction.

0.5% [Ni(cod)₂]

1% dppf 30 or 100% Ti(OiPr)4 MeCN, rt l Ph 96% (**3c**)^a 99% (**3b**)^a 89% (3d)b 90% (3a)^a 77% (**3e**)^l 96% (3f)b 93% (**3g**)^t 88% (**3h**)^b 95% (**3i**)^b 76% (**3i**) C10H21 HN 40% (3k) 96% (3I) 75% (3m) 30% (3n)

Figure 3. Substrate scope for the amine nucleophile. a) reaction run with 2 mol% nickel and 100% Ti(O*i*-Pr)₄. b) reaction run with 100% Ti(O*i*-Pr)₄.

Tandem processes are attractive synthetically because they enable the formation of multiple bonds in the same transformation, leading to rapid construction of complex molecules. In this vein, we investigated the tandem oxidative addition, cyclization, and amination reaction shown in Figure 4. When our cooperative catalysis system was employed, the cyclized products (4) were observed as the major product and in good yield when 5% nickel catalyst and 100% titanium isopropoxide were used. In contrast, under the catalytic conditions developed by Mashima (see Figure 1a),¹⁰ only amination was observed and no cyclization. To the best of our knowledge, this is the first example of an insertion of a nickel allyl intermediate into a pendant diene to generate a cyclized amination product. This new transformation generates a multifunctional cyclopentane product containing two stereocenters with moderate to good diastereoselectivity. The reaction proceeds in moderate to high yield with a variety of amine nucleophiles, including acyclic (4a, 4b, 4c), cyclic (4d, 4e), and heterocyclic amines (4f, 4g). These new amine products could be valuable intermediates in the synthesis of complex alkaloids due to the dense arrangement of reactive functional groups.

In conclusion, we have developed a cooperative catalytic system for the amination of unactivated allylic alcohols under mild conditions. These conditions rely on the Ti-mediated activation of the allylic alcohol to facilitate efficient catalysis. A broad range of amines and alcohol substrates react in high yield in this transformation. In addition, this catalytic system enables tandem cyclization amination reactions for the first time via insertion of the nickel allyl intermediate into a pendent diene func

Figure 4. Tandem cyclization/amination of diene-containing substrates.

tional group. These results provide access to synthetically valuable allylic amine products in high yield as potential building blocks for alkaloid synthesis.

Experimental Section

General Information: All reactions were carried out under an atmosphere of nitrogen or argon in oven-dried glassware with magnetic stirring, unless otherwise indicated. Solvents were dried by J. C. Meyer's Solvent Purification System. The substrates were prepared by literature procedures or as described below. All other reagents were used as obtained unless otherwise noted. Flash chromatogaphy was performed with EM Science silica gel (0.040-0.063µm grade). Analytical thin-layer chromatography was performed with 0.25 mm coated commercial silica gel plates (E. Merck, DC-Plastikfolien, kieselgel 60 F254). Proton nuclear magnetic resonance (¹H-NMR) data were acquired on an Inova 300 MHz, an Inova 500 MHz, or an NMR-S 500 MHz spectrometer. Chemical shifts are reported in delta (δ) units relative to the 2H signal of the CDCl₃ solvent. Signals are reported as follows: s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), qd (quartet of doublets), bs (broad singlet), m (multiplet), rot (rotamers). Coupling constants are reported in hertz (Hz). Carbon-13 nuclear magnetic resonance (¹³C-NMR) data were acquired on an Inova at 75 MHz or Inova or NMR-S spectrometer at 125 MHz. Chemical shifts are reported in ppm. All NMR spectra were collected at 298 K. Mass spectral data were obtained using ESI techniques (Agilent, 6210 TOF). Infrared (IR) data were recorded as films on sodium chloride plates on a Thermo Scientific Nicolet IR100 FT-IR spectrometer. Absorbance frequencies are reported in reciprocal centimeters (cm⁻¹).

Substrates **2i-2k** were synthesized according to previously reported procedures¹³.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

53

54

55

56

57

58 59

60

diethyl 2-((E)-4-hydroxybut-2-en-1-yl)-2-((E)-penta-2,4dien-1-yl)malonate (4): To a solution of diethyl (E)-2-(penta-2,4-dien-1-yl)malonate14a (L1, 550 mg, 2.43 mmol, 1eq) in THF was added sodium hydride (60% dispersion in mineral oil, 146 mg, 3.64 mmol, 1.5 eq) at 0 °C and stirred at room temperature for 30 minutes. A solution of (E)-tert-butyl((4-chlorobut-2-en-1-yl)oxy)dimethylsilane14b (L2, 642 mg, 2.91 mmol, 1.2 eq) in DMSO (2mL) was added and the mixture stirred overnight. The reaction mixture diluted with ethyl acetate and washed with Na-HCO₃ (aq), dried over magnesium sulfate, and concentrated in vacuum. Purification on column using EtOAc/hexanes(1% to 2.5%) gave the product as a yellowish liquid (900 mg, 76%).¹ ¹H NMR (500 MHz, CDCl₃) δ 6.19-6.35 (m, 1H), 6.02-6.13 (m, 1H), 5.41-5.68 (m, 3H), 5.08 (d, J = 16.91 Hz, 1H), 5.0 (d, J =10.55 Hz,1H), 4.17 (q, J = 14.23 Hz, 4H), 4.10 (d, J = 4.66 Hz, 2H), 2.63 (t, J = 7.82 Hz, 4H), 1.23 (t, J = 7.12 Hz, 6H), 0.9 (s, 9H), 0.055 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 170.8, 136.7, 135.0, 134.1, 128.0, 123.9, 116.3, 63.6, 61.3, 57.7, 35.8, 35.5, 26.0, 14.2, -5.1; IR (film)vmax 2929, 2856, 1736, 1462, 1256, 1133; HRMS(ESI) calcd. for C₃₀H₂₉N₃P, [M+H]⁺, 463.2172; found, 463.2175.

21 To a solution of the product from above (1 g, 2.5 mmol, 1eq) in 22 THF was added tetrabutylammonium fluoride (1M in THF, 6 23 mL, 6 mmol, 2 eq) at 0°C. The reaction mixture warmed up and 24 stirred at room temperature overnight. The mixture was diluted 25 with EtOAc and washed with water. Organics were dried on sodium sulfate, concentrated, and purified on column chromatog-26 raphy using hexanes/EtOAc (0 to 25%) gave the product as a 27 colorless liquid (600 mg, 82%). ¹H NMR (500 MHz, CDCl₃) δ 28 6.22-6.32 (m, 1H), 6.05-6.13 (m, 1H), 5.68-5.77 (m, 1H), 5.47-29 5.59 (m, 2H), 5.12 (d, J = 17.34 Hz, 1H), 5.01 (d, J = 10.42 Hz, 30 1H), 4.18 (q, J = 14.31 Hz, 4H), 4.08 (t, J = 5.39 Hz, 2H), 2.64 31 $(dd, J = 7.96, 11.23 Hz, 4H), 1.24 (t, J = 7.18 Hz, 6H); {}^{13}C NMR$ 32 (75 MHz, CDCl₃) δ 170.7, 136.6, 135.1, 133.8, 127.9, 126.1, 33 116.5, 63.4, 61.4, 57.6, 35.8, 35.4, 14.2; IR (film) vmax 3465, 34 2980, 1732, 1456, 1202,; HRMS (ESI) calcd. for C₃₀H₂₉N₃P, 35 [M+H]⁺, 463.2172; found, 463.2175.

36 General procedure for nickel-catalyzed cross coupling of allylic alcohols with amines: Inside a glove box and in a 3 mL 37 dram vial were placed Ni(COD)₂ (2.2 mg, 0.008 mmL, 0.005eq) 38 and dppf (9 mg, 0.016 mmol, 0.01eq) in acetonitrile (300 μ L). 39 the mixture stirred for 5 minutes, and after addition of the allylic 40 alcohol (1.6 mmol, 1 eq), the amine (2.4 mmol, 1.5 eq), and 41 Ti(Oi-Pr)₄ (0.1 mL, 0.3 eq, 4.879 M solution in toluene), the 42 vial was sealed and the reaction mixture stirred for 12 hours. All 43 the volatiles were removed on the rotovap, and the crude mix-44 ture was purified on column using EtOAc/hexanes as eluent.

45 *N*,*N*-dibenzylprop-2-en-1-amine (2a): Prepared following the 46 general procedure using Ni(COD)2 (2.2 mg, 0.008 mmL, 0.005 47 eq), dppf (9 mg, 0.016 mmol, 0.01eq), allyl alcohol (93 mg, 1.6 48 mmol, 1 eq), dibenzyl amine (473 mg, 2.4 mmol, 1.5 eq), and Ti(Oi-Pr)₄ (0.1 mL, 0.3 eq, 4.879 M solution in toluene) in ace-49 tonitrile (300 μ L). Product was purified on column using pure 50 hexanes to 50% EtOAc/hexanes as eluent (368 mg, 97%). Spec-51 tral data is in accordance with the reported values^{15a} 52

(*E*)-*N*,*N*-dibenzylbut-2-en-1-amine (2b): Prepared following the general procedure using Ni(COD)₂ (2.2 mg, 0.008 mmL, 0.005eq), dppf (9 mg, 0.016 mmol, 0.01 eq), (E)-2-butene-1-ol (115 mg, 1.6 mmol, 1 eq), dibenzylamine (473 mg, 2.4 mmol, 1.5 eq), and Ti(O*i*-Pr)₄ (0.1 mL, 0.3 eq, 4.879 M solution in toluene) in acetonitrile (300 μ L). Product was purified on column using pure hexanes to 50% EtOAc/hexanes as eluent (369 mg, 92%). Spectral data is in accordance with the reported values^{15a}.

N,N-dibenzyl-2-methylprop-2-en-1-amine (2c): Prepared following the general procedure using Ni(COD)₂ (2.2 mg, 0.008 mmL, 0.005eq), dppf (9 mg, 0.016 mmol, 0.01 eq), 2-methyl-2-propene-1-ol (115 mg, 1.6 mmol, 1 eq), dibenzylamine (473 mg, 2.4 mmol, 1.5 eq), and Ti(O*i*-Pr)₄ (0.1 mL, 0.3 eq, 4.879 M solution in toluene) in acetonitrile (300 μ L). Product was purified on column using pure hexanes to 50% EtOAc/hexanes as eluent (361 mg, 90%). Spectral data is in accordance with the reported values^{15b}.

4-cinnamylmorpholine (2d): Prepared following the general procedure using Ni(COD)₂ (2.2 mg, 0.008 mmL, 0.005 eq), dppf (9 mg, 0.016 mmol, 0.01 eq), cinnamyl alcohol (214 mg, 1.6 mmol, 1 eq), morpholine (236 mg, 2.4 mmol, 1.5 eq), and Ti(Oi-Pr)₄ (0.1 mL, 0.3 eq, 4.879 M solution in toluene) in acetonitrile (300 μ L). Product was purified on column using pure hexanes to 50% EtOAc/hexanes as eluent (277 mg, 86%). Spectral data is in accordance with the reported values^{15b}.

(*E*)-4-(3-(4-methoxyphenyl)allyl)morpholine (2e): prepared following the general procedure using Ni(COD)₂ (1.1 mg, 0.004 mmol, 0.005 eq), dppf (9 mg, 0.008 mmol, 0.01 eq), (E)-3-(4-methoxyphenyl)prop-2-en-1-ol (132mg, 0.8 mmol, 1 eq), morpholine (140 mg, 1.2 mmol, 1.5 eq), and Ti(O*i*-Pr)₄ (0.05 mL, 0.3 eq, 4.879 M solution in toluene) in acetonitrile (100 μ L). Product was purified on column using pure hexanes to 50% EtOAc/hexanes as eluent (90.5 mg, 97%). Spectral data is in accordance with the reported values^{15b}.

(*E*)-4-(3-(p-Tolyl)allyl)morpholine (2f): Prepared following the general procedure using Ni(COD)₂ (1.1 mg, 0.008 mmol, 0.005 eq), dppf (9 mg, 0.008 mmol, 0.01 eq), (*E*)-3-(p-tolyl)prop-2-en-1-ol (120 mg, 0.8 mmol, 1 eq), morpholine (140 mg, 1.2 mmol, 1.5 eq), and Ti(O*i*-Pr)₄ (0.05 mL, 0.3 eq, 4.879 M solution in toluene) in acetonitrile (100 μ L). Product was purified on column using pure hexanes to 50% EtOAc/hexanes as eluent (85 mg, 98%). Spectral data is in accordance with the reported values^{15c}.

(*E*)-4-(3-(4-chlorophenyl)allyl)morpholine (2g): Prepared following the general procedure using Ni(COD)₂ (2.2 mg, 0.008 mmol, 0.02 eq), dppf (9 mg, 0.016 mmol, 0.04 eq), (*E*)-3-(4-chlorophenyl)prop-2-en-1-ol (68 mg, 0.4 mmol, 1 eq), morpholine (70 mg, 0.6 mmol, 1.5 eq), and Ti(*Oi*-Pr)₄ (0.05 mL, 0.5 eq, 4.879 M solution in toluene) in acetonitrile (100 μ L). Product was purified on column using pure hexanes to 50% EtOAc/hexanes as eluent (79 mg, 83%). ¹H NMR (500 MHz, CDCl₃) δ 7.22-7.36 (m, 4H), 6.48 (d, J = 16.33 Hz, 1H), 6.16-6.28 (m, 1H), 3.73 (t, J = 4.62 Hz, 4H), 3.13 (dd, J = 1.38, 6.74 Hz, 2H), 2.49 (t, J = 4.64 Hz, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 132.1, 128.7, 127.5, 126.9, 67.0, 61.4, 53.7; IR (film) vmax 2856, 2464, 1492, 1452, 1119; HRMS (ESI) calcd. for C₁₃H₁₆ClNO, [M+H]⁺, 239.0891; found, 239.0897.

(*E*)-4-(3-(4-(trifluoromethyl)phenyl)allyl)morpholine (2h): Prepared following the general procedure using Ni(COD)₂ (2.2 mg, 0.008 mmol, 0.02 eq), dppf (9 mg, 0.016 mmol, 0.04 eq), (*E*)-3-(4-(trifluoromethyl)phenyl)prop-2-en-1-ol (80 mg, 0.4 mmol, 1 eq), morpholine (70 mg, 0.6 mmol, 1.5 eq), and Ti(Oi-Pr)₄ (0.05 mL, 0.5 eq, 4.879 M solution in toluene) in acetonitrile (100 μ L). Product was purified on column using pure hexanes to 50% EtOAc/hexanes as eluent (101.5 mg, 94%). ¹H NMR (500 MHz, CDCl₃) δ 7.38-7.63 (m, 4H), 6.57 (d, J = 15.68 Hz, 1H), 6.27-6.45 (m, 1H), 3.73 (t, J = 4.62 Hz, 4H), 3.13 (dd, J = 1.38, 6.74 Hz, 2H), 2.49 (t, J = 4.64 Hz,4H); ¹³C NMR (75

2

3

4

5

6

7

8

9

56

57

58 59

60

MHz, CDCl₃) δ 131.9, 129.1, 126.5, 125.6, 67.0, 61.3, 53.7; IR (film) vmax 2958, 2806, 1615, 1325, 1117; HRMS (ESI) calcd. for C₁₄H₁₆F₃NO, [M+H]⁺, 272.1218; found, 272.1212.

N-benzylcyclohex-2-en-1-amine (2i): Prepared following the general procedure using Ni(COD)₂ (5.5 mg, 0.02 mmol, 0.05 eq), dppf (18 mg, 0.04 mmol, 0.1eq), cyclohex-2-en-1-ol (40 mg, 0.4 mmol, 1 eq), benzylamine (64 mg, 0.6 mmol, 1.5 eq), and Ti(Oi-Pr)₄ (0.08 mL, 1 eq, 4.879 M solution in toluene) in acetonitrile (100 μ L). Product was purified on column using pure hexanes to 50% EtOAc/hexanes as eluent (101.5 mg, 94%). Spectral data is in accordance with the reported values^{15c}.

10 N-benzyl-N-methylcyclohex-2-en-1-amine (2j): Prepared fol-11 lowing the general procedure using Ni(COD)₂ (5 mg, 0.016 12 mmol, 0.04 eq), dppf (18 mg, 0.320 mmol, 0.08 eq), cyclohex-13 2en-1-ol (100 mg, 1 mmol, 1 eq), N-methylbenzylamine (250 14 mg, 2 mmol, 2 eq), and Ti(Oi-Pr)₄ (284 mg, 1 mmol, 1 eq) in 15 acetonitrile (500 µL). Product was purified on column using 16 pure hexanes to 10% ethylacetate/hexanes as eluent (197 mg, 17 98%). ¹H NMR (500 MHz, CDCl₃) δ 7.18-7.33 (m, 5H), 5.79-18 5.85 (m, 1H), 5.70-5.74 (m, 1H), 3.62-3.66 (d, J = 13.5 Hz, 1H),3.43-3.47 (d, J=13.5 Hz, 1H), 3.32-3.37 (m, 1H), 2.20 (s, 3H), 19 1.94-1.99 (m. 2H), 1.76-1.85 (m. 2H), 1.50-1.56 (m. 2H); 20 ¹³C NMR (75 MHz, CDCl₃) δ 140.4, 130.5, 129.9, 128.8, 21 128.3, 126.8, 59.5, 57.4, 37.9, 25.4, 22.9, 21.8; IR (film) vmax 22 2911, 2931, 2859, 2836, 2787, 1494, 1452, 1043; HRMS (ESI) 23 calcd. for C14H19N [M+H]+, 202.1596; found, [M+H]+, 24 202.1590.

25 4-(cvclohex-2-en-1-vl)morpholine (2k): Prepared following 26 the general procedure using Ni(COD)2 (5 mg, 0.016 mmol, 0.04 27 eq), dppf (18 mg, 0.320 mmol, 0.08 eq), cyclohex-2en-1-ol (100 28 mg, 1 mmol, 1 eq), morpholine (300 mg, 3 mmol, 3eq), and 29 Ti(Oi-Pr)₄ (284 mg, 1 mmol, 1 eq) in acetonitrile (500 µL). 30 Product was purified on column using pure pentane to 20% 31 ether/pentane as eluent (96 mg, 57%). ¹H NMR (500 MHz, CDCl₃) & 5.82-5.85 (m, 1H), 5.65-5.67 (m, 1H), 3.71-3.73 (m, 32 4H), 3.15-3.17 (m, 1H), 2.54-2.6 (m, 4H), 1.98-1.99 (m, 2H), 33 1.78-1.81 (m, 2H), 1.53-1.57 (m, 2H); ¹³C NMR (125 MHz, 34 CDCl₃) & 133.5, 133.3, 130.4, 128.8, 128., 128.1, 69.9, 67.5, 35 60.4, 25.3, 23.1, 21.4; IR (film) vmax 2911, 2930.26, 2853.28, 36 1450.28, 1249.41, 1117.06; HRMS (ESI) calcd. for C₁₀H₁₇NO, 37 [M+H]⁺, 168.1388; found, [M+H]+, 168.1382 38

(E)-4-(4-phenylbut-3-en-2-yl)morpholine (21): Prepared fol-39 lowing the general procedure using Ni(COD)₂ (2.2 mg, 0.008 40 mmol, 0.02eq), dppf (9 mg, 0.016 mmol, 0.04 eq), (E)-4-phe-41 nylbut-3-en-2-ol (60 mg, 0.4 mmol, 1 eq), morpholine (64 mg, 42 0.6 mmol, 1.5 eq), and Ti(Oi-Pr)4 (0.05 mL, 0.5 eq, 4.879 M 43 solution in toluene) in acetonitrile (100 µL). Product was puri-44 fied on column using pure hexanes to 50% EtOAc/hexanes as eluent (84.2 mg, 97%). Spectral data is in accordance with the 45 reported values15d. 46

47 (E)-4-(1,3-diphenylallyl)morpholine (2m): Prepared following the general procedure using Ni(COD)₂ (5.5mg, 0.02 mmol, 48 0.05eq), dppf (18 mg, 0.04 mmol, 0.1 eq), (E)-1,3-diphe-49 nylprop-2-en-1-ol (84 mg, 0.4 mmol, 1 eq), morpholine (64 mg, 50 0.6 mmol, 1.5 eq), and Ti(Oi-Pr)4 (0.08 mL, 1 eq, 4.879 M so-51 lution in toluene) in acetonitrile (100 µL). Product was purified 52 on column using pure hexanes to 50% EtOAc/hexanes as eluent 53 (91 mg, 82%). Spectral data is in accordance with the reported 54 values15e. 55

(*E*)-4-(3-(thiophen-2-yl)allyl)morpholine (2n): Prepared following the general procedure using Ni(COD)₂ (5.5 mg, 0.02)

mmol, 0.05 eq), dppf (18mg, 0.04 mmol, 0.1 eq), (*E*)-3-(thiophen-2-yl)prop-2-en-1-ol (56 mg, 0.4mmol, 1 eq), morpholine (64 mg, 0.6 mmol, 1.5 eq), and Ti(O*i*-Pr)₄ (0.08 mL, 1 eq, 4.879 M solution in toluene) in acetonitrile (100 μ L). Product was purified on column using pure hexanes to 50% EtOAc/hexanes as eluent (73 mg, 87%). Spectral data is in accordance with the reported values^{15g}.

4-(3,3-diphenylallyl)morpholine (20): Prepared following the general procedure using Ni(COD)₂ (5.5 mg, 0.02 mmol, 0.05 eq), dppf (18mg, 0.04 mmol, 0.1eq), 3,3-diphenylprop-2-en-1-ol (84 mg, 0.4mmol, 1 eq), morpholine (64 mg, 0.6 mmol, 1.5 eq), and Ti(O*i*-Pr)₄ (0.08 mL, 1 eq, 4.879 M solution in toluene) in acetonitrile (100 μ L). Product was purified on column using pure hexanes to 50% EtOAc/hexanes as eluent (33 mg, 30%). Spectral data is in accordance with the reported values^{15f}.

Methyl (*E*)-2-(morpholinomethyl)-3-phenylacrylate (2p): Prepared following the general procedure using Ni(COD)₂ (5.5 mg, 0.02 mmol, 0.05 eq), dppf (18 mg, 0.04 mmol, 0.1eq), methyl 2-(hydroxy(phenyl)methyl)acrylate (77 mg, 0.4mmol, 1 eq), morpholine (64 mg, 0.6 mmol, 1.5 eq), and Ti(*Oi*-Pr)₄ (0.08 mL, 1 eq, 4.879 M solution in toluene) in acetonitrile (100 μ L). Product was purified on column using pure hexanes to 50% EtOAc/hexanes as eluent (23mg, 30%). Spectral data is in accordance with the reported values^{15h}.

(*E*)-*N*,*N*-dibenzyl-3-phenylprop-2-en-1-amine (3a): prepared following the general procedure using Ni(COD)₂ (2.2 mg, 0.008 mmol, 0.02 eq), dppf (9 mg, 0.016 mmol, 0.04eq), cinnamyl al-cohol (54 mg, 0.4 mmol, 1 eq), dibenzylamine (118 mg, 0.6 mmol, 1.5 eq), and Ti(O*i*-Pr)₄ (0.08 mL, 1 eq, 4.879 M solution in toluene) in acetonitrile (100 μ L). Product was purified on column using pure hexanes to 50% EtOAc/hexanes as eluent (112.5 mg, 90%). Spectral data is in accordance with the reported values^{16a}.

N-cinnamyl-*N*-methylaniline (3b): Prepared following the general procedure using Ni(COD)₂ (2.2 mg, 0.008 mmol, 0.02 eq), dppf (9 mg, 0.016 mmol, 0.04 eq), cinnamyl alcohol (54 mg, 0.4 mmol, 1 eq), N-methyl aniline (64 mg, 0.6 mmol, 1.5 eq), and Ti(O*i*-Pr)₄ (0.08 mL, 1eq, 4.879 M solution in toluene) in acetonitrile (100 μ L). Product was purified on column using pure hexanes to 50% EtOAc/hexanes as eluent (88.5 mg, 99%). Spectral data is in accordance with the reported values^{16b}.

N-cinnamyl-*N*-phenylaniline (3c): Prepared following the general procedure using Ni(COD)₂ (2.2 mg, 0.008 mmol, 0.02eq), dppf (9 mg, 0.016 mmol, 0.04 eq), cinnamyl alcohol (54 mg, 0.4 mmol, 1 eq), diphenyl amine (100 mg, 0.6 mmol, 1.5 eq), and Ti(O*i*-Pr)₄ (0.08 mL, 1eq, 4.879 M solution in toluene) in acetonitrile (100 μ L). Product was purified on column using pure hexanes to 50% EtOAc/hexanes as eluent (109 mg, 96%). Spectral data is in accordance with the reported values^{16c}.

(*E*)-*N*,*N*-diethyl-3-phenylprop-2-en-1-amine (3d): Prepared following the general procedure using Ni(COD)₂ (1.1 mg, 0.008 mmol, 0.005eq), dppf (9 mg, 0.008 mmol, 0.01eq), cinnamyl alcohol (54 mg, 0.4 mmol, 1 eq), diethylamine (44mg, 0.6 mmol, 1.5 eq), and Ti(O*i*-Pr)₄ (0.05 mL, 0.5 eq, 4.879 M solution in toluene) in acetonitrile (100 μ L). Product was purified on column using pure hexanes to 50% EtOAc/Hexanes as eluent (67 mg, 89%). Spectral data is in accordance with the reported values^{16d}.

(*E*)-*N*,*N*-diisopropyl-3-phenylprop-2-en-1-amine (3e): Prepared following the general procedure using Ni(COD)₂ (2.2 mg, 0.008 mmol, 0.02eq), dppf (9 mg, 0.016 mmol, 0.04 eq), cinnamyl alcohol (54 mg, 0.4 mmol, 1 eq), diisopropylamine (60 mg, 0.6 mmol, 1.5 eq), and Ti(O*i*-Pr)₄ (0.05 mL, 0.5 eq, 4.879 M solution in toluene) in acetonitrile (100 μ L). Product was purified on column using pure hexanes to 50% EtOAc/hexanes as eluent (67 mg, 77%). Spectral data is in accordance with the reported values^{16e}.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

59

60

(*E*)-*N*-benzyl-*N*-methyl-3-phenylprop-2-en-1-amine (3f): Prepared following the general procedure using Ni(COD)₂ (2.2 mg, 0.008 mmol, 0.02eq), dppf (9 mg, 0.016 mmol, 0.04 eq), cinnamyl alcohol (54 mg, 0.4 mmol, 1 eq), *N*-methyl-1-phenyl-methanamine (73 mg, 0.6 mmol, 1.5 eq), and Ti(O*i*-Pr)₄ (0.05 mL, 0.5 eq, 4.879 M solution in toluene) in acetonitrile (100 μ L). Product was purified on column using pure hexanes to 50% EtOAc/hexanes as eluent (91 mg, 96%). Spectral data is in accordance with the reported values^{16f}.

1-cinnamylpyrrolidine (3g): Prepared following the general procedure using Ni(COD)₂ (2.2 mg, 0.008 mmol, 0.02eq), dppf (9 mg, 0.016 mmol, 0.04 eq), cinnamyl alcohol (54 mg, 0.4 mmol, 1 eq), pyrrolidine (43 mg, 0.6 mmol, 1.5 eq), and Ti(O*i*-Pr)₄ (0.05 mL, 0.5 eq, 4.879 M solution in toluene) in acetonitrile (100 μ L). Product was purified on column using pure hexanes to 50% EtOAc/hexanes as eluent (69.6 mg, 93%). Spectral data is in accordance with the reported values^{16g}.

1-cinnamylpiperidine (3h): Prepared following the general procedure using Ni(COD)₂ (2.2 mg, 0.008 mmol, 0.02eq), dppf (9 mg, 0.016 mmol, 0.04eq), cinnamyl alcohol (54 mg, 0.4 mmol, 1 eq), piperidine (51 mg, 0.6 mmol, 1.5 eq), and Ti(O*i*-Pr)₄ (0.05 mL, 0.5 eq, 4.879 M solution in toluene) in acetonitrile (100 μ L). Product was purified on column using pure hexanes to 50% EtOAc/hexanes as eluent (70.4 mg, 88%). Spectral data is in accordance with the reported values^{16h}.

1-cinnamyl-4-methylpiperazine (3i): Prepared following the general procedure using Ni(COD)₂ (2.2 mg, 0.008 mmol, 0.02 eq), dppf (9 mg, 0.016 mmol, 0.04eq), cinnamyl alcohol (54 mg, 0.4 mmol, 1 eq), N-methyl piperazine (60 mg, 0.6 mmol, 1.5 eq), and Ti(Oi-Pr)₄ (0.05 mL, 0.5 eq, 4.879 M solution in toluene) in acetonitrile (100 μ L). Product was purified on column using pure hexanes to 50% EtOAc/hexanes as eluent (82 mg, 95%). Spectral data is in accordance with the reported values¹⁶ⁱ.

N-cinnamylaniline (3j): Prepared following the general procedure using Ni(COD)₂ (2.2 mg, 0.008 mmol, 0.02eq), dppf (9 mg, 0.016 mmol, 0.04 eq), cinnamyl alcohol (54 mg, 0.4 mmol, 1 eq), aniline (56 mg, 0.6 mmol, 1.5 eq), and Ti(O*i*-Pr)₄ (0.05 mL, 0.5 eq, 4.879 M solution in toluene) in acetonitrile (100 μ L). Product was purified on column using pure hexanes to 50% EtOAc/hexanes as eluent (63 mg, 76%). Spectral data is in accordance with the reported values¹⁶.

43 (E)-N-(4-phenvlbut-3-en-2-vl)decan-1-amine (3k): Prepared 44 following the general procedure using Ni(COD)₂ (1.1 mg, 0.008 45 mmol, 0.005eq), dppf (9 mg, 0.008 mmol, 0.01 eq), cinnamyl 46 alcohol (54 mg, 0.4 mmol, 1 eq), decylamine (94 mg, 0.6 mmol, 47 1.5 eq), and Ti(Oi-Pr)4 (0.05 mL, 0.5 eq, 4.879 M solution in 48 toluene) in acetonitrile (100 µL). Product was purified on col-49 umn using pure hexanes to 20% Methanol/EtOAc as eluent (46 mg, 40%). ¹H NMR (500 MHz, CDCl₃) δ 7.38 (d, J = 4.04 Hz, 50 2H), 7.31 (t, J =7.45 Hz, 2H), 7.20-7.25 (m, 1H), 6.52 (d, J = 51 7.45 Hz, 1H), 6.26-6.35 (m, 1H), 3.29 (d, J = 3.19, 2H), 2.51 (t, 52 J = 7.55 Hz, 1H), 1.48-1.57 (m,1H), 1.19-1.33 (m, 8H), 0.85-53 0.95 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 137.2, 134.6, 54 129.7, 128.5, 127.3, 136.2, 56.4, 47.7, 31.9, 30.4, 29.6, 29.6, 55 29.3, 27.5, 22.7, 22.1, 14.1; IR (film) vmax 2924, 2359, 1733, 56 1456, 1273; HRMS (ESI) calcd. for C₁₉H₃₁N, [M+H]⁺, 57 274.2535; found, 274.2530. 58

(*E*)-3-phenyl-*N*-(1-phenylethyl)prop-2-en-1-amine (31): Prepared following the general procedure using Ni(COD)₂ (1.1

mg, 0.008 mmol, 0.005 eq), dppf (9 mg, 0.008 mmol, 0.01eq), cinnamyl alcohol (54 mg, 0.4 mmol, 1 eq), 1-phenylethan-1amine (73 mg, 0.6 mmol, 1.5 eq), and Ti(Oi-Pr)₄ (0.05 mL, 0.5 eq, 4.879 M solution in toluene) in acetonitrile (100 μ L). Product was purified on column using pure hexanes to 50% EtOAc/hexanes as eluent (91 mg, 96%). Spectral data is in accordance with the reported values^{16m}.

(E)-N-(4-phenylbut-3-en-2-yl)decan-1-amine (3m): Prepared following the general procedure using Ni(COD)₂ (2.2 mg, 0.008 mmol, 0.02eq), dppf (9 mg, 0.016 mmol, 0.04eq), (E)-4-phenylbut-3-en-2-ol (60 mg, 0.4mmol, 1 eq), decylamine (94 mg, 0.6 mmol, 1.5 eq), and Ti(Oi-Pr)4 (0.05 ml, 0.5 eq, 4.879 M solution in toluene) in acetonitrile (100 µl). Product was purified on a column of silica gel using 20% methanol/EtOAc as eluent (86mg, 75%). ¹H NMR (500 MHz, CDCl₃) δ 7.39 (d, J = 3.7 Hz, 2H), 7.31 (t, J = 7.64 Hz, 2H), 7.20-7.25 (m, 1H), 6.47 (d, J = 7.96 Hz, 1H), 6.09 (q, J = 7.89 Hz, 1H), 3.36 (quin, J = 6.68, 1H), 2.61-2.68 (m, 1H), 2.53-2.60 (m, 1H), 1.45-1.55 (m, 2H), 1.23-1.34 (m, 18H), 0.89 (t, J = 6.68 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) & 137.2, 134.6, 129.7, 128.5, 127.3, 136.3, 56.4, 47.7, 31.9, 30.4, 29.6, 29.6, 29.3, 27.5, 22.7, 22.1, 14.1; IR (film) vmax 2924, 2359, 1465, 1136, 964; HRMS (ESI) calcd. for C₂₀H₃₃N, [M+H]+, 288.2691; found, 288.2698.

1-cinnamyl-2,2,6,6-tetramethylpiperidine (3n): prepared following the general procedure using Ni(COD)₂ (5.5mg, 0.02 mmol, 0.05 eq), dppf (18mg, 0.04 mmol, 0.1eq), cinnamyl alcohol (54 mg, 0.4 mmol, 1 eq), 2,2,6,6-tetramethylpiperidine (85 mg, 0.6 mmol, 1.5 eq), and Ti(*Oi*-Pr)₄ (0.08 mL, 1 eq, 4.879 M solution in toluene) in acetonitrile (100 μ L). Product was purified on column using pure hexanes to 50% EtOAc/hexanes as eluent (31 mg, 30%). Spectral data is in accordance with the reported values¹⁶ⁿ.

diethyl (E)-3-(3-(dibenzylamino)prop-1-en-1-yl)-4-vinylcyclopentane-1,1-dicarboxylate (4a): Prepared following the general procedure using Ni(COD)2 (1.5 mg, 0.005 mmol, 0.05eq), dppf (5.5 mg, 0.01 mmol, 0.1 eq), diethyl 2-((E)-4-hydroxybut-2-en-1-yl)-2-((E)-penta-2,4-dien-1-yl)malonate (30 mg, 0.1 mmol, 1 eq), dibenzylamine (24 mg, 0.12 mmol, 1.2 eq), and Ti(Oi-Pr)₄ (0.03 mL, 1 eq, 4.879 M solution in toluene) in acetonitrile (50 µL). The product was obtained as an unseparable mixture of two diastereomers (4.7:1) after purification on column using pure hexanes to 70% EtOAc/hexanes as eluent (37 mg, 78%). ¹H NMR (500 MHz, CDCl₃) δ 7.21-7.39 (m, 10H) 5.62-5.78 (m, 1H), 5.48-5.58 (m, 2H), 4.94-5.03 (m, 2H), 4.16-4.24 (m, 4H), 3.56 (s, 4H), 3.01 (2,2H), 2.74-2.84 (m, 2H), 2.44-2.58 (m, 2H), 2.14-2.26 (m, 2H), 1.20-1.31 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 172.7, 139.8, 138.7, 133.5, 128.8, 128.3, 128.2, 126.8, 115.2, 61.6, 61.5, 59.1, 57.6, 55.3, 50.1, 48.8, 47.3, 46.1, 39.2, 38.7, 14.1; IR (film) vmax 2979, 2793, 1729, 1254, 1104; HRMS (ESI) calcd. for C₃₀H₃₇NO₄, 476.2756; found, [M+H]⁺, 476.2753.

diethyl (*E*)-3-(3-(benzyl(methyl)amino)prop-1-en-1-yl)-4vinylcyclopentane-1,1-dicarboxylate (4b): Prepared following the general procedure using Ni(COD)₂ (1.5 mg, 0.005 mmol, 0.05 eq), dppf (5.5 mg, 0.01 mmol, 0.1 eq), diethyl 2-((*E*)-4-hydroxybut-2-en-1-yl)-2-((*E*)-penta-2,4-dien-1-yl)malonate (30 mg, 0.1 mmol, 1 eq), *N*-methyl-1-phenylmethanamine (15mg, 0.12 mmol, 1.2 eq), and Ti(Oi-Pr)₄(0.03 mL, 1 eq, 4.879 M solution in toluene) in acetonitrile (50 μ L). The product was obtained as an unseparable mixture of two diastereomers (8.8:1) after purification on column using pure hexanes

2

3

4

5

6

7

8

9

59

60

to 70% EtOAc/hexanes as eluent (35 mg, 88%). ¹H NMR (500 MHz, CDCl₃) δ 5.63-5.78 (m, 1H), 5.45-5.55 (m, 2H), 4.94-5.00 (m, 2H), 4.19 (dq, J = 7.15, 7.03 Hz, 4H), 3.46 (d, J = 2.85 Hz, 2H), 2.94-2.97 (m, 2H), 2.72-2.84 (m, 2H), 2.47 (dd, J = 13.89, 13.89 2H), 2.16-2.24 (m, 2H), 2.15 (s, 3H), 1.20-1.28 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 172.7, 172.4, 139.1, 138.6, 133.7, 129.1, 128.2, 126.9, 115.2, 61.5, 61.5, 59.5, 59.1, 47.3, 46.1, 42.0, 39.2, 38.7, 29.7, 14.1; IR (film) vmax 2925, 2359, 1730, 1453, 1254;; HRMS (ESI) calcd. for C₂₄H₃₃NO₄, [M+H]⁺, 400.2443; found, 400.2447.

(E)-3-(3-((1-phenylethyl)amino)prop-1-en-1-yl)-4diethyl 10 vinylcyclopentane-1,1-dicarboxylate (4c): Prepared follow-11 ing the general procedure using Ni(COD)₂ (1.5 mg, 0.005 12 mmol, 0.05 eq), dppf (5.5 mg, 0.01 mmol, 0.1 eq), diethyl 2-13 ((E)-4-hydroxybut-2-en-1-yl)-2-((E)-penta-2,4-dien-1-yl)ma-14 lonate (30 mg, 0.1 mmol, 1 eq), 1-phenylethan-1-amine (15 mg, 15 0.12 mmol, 1.2 eq), and Ti(Oi-Pr)4 (0.03 mL, 1 eq, 4.879 M solution in toluene) in acetonitrile (50 µL). The product was ob-16 tained as an unseparable mixture of two diastereomers (3.5:1) 17 after purification on column using pure hexanes to 70% 18 EtOAc/hexanes as eluent (36.3 mg, 91%). ¹H NMR (500 MHz, 19 CDCl₃) & 7.20-7.36 (m, 5H), 5.59-5.75 (m, 1H), 5.29-5.55 (m, 20 2H), 4.92-5.08 (m, 2H), 4.12-4.23 (m, 4H), 3.78 (q, J = 6.24 21 Hz,1H), 2.97-3.09 (m, 2H), 2.70-2.79 (m, 2H), 2.37-2.56 22 (m,2H), 2.10-2.23(m, 2H), 1.34 (d, J = 6.44, 3H), 1.24 (q, J = 23 6.85, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 172.7, 172.4, 145.5, 24 138.6, 138.5, 132.1, 129.5, 129.4, 128.4, 126.9, 126.7, 126.6, 25 115.3, 61.5, 59.1, 57.2, 49.8, 49.3, 48.4, 47.2, 45.9, 40.3, 40.0, 39.1, 39.0, 38.7, 24.2, 21.8, 21.5, 14.0; IR (film) vmax 2924, 26 1728, 1254, 1178; HRMS (ESI) calcd. for C₂₄H₃₃NO₄, [M+H]⁺, 27 400.2443; found, 400.2448. 28

29 diethyl (E)-3-(3-(piperidin-1-yl)prop-1-en-1-yl)-4-vinylcyclopentane-1,1-dicarboxylate (4d): Prepared following the 30 general procedure using Ni(COD)₂ (1.5 mg, 0.005 mmol, 0.05 31 eq), dppf (5.5 mg, 0.01 mmol, 0.1eq), diethyl 2-((E)-4-hydroxy-32 but-2-en-1-yl)-2-((E)-penta-2,4-dien-1-yl)malonate (30 mg, 0.1 33 mmol, 1 eq), piperidine (11 mg, 0.12 mmol, 1.2 eq), and Ti(Oi-34 Pr)₄ (0.03 mL, 1 eq, 4.879 M solution in toluene) in acetonitrile 35 (50 μ L). The product was obtained as an unseparable mixture 36 of two diastereomers (6:1) after purification on column using 37 pure hexanes to 70% EtOAc/hexanes as eluent (35 mg, 88%). 38 ¹H NMR (500 MHz, CDCl₃) δ 5.65-5.76 (m, 1H), 5.43-5.54 (m, 2H), 4.93-5.03 (m, 2H), 4.19 (q, J = 8.02, 4H), 2.89-2.93 (m, 39 2H), 2.71-2.83 (m, 2H), 2.46 (q, J = 7.14 Hz, 2H), 2.27-2.40 (s, 40 4H), 2.13-2.24(m, 2H), 1.58 (t, J=5.28, 4H), 1.42 (s, 2H), 1.24 41 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 172.7, 172.4, 138.6, 42 133.8, 127.6, 115.1, 114.4, 67.5, 61.5, 59.1, 54.3, 47.7, 47.2, 43 46.0 48.4, 47.2, 45.9, 39.0, 38.7, 24.2, 21.5, 14.0; IR (film) 44 vmax 2933, 2795, 1730, 1443, 1254,; HRMS (ESI) calcd. for 45 C₂₁H₃₃NO₄, [M+H]⁺, 364.2443; found, 364.2449.

46 diethyl (E)-3-(3-(pyrrolidin-1-yl)prop-1-en-1-yl)-4-vinylcy-47 clopentane-1,1-dicarboxylate (4e): Prepared following the 48 general procedure using Ni(COD)₂ (1.5 mg, 0.005 mmol, 0.05 49 eq), dppf (5.5 mg, 0.01 mmol, 0.1 eq), diethyl 2-((E)-4-hy-50 droxybut-2-en-1-yl)-2-((E)-penta-2,4-dien-1-yl)malonate (30) 51 mg, 0.1mmol, 1 eq), pyrrolidine (11 mg, 0.12 mmol, 1.2 eq), 52 and Ti(Oi-Pr)₄ (0.03 mL, 1 eq, 4.879 M solution in toluene) in acetonitrile (50 µL). The product was obtained as an unsepara-53 ble mixture of two diastereomers (4.8:1) after purification on 54 column using pure hexanes to 70% EtOAc/hexanes as eluent 55 (21 mg, 60%). ¹H NMR (500 MHz, CDCl₃) δ 5.63-5.76 (m, 56 1H), 5.47-5.60 (m, 2H), 4.94-5.07 (m, 2H), 4.19 (q, J = 7.19 Hz, 57 4H), 3.06-3.15 (m, 2H), 2.71-2.82 (m, 2H), 2.44 (s, 4H), 2.47 58

(q, J = 7.10 Hz, 2H), 2.14-2.24 (m, 2H), 1.78-1.83 (m, 4H), 1.21-1.28 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 172.4, 138.5, 115.2, 61.6, 59.1, 58.0, 53.7, 47.2, 46.0, 39.1, 38.7, 23.4, 14.0; IR (film) vmax 2925, 2359, 1729, 1255, 1178; HRMS (ESI) calcd. for C₂₀H₃₁NO₄, 350.2287; found, [M+H]+, 350.2281.

diethyl (E)-3-(3-morpholinoprop-1-en-1-yl)-4-vinylcyclopentane-1,1-dicarboxylate (4f): Prepared following the general procedure using Ni(COD)₂ (3 mg, 0.01 mmol, 0.05 eq), dppf (11 mg, 0.02 mmol, 0.1 eq), diethyl 2-((E)-4-hydroxybut-2-en-1-yl)-2-((E)-penta-2,4-dien-1-yl)malonate (60 mg, 0.2 mmol, 1 eq), morpholine (30 mg, 0.3 mmol, 1.5 eq), and Ti(Oi-Pr)₄ (0.05 mL, 1 eq, 4.879 M solution in toluene) in acetonitrile (50 µL). The product was obtained as an unseparable mixture of two diastereomers (4:1) after purification on column using pure hexanes to 70% EtOAc/hexanes as eluent (33 mg, 46%). ¹H NMR (500 MHz, CDCl₃) δ 5.60-5.74 (m, 1H), 5.40-5.55 (m, 2H), 4.93-5.08 (m, 2H), 4.19 (q, J = 7.13 Hz, 4H), 3.70 (t, J= 4.64 Hz, 4H), 2.88-3.02 (m, 2H), 2.71-2.83 (m, 2H), 2.43-2.50 (m,2H), 2.33-2.54 (m, 6H), 2.11-2.24 (m, 2H), 1.19-1.29 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 172.6, 172.3, 139.3, 138.5, 134.6, 126.8, 115.5, 115.2, 67.0, 61.6, 59.1, 53.7, 53.5, 49.9, 48.5, 47.2, 46.0, 40.2, 39.9, 39.1, 38.7, 29.7, 14.0; IR (film) vmax 2926, 2806, 1729, 1453, 1257, 1118; HRMS (ESI) calcd. for C₂₀H₃₁NO₅, [M+H]⁺, 366.2236; found, 366.2231. Di-2-((E)-4-morpholinobut-2-en-1-yl)-2-((E)-4-morphoethyl linopent-2-en-1-yl)malonate (4h) was isolated as the main byproduct of the reaction as a brown liquid (30 mg, 40%) using Methanol/EtOAc as eluent. ¹H NMR (500 MHz, CDCl₃) δ 5.52-5.65 (m, 1H), 5.41-5.52 (m, 2H), 5.29-5.41 (m, 2H), 4.16 (q, J = 7.18 Hz, 4H), 3.70 (s, 8H), 2.93 (d, J = 6.33, 2H), 2.75-2.85 (m, 2H) 2.53-2.65 (m, 4H), 2.30-2.52 (m, 8H), 1.20-1.30 (m, 6H), 1.12 (d, J = 6.47, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 170.7, 170.7, 136.9, 131.0, 127.9, 125.5, 67.1, 66.9, 62.7, 61.3, 61.1, 57.6, 53.5, 50.6, 35.4, 17.9, 14.1; IR (film) vmax 2958, 2807, 1731, 1453, 1265, 1200; HRMS (EI) calcd. for C₃₀H₂₉N₃P, [M+H]+, 463.2172; found, 463.2175.

diethyl (E)-3-(3-(4-methylpiperazin-1-yl)prop-1-en-1-yl)-4vinylcyclopentane-1,1-dicarboxylate (4g): Prepared following the general procedure using Ni(COD)₂ (1.5 mg, 0.005 mmol, 0.05 eq), dppf (5.5 mg, 0.01 mmol, 0.1 eq), diethyl 2-((E)-4-hydroxybut-2-en-1-yl)-2-((E)-penta-2,4-dien-1-yl)malonate (30 mg, 0.1 mmol, 1 eq), N-methylpiperazine (15 mg, 0.12 mmol, 1.2 eq), and Ti(Oi-Pr)4 (0.03 mL, 1 eq, 4.879 M solution in toluene) in acetonitrile (50 µL). The product was obtained as an unseparable mixture of two diastereomers (5.8:1) after purification on column using 10% MeOH/EtOAC as eluent (36.5 mg, 96.5%). ¹H NMR (500 MHz, CDCl₃) δ 5.60-5.78 (m, 1H), 5.46-5.55 (m, 2H), 4.90-5.06 (m, 2H), 4.19 (q, J = 7.10)Hz, 4H), 2.91-2.98 (m, 2H), 2.71-2.85 (m, 2H), 2.37-2.59 (m, 10H), 2.29 (s, 3H), 2.15-2.24 (m, 2H), 1.19-1.30 (m, 6H); ¹³C NMR (300 MHz, CDCl₃) δ 172.4, 138.6, 134.3, 127.3, 115.2, 61.6, 61.5, 60.1, 59.1, 55.1, 53.2, 52.9, 47.2, 46.1, 39.1, 38.7, 14.1; IR (film) vmax 2934, 2794, 2359, 1730, 1456, 1256, 1178; HRMS (ESI) calcd. for C₂₁H₃₄N₂O₄, 379.2553; found, [M+H]+, 379.2557.

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: Spectral images for all compounds (PDF)

Corresponding Author

* dmichaelis@chem.byu.edu

ACKNOWLEDGMENT

Acknowledgment is made to the donors of the American Chemical Society Petroleum Research Fund for support of this research (PRF No. 56371-DNI1). Financial support was also provided by the National Science Foundation (CHE-1665015).

REFERENCES

 a) Allen, A. E.; MacMillan, D. W. C. Synergistic catalysis: A powerful synthetic strategy for new reaction Development. *Chem. Sci.* **2012**, *3*, 633–658. b) Inamdar, S. M.; Shinde, V. S.; Patil, N. T. Enantioselective cooperative catalysis. *Org. Biomol. Chem.* **2015**, *13*, 8116– 8162. c) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Dual catalysis, strategies in photochemical synthesis. *Chem. Rev.* **2016**, *116*, 10035–10074.

2. For leading references, see: a) Trost, B. M.; Luan, X. Contemporaneous Dual Catalysis by Coupling Highly Transient Nucleophilic and Electrophilic Intermediates Generated in Situ. J. Am. Chem. Soc. 2011,133, 1706-1709. b) Krautwald, S.; Schafroth, M. A.; Sarlah, D.; Carreira, E. M. Stereodivergent a-Allylation of Linear Aldehydes with Dual Iridium and Amine Catalysis. J. Am. Chem. Soc. 2014, 136, 3020-3023. c) Li, X.; Lu, M.; Dong, Y.; Wu, W.; Qian, Q.; Ye, J.; Dixon, D. J. Diastereodivergent organocatalytic asymmetric vinylogous Michael reactions. Nat. Comm. 2014, 5, 4479. d) Huo, X.; Zhang, J.; Fu, J.; He, R.; Zhang, W. Ir/Cu Dual Catalysis: Enantio- and Diastereodivergent Access to a,a-Disubstituted a-Amino Acids Bearing Vicinal Stereocenters. J. Am. Chem. Soc. 2018, 140, 2080-2084. e) Jiang, X.; Boehm, P.; Hartwig, J. F. Stereodivergent Allylation of Azaaryl Acetamides and Acetates by Synergistic Iridium and Copper Catalysis. J. Am. Chem. Soc. 2018, 140, 1239-1242. f) Wei, L.; Xu, S.-M.; Zhu, O.; Che, C.; Wang, C.-J. Synergistic Cu/Pd Catalysis for Enantioselective Allylic Alkylation of Aldimine Esters: Access to a,a-Disubstituted a-Amino Acids. Angew. Chem. Int. Ed. 2017, 56, 12312-12316. g) Lin, L.; Feng, X. Catalytic Strategies for Diastereo divergent Synthesis. Chem. Eur. J. 2017, 23, 6464-6482.

3. For reviews see: a) Tamaru, Y.; Kimura, M. Palladium-catalyzed selective activation of allyl alcohols as allyl cations, allyl anions, and zwitterionic trimethylenemethanes. Pure Appl. Chem. 2008, 80, 979-991. b) Kimura, M.; Tamaru, Y. Amphiphilic Allylic Alkylation with Allyl Alcohols Promoted by Pd-Catalyst and Triethylborane. Mini-Rev. in Org. Chem. 2009, 6, 392-397. For selected examples, see: c) Kimura, M.; Horino, Y.; Mukai, R.; Tanaka, S.; Tamaru, Y. Strikingly Simple Direct α-Allylation of Aldehydes. J. Am. Chem. Soc. 2001, 123, 10401-10402. d) Mukai, R.; Horino, Y.; Tanaka, S.; Tamaru, Y.; Kimura, M. Pd(0)-Catalyzed Amphiphilic Activation of Bis-allyl Alcohol and Ether. J. Am. Chem. Soc. 2004, 126, 11138-11139. e) Kimura, M.; Futamata, M.; Mukai, R.; Tamaru, Y. Pd-Catalyzed C3-Selective Allylation of Indoles with Allyl Alcohols Promoted by Triethylborane. J. Am. Chem. Soc. 2005, 127, 4592-4593. f) Trost, B. M.; Quancard, J. Palladium-Catalyzed Enantioselective C-3 Allylation of 3-Substituted-1H-Indoles Using Trialkylboranes. J. Am. Chem. Soc. 2006, 128, 6314-6315. g) Olsson, V. J.; Sebelius, S.; Selander, N.; Szabo', K. J. Direct Boronation of Allyl Alcohols with Diboronic Acid Using Palladium Pincer-Complex Catalysis. A Remarkably Facile Allylic Displacement of the Hydroxy Group under Mild Reaction Conditions. J. Am. Chem. Soc. 2006, 128, 4588-4589. h) Larsson, J. M.; Szabo', K. J. Mechanistic Investigation of the Palladium-Catalyzed Synthesis of Allylic Silanes and Boronates from Allylic Alcohols. J. Am. Chem. Soc. 2013, 135, 443-455. i) Jia, X.-G.; Guo, P.; Duan, J.; Shu, X.-Z. Dual nickel and Lewis acid catalysis for cross electrophile coupling: the allylation of aryl halides with allylic alcohols. Chem. Sci. 2018, 9, 640-645.

4. Chaudhary, A.; Singh, A.; Kamboj, R. C. Heterobimetallic Complexes as Promising Catalysts. *Chem. Sci. Rev. Lett.* **2016**, *5*, 170–192.

 a) Talley, M. R.; Stokes, R. W.; Walker, W. K.; Michaelis, D. J. Electrophilic activation of alkynes for enynecycloisomerization reactions with in situ generated early/late heterobimetallic Pt–Ti Catalysts. *Dalton Trans.* 2016, *45*, 9770–9773. b) Walker, W. K.; Kay, B. M.; Michaelis, S. A.; Anderson, D. L.; Smith, S. J.; Ess, D. H.; Michaelis, D. J. Origin of Fast Catalysis in Allylic Amination Reactions Catalyzed by Pd–Ti Heterobimetallic Complexes. *J. Am. Chem. Soc.* 2015, *137*, 7371–7378. c) Walker, W. K.; Anderson, D. L.; Stokes, R. W.; Smith, 6. a) Tsuji, J. *Transition Metal Reagents and Catalysis, Wiley-VCH, Weinheim,* **2000**. b) Trost, B. M.; Lee, C., in *Catalytic Asymmetric Synthesis* (Ed.: Ojima, I.), 2nd ed., Wiley-VCH, Weinheim, **2000**. c) Trost, B. M.; Crawley, M. L. Asymmetric Transition-Metal-Catalyzed Allylic Alkylations: Applications in Total Synthesis. *Chem. Rev.* **2003**, *103*, 2921–2944.

7. For reviews, see: a) Tamaru, Y. Activation of Allyl Alcohols as Allyl Cations, Allyl Anions, and Amphiphilic Allylic Species by Palladium. *Eur. J. Org. Chem.* **2005**, 2647-2656. b) Sundararaju, B.; Achard, M.; Bruneau, C. Transition metal catalyzed nucleophilic allylic substitution: activation of allylic alcohols via p-allylic species. *Chem. Soc. Rev.* **2012**, *41*, 4467-4483. c) Muzart J. Procedures for and Possible Mechanisms of Pd-Catalyzed Allylations of Primary and Secondary Amines with Allylic Alcohols. *Eur. J. Org. Chem.* **2007**, 3077-3089. d) Muzart, J. Palladium-catalysed reactions of alcohols. Part B: Formation of C–C and C–N bonds from unsaturated alcohols. *Tetrahedron* **2005**, 61, 4179-4212. e) Butt, N. A.; Zhang, W. Transition metalcatalyzed allylic substitution reactions with unactivated allylic substrates. *Chem. Soc. Rev.* **2015**, *44*, 7929-7967. f) Bandini, M. Allylic Alcohols: Sustainable Sources for Catalytic Enantioselective Alkylation Reactions. *Angew. Chem., Int. Ed.* **2011**, *50*, 994–995.

8. Nazari, S. H.; Bourdeau, J. E.; Talley, M. R.; Valdivia-Berroeta, G. A.; Smith, S. J.; Michaelis, D. J. Nickel-Catalyzed Suzuki Cross Couplings with Unprotected Allylic Alcohols Enabled by Bidentate N-Heterocyclic Carbene (NHC)/Phosphine Ligands. *ACS Catal.* **2018**, *8*, 86–89.

9. a) Furukawa, J.; Kiji, J.; Yamamoto, K.; Tojo, T. Nickel-catalyzed allyl-transfer reactions. *Tetrahedron*, **1973**, *29*, 3149–3151. b) Bricout, H.; Carpentier, J. F.; Mortreux, A. Nickel vs. palladium catalysts for coupling reactions of allyl alcohol with soft nucleophiles: activities and deactivation processes. *J. Mol. Cat. A-Chem.* **1998**, *136*, 243–251.

10. Kita, Y.; Sakaguchi, H.; Hoshimoto, Y.; Nakauchi, D.; Nakahara, Y.; Carpentier, J.-F.; Ogoshi, S.; Mashima, K. Pentacoordinated Carboxylate π -Allyl Nickel as key intermediates for direct amination of allylic alcohols. *Chem. Eur. J.* **2015**, *21*, 14571–14578.

11. Hirata, G.; Satomura, H.; Kumagae, H.; Shimizu, A.; Onodera, G.; Kimura, M. Direct Allylic Amination of Allylic Alcohol Catalyzed by Palladium Complex Bearing Phosphine–Borane Ligand. *Org. Lett*, **2017**, *19*, 6148–6151.

12. a) Yoshiro, M.; Masaaki, K.; Yasuhiko, K. Palladium-Catalyzed Allylic Amination of Allyl Alcohols with Tin(II) Chloride and Triethylamine. *Chem. Lett.* **1995**, *24*, 1121–1122. b) Yang, S.C.; Hung, C.W. Palladium-Catalyzed Amination of Allylic Alcohols Using Anilines. *J. Org. Chem.* **1999**, *64*, 5000–5001. c) Shue, Y.-J.; Yang, S.C.; Lai, H.C. Direct palladium(0)-catalyzed amination of allylic alcohols with aminonaphthalenes. *Tetrahedron Lett.* **2003**, *44*, 1481–1485. d) Yamashita, Y.; Gopalarathnam, A.; Hartwig, J. F.; Iridium-Catalyzed, Asymmetric Amination of Allylic Alcohols Activated by Lewis Acids *J. Am. Chem. Soc.* **2007**, *129*, 7508–7509.

13. a) Henderson, D. A.; Fuchter, M. J. Lanthanide replacement in organic synthesis: Luche-type reduction of α,β-unsaturated ketones in the presence of calcium triflate. *Green Chem.* **2012**, *14*, 2129 – 2132. b) Bigler, R.; Huber, R.; Mezzetti, A. Highly Enantioselective Transfer Hydrogenation of Ketones with Chiral (NH)₂P₂ Macrocyclic Iron(II) Complexes. *Angew. Chem. Int. Ed.* **2014**, *54*, 17, 5171–5174. c) Stoner, E. J.; Cothron, D. A.; Balmer, M. K.; Roden, B. A. Benzylation via Tandem Grignard reaction—iodotrimethylsilane (TMSI) mediated reduction. *Tetrahedron*, **1995**, *51*, 11043–11062.

14. a) Kimura, M.; Ezoe, A.; Mori, M.; Tamaru, Y. Nickel-Catalyzed Addition of Dimethylzinc to Aldehydes across Alkynes and 1,3-Butadiene: An Efficient Four-Component Connection Reaction. *J. Am. Chem. Soc.* **2005**, *127*, 201–209. b) Takacs, M.; Myoung, Y. C.; Anderson, L. G.; Catalytic Iron-Mediated Triene Carbocyclizations: Stereoselective Five-Membered Ring Forming Carbocyclizations, *J. Org. Chem.* **1994**, *59*, 6928–6942.

15. a) Cazorla, C.; Billamboz, M.; Bricout, H.; Monflier, E.; Len, C. Green and Scalable Palladium-on-Carbon-Catalyzed

53

54

55

56

57

58

59

60

3

4

5

7

Tsuji-Trost Coupling Reaction Using an Efficient and Continuous Flow System. Eur. J. Org. Chem. 2017, 1078-1085. b) Hirata, G.; Satomura, H.; Kumagae, H.; Shimizu, A.; Onodera, G.; Ki-2 mura, M. Direct Allylic Amination of Allylic Alcohol Catalyzed by Palladium Complex Bearing Phosphine-Borane Ligand. Org. Lett. 2017, 19, 6148-6151. c) Kita, Y.; Sakaguchi, H.; Hoshimoto, Y.; Nakauchi, D.; Nakahara, Y.; Carpentier, J. F.; Ogoshi, 6 S.; Mashima, K. Pentacoordinated Carboxylate π-Allyl Nickel Complexes as Key Intermediates for the Ni-Catalyzed Direct Amination of Allylic Alcohols. Chem. Eur. J. 2015, 21, 14571-4578. d) Park, 8 K.; Lee, S. Additive-Free Decarboxylative Coupling of Cinnamic 9 Acid Derivatives in Water: Synthesis of Allyl Amines, Org. 10 Lett. 2015, 17, 1300-1303. e) Nishina, N.; Yamamoto, Y.; Gold-11 Catalyzed Intermolecular Hydroamination of Allenes: First Exam-12 ple of the Use of an Aliphatic Amine in Hydroamination. Syn-13 lett 2007, 11, 1767-1770. f) Goldfogel, M. J.; Roberts, C. C.; Meek, S. J. Intermolecular Hydroamination of 1,3-Dienes Cat-14 alvzed by Bis(phosphine)carbodicarbene–Rhodium Complexes. J. 15 Am. Chem. Soc. 2014, 136, 6227-6230. g) Xie, Y.; Hu, J.; Wang, 16 Y.; Xia, C.; Huang, H. Palladium-Catalyzed Vinylation of Ami-17 nals with Simple Alkenes: A New Strategy To Construct Allyla-18 mines. J. Am. Chem. Soc. 2012, 134, 20613-20616. h) Beck, J. 19 F.; Samblanet, D. C.; Schmidt, J. A. R. Palladium catalyzed intermolecular hydroamination of 1-substituted allenes: an atom-economi-20 cal method for the synthesis of N-allylamines. RSC Adv. 2013, 3, 21 20708-20718.

22 16. a) Wang, M.; Xie, Y.; Li, J.; Huang, H. Palladium-Cata-23 lyzed Direct Amination of Allylic Alcohols at Room Temperature. 24 Synlett 2014, 25, 2781–2786. b) Hirata, G.; Satomura, 25 H.; Kumagae, H.; Shimizu, A.; Onodera, G.; Kimura, M. Direct Allylic Amination of Allylic Alcohol Catalyzed by Palladium 26 Complex Bearing Phosphine–Borane Ligand. Org. Lett. 2017, 19, 27 6148-6151. c) Shimizu, Y.; Obora, Y.; Lshii, Y. Intermolecular 28 Aerobic Oxidative Allylic Amination of Simple Alkenes with Dia-29 rylamines Catalyzed by the Pd(OCOCF3)2/NPMoV/O2 System. 30 Org. Lett. 2010, 12, 1372-1374. d) Chardon, A.; Mohy El Dine, 31 T.; Legay, R.; De Paolis, M.; Rouden, J.; Blanchet, J. Borinic Acid Catalysed Reduction of Tertiary Amides with Hydrosilanes: A Mild 32 and Chemoselective Synthesis of Amine. Chem. Eur. J. 2017, 23, 33 2005-2009. e) Kita, Y.; Sakaguchi, H.; Hoshimoto, Y.; Nakauchi, 34 D.; Nakahara, Y.; Carpentier, J.; Ogoshi, S.; Mashima, K.; Penta-35 coordinated Carboxylate *n*-Allyl Nickel Complexes as Key Intermedi-36 ates for the Ni-Catalyzed Direct Amination of Allylic Alcohols. Chem. 37 Eur. J. 2015, 21, 14571-14578. f) Jing, J.; Huo, X.; Shen, J.; Fu, J.; Meng, Q.; Zhang, W. Direct use of allylic alcohols and allylic 38 amines in palladium-catalyzed allylic amination. Chem. Comm. 2017, 39 53, 5151 – 5154. g) Hirata, G.; S.; Kumagae, H.; Shimizu, A.; On-40 odera, G.; Kimura, M. Direct Allylic Amination of Allylic Alcohol 41 Catalyzed by Palladium Complex Bearing Phosphine-Borane Lig-42 and. Org. Lett. 2017, 19, 6148-6151. h) Horn, P. A.; Braun, R. 43 K.; Isoppo, V. G.; Costa, J. S.; Lüdtke, D. S.; Moro, A. V. Combining Copper-Catalyzed Hydroboration with Palladium-Catalyzed Su-44 zuki Coupling for the One-pot Synthesis of Arylallylamines under Mi-45 cellar Conditions. Adv. Synth. Cat. 2017, 359, 2322-2328. i) Yu, 46 H.; Gao, B.; Hu, B.; Huang, H. Org. Lett. 2017, 19, 3520-3523. j) 47 Takale, B. S.; Tao, S.; Yu, X. Q.; Feng, X.; Jin, T.; Bao, M.; Yama-48 2558-2561. moto, Υ. Org. Lett. 2014. 16. 49 k)Takeuchi; U.; Tanabe; Y.; Shiga. Iridium Complex-Catalyzed Allylic Amination of Allylic Esters. J. Am. Chem. Soc. 2001, 123, 50 9525-9534. 1) Wang, Y.; Li, M.; Ma, X.; Liu, C.; Gu, Y.; Tian, S. 51 Deammoniative Condensation of Primary Allylic Amines with Nonal-52 lylic Amines. Ch. J. Chem. 2014, 32, 741-751. m) Walker, W. 53 K.; Anderson, D. L.; Stokes, R. W.; Smith, S. J.; Michaelis, D. J.; 54 Allylic Aminations with Hindered Secondary Amine Nucleophiles 55 Catalyzed by Heterobimetallic Pd-Ti Complexes. Org. Lett. 2015, 17, 752-755. 56

59 60

57 58

Abstract Graphic:

