

PII: S0960-894X(97)10050-6

Anti-AIDS Agents —XXVIII.¹ Synthesis and Anti-HIV Activity of Methoxy Substituted 3',4'-Di-O-(-)-Camphanoyl-(+)-Cis-Khellactone (DCK) Analogues

Yasuo Takeuchi,^a Lan Xie,^a L. Mark Cosentino,^b and Kuo-Hsiung Lee^{a*}

^aNatural Products Laboratory, Division of Medicinal Chemistry and Natural Products, School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599 ^bBiotech Research Laboratories, 3 Taft Court, Rockville, Maryland 20850

Abstract: Four isomeric methoxy substituted DCK analogues (3–6) were asymmetrically synthesized from different starting materials. 5-Methoxy-3',4'-di-O-(-)-camphanoyl-(+)-*cis*-khellactone (5) exhibited extremely potent anti-HIV activity against HIV-1 replication in H9 lymphocyte cells with EC₅₀ and therapeutic index values of 0.00038 μ M and >402,632, respectively, which are better than those of DCK and AZT in this assay. © 1997 Elsevier Science Ltd.

In order to develop more potent anti-HIV agents, we are continuing our efforts to isolate novel anti-HIV compounds from natural products and to modify the identified active principles. Accordingly, the isolation of suksdorfin (1) as an anti-HIV agent² from *Lomatium suksdorfii* led to our synthesis of 42 khellactone derivatives.^{3,4} Among them, 3',4'-di-O-(-)-camphanoyl-(+)-*cis*-khellactone (DCK) (2) exhibited very potent inhibitory activity against HIV-1 replication in H9 lymphocyte cells with EC₅₀ and therapeutic index values of 0.000256 μ M and 136,719, and was more potent than AZT as an anti-HIV agent in this assay. However, three stereoisomers of DCK showed much lower anti-HIV activity than 2. The other khellactone derivatives with different *O*-acyl- and/or *O*-alkyl groups at the 3'and 4' positions were inactive or toxic in the assay. The results indicated that the *R*- configuration and di-*O*-(-)-camphanoyl substitution at the 3'and 4' positions are very important for anti-HIV activity in this type of compound.

As an extension to these studies, we plan to introduce additional substituents at the 3-, 4-, 5-, and 6positions of the coumarin nucleus. In this paper, we report the synthesis and anti-HIV activity of 3-methoxy (3), 4-methoxy (4), 5-methoxy (5) and 6-methoxy (6)-di-O-(-)-camphanoyl-(+)-*cis*-khellactone.

Our synthetic strategy was first to obtain four isomeric methoxy substituted 7-hydroxycoumarin (8, 12, 17, and 19) and methoxy substituted seselin (9, 13, 18, and 20) intermediates, and then to stereoselectively synthesize DCK analogues 3-6. The synthetic routes are shown in Scheme 1. 3-Methoxy-7-hydroxycoumarin (8) was prepared in a 44% yield from the commercially available 2.4-dihydroxybenzaldehyde (7) and a mixture of sodium methoxyacetate and methoxyacetyl chloride in DMF. 4.7-Dihydroxycoumarin (11) was obtained in a 28% yield by the reaction of 1.3-dihydroxybenzene (10) and malonic acid in the presence of BF_3 Et₂O. Compound 11 was then selectively methylated at the 4-hydroxy group⁵ to give 4-methoxy-7-hydroxycoumarin (12) in a 60% yield. 1.3.5-Trihydroxybenzaldehyde (14) was first reacted with Ac₂O/Py in CH₂Cl₂ to give 2.4diacetoxy-6-hydroxybenzaldehyde (15) (50% yield) together with 2.4.6-triacetoxybenzaldehyde (16) However. 16 could be easily converted to 15 by heating in MeOH/Py. Compound 15 then successively underwent a Wittig reaction with Ph₃P=CHCOOMe, methylation of the 6-hydroxy group with CH₃I, deprotection of the 2.4dihydroxy groups, and cyclization of the coumarin ring to obtain 5-methoxy-7-hydroxycoumarin (17) with an overall vield of 45%. 6-Methoxy-7-hydroxycoumarin (19) is commercially available. 3-Methoxy (9), 4-methoxy (13), 5-methoxy (18), and 6-methoxy (20) seselin were separately prepared from 8, 12, 17, and 19, respectively. according to a procedure reported in the literature 6 . The yields ranged from 35–60%. As in the asymmetric synthesis of DCK,⁷ the four isomeric methoxy substituted seselin analogues (9, 13, 18, and 20) were asymmetrically dihdroxylated using $(DHO)_2$ -PYR⁸ as a chiral catalyst, and then were esterified with (-)-(S)camphanovl chloride at room temperature for 48 h to obtain 3-6, respectively.⁹ The asymmetric dihydroxylation for this kind of compound is highly stereoselective with percent enantiomeric excess (% e.e.) ranging from 75 \sim >90%.¹⁰ The *cis*-khellactone derivatives with 3'R, 4'R configuration^{4,7} are the predominant diastereoisomers. The ¹H NMR data of 3-6 are shown in Table 1.

The anti-HIV activities of 3-6 are shown in Table 2. The results indicated that 5 has very potent anti-HIV activity in acutely infected H9 lymphocytes with an EC₅₀ value of 0.00038 μ M and a remarkable therapeutic index of >402,632, which are better than those of DCK and AZT in this assay. Compound 4 also exhibited more potent anti-HIV activity than AZT with an EC₅₀ value of 0.00276 and therapeutic index of >51,000. However, these values were not comparable to those of DCK. Compound 3 also was more active than AZT with an EC₅₀ value of 0.006, but its therapeutic index value was lower than that of AZT. In contrast, compound 6 was much less active than the lead compound DCK. These results suggested that introducing methoxy group at the 4- or 5-position of DCK could lead to enhanced anti-HIV activity, with the 5-methoxy group being the most effective. Further modification of DCK for better pharmacological properties is in progress.

Scheme 1. Synthesis of mono-methoxy substituted 3',4'-di-O-(-)-camphanoyl-(+)-cis-khellactones (3-6) a. MeOCH₂COONa, MeOCH₂COCl in DMF

- b. 3-Chloro-3-methylbut-1-yne, KI, K₂CO₃ in DMF
- c. N,N-Diethylaniline, reflux
- d. K2OsO2(OH)4, K2CO3, K3Fe(CN)6, (DHQ)2-PYR in t-BuOH/H2O, 0°C
- c. (-)-Camphanoyl chloride, pyridine in CH₂Cl₂
- f. CH₂(COOH)₂, BF₃·Et₂O; g. MeOH/H₂SO₄
- h. Ac₂O, pyridine in CH₂Cl₂; i. MeOH, Py
- j. Ph₃P=CHCOOMe in DMF; k. MeI, K₂CO₃ in DMF
- 1. MeCH₂CH₂OH, DMAP, reflux 3 hs

Proton	3	4	5	6
δppm (J)				
H-3	3.88 (s, OCH ₃)	5.53 (s)	6.14 (d, 9.8)	6.27 (d, 9.8)
H-4	6.78 (s)	3.97 (s, OCH ₃)	7.97 (d, 9.8)	7.60 (d, 9.8)
H-5	7.34 (d, 8.8)	7.74 (d, 8.8)	3.90 (s, OCH ₃)	6.90 (s)
H-6	6.83 (d, 8.8)	6.81 (d, 8.8)	6.25 (s)	3.92 (s, OCH ₃)
H-3'	5.39 (d, 4.8)	5.38 (d, 4.8)	5.34 (d, 4.8)	5.40 (d, 4.8)
H-4'	6.64 (d, 4.8)	6.64 (d, 4.8)	6.60 (d , 4.8)	6.65 (d, 4.8)
CH ₂ (x 4)	2.48 (m)	2.48 (m)	2.49 (m)	2.48 (m)
	2.22 (m)	2.24 (m)	2.22 (m)	2.10 (m)
	1.92 (m)	1.92 (m)	1.90 (m)	1.97 (m)
	1.69 (m)	1.68 (m)	1.71 (m)	1.72 (m)
CH ₃ (x8)	1.55 (s, 3H)	1.49 (s, 3H)	1.55 (s, 3H)	1.52 (s, 3H)
	1.47 (s, 3H)	1.45 (s, 3H)	1.50 (s, 3H)	0.98-1.14 (m.s.)
	1.43 (s, 3H)	0.93-1.14 (m.s.)	1.44 (s, 3H)	
	0.93-1.12 (m.s.)		0.98-1.14 (m.s.)	
	1		1	

Table 1. ¹H NMR Data of Methoxy Substituted-DCK Analogues (3-6)

 Table 2. Anti-HIV Activity of DCK and Its Analogues (3–6) in

 Acutely Infected H9 Lymphocytes¹¹

IC ₅₀ (μM) ^a	EC ₅₀ (μM) ^b	Therapeutic index °
>153 ^d	0.006	>25,500
>153 ^d	0.00276	>51,000
>153 ^d	0.000138	>402,632
>153 ^d	24.5	>9.68
35	0.000256	136,719
1875	0.045	41,667
	$\frac{IC_{50} (\mu M)^{a}}{> 153^{d}}$ >153 ^d >153 ^d >153 ^d 35 1875	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

^aconcentration that inhibits uninfected H9 cell growth by 50%.

^bconcentration that inhibits viral replication by 50%.

 $^{\circ}TI = IC_{50}/EC_{50}$.

 $^{\rm M}$ $^$

References and notes

- 1. For Anti-AIDS Agents 27. Hashimoto, F.; Kashiwada, Y.; Cosentino, L. M.; Chen, C. H.; Garrett, P. E.; Lee, K. H. *Bioorg. Med. Chem.* in press.
- Lee, T. T.; Kashiwada, Y.; Huang, L.; Snider, J.; Cosentino, L. M.; Lee, K. H. Bioorg. Med. Chem. 1994, 2, 1051.
- 3. Huang, L.; Kashiwada, Y.; Cosentino, L. M.; Fan, S.; Chen, C.; McPhail, A. T.; Fujioka, T.; Mihashi, K.; Lee, K. H. J. Med. Chem. 1994, 37, 3947.
- 4. Huang, L.; Kashiwada, Y.; Cosentino, L. M.; Fan, S.; Lee, K. H. Bioorg. Med. Chem. Lett. 1994, 4, 593.
- 5. Ahluwalia, V. K.; Kumar, D. Indian J. Chem. 1977, 15B, 945.
- 6. Hlubuek, J.; Ritchie, E.; Taylor, W. C. Aust. J. Chem. 1971, 62, 2347.
- 7. Xie, L.; Crimmins, M. T.; Lee, K. H. Tetrahedron Lett. 1995, 36, 4529.
- 8. (DHQ)₂-PYR: Hydroquinine 2,5-diphenyl-4,6-pyrimidinediyl diether.
- 9. 3-Methoxy-3',4'-di-O-(-)-camphanoyl-(+)-cis-khellactone (3) (% d.e. 80): mp 147-50 °C; [α]_D +12.9° (c 0.715, CHCl₃); MS (CI-NH₃) m/z (%): 670 (M+NH₄⁺, 100); EA for C₃₅H₄₀O₁₂ · ½ H₂O: Theory: C, 63.53; H, 6.25. Found: C, 63.57; H, 6.41.

4-Methoxy-3',4'-di-*O*-(-)-camphanoyl-(+)-*cis*-khellactone (4) (% d.e. 73): mp 174-6 °C; [α]_D +2.34° (*c* 0.685, CHCl₃); MS (CI--NH₃) *m/z* (%): 670 (M+NH₄⁺, 75); EA for C₃₅H₄₀O₁₂· ½ H₂O: Theory: C, 63.53; H, 6.25. Found: C, 63.33; H, 6.39.

5-Methoxy-3',4'-di-O-(-)-camphanoyl-(+)-*cis*-khellactone (5) (% d.e. 86): mp 168-70 °C; [α]_D -4.44° (*c* 0.45, CHCl₃); MS (CI-NH₃) *m/z* (%): 670 (M+NH₄⁺, 60); EA for C₃₅H₄₀O₁₂· ½ H₂O: Theory: C, 63.53; H, 6.25. Found: C, 63.52; H, 6.26

6-Methoxy-3',4'-di-*O*-(-)-camphanoyl-(+)-*cis*-khellactone (6) (% d.e. >95): mp 262-4 °C; $[\alpha]_D$ -18.26° (*c* 0.5, CHCl₃); MS (EI) *m/z* (%): 652 (M⁺, 20); EA for C₃₅H₄₀O₁₂· 2½ H₂O: Theory: C, 60.25; H, 6.50. Found: C, 60.22; H, 6.92.

- 10. The percent enantiomeric excess was determined by ¹H NMR analysis of the bis-(-)-camphanic esters.
- 11. HIV Growth Inhibition Assay. The T cell line, H9, was maintained in continuous culture with complete medium (RPMI 1640 with 10% fetal calf serum [FCS] supplemented with L-glutamine at 5% CO₂ and 37 °C. Aliquots of this cell line were only used in experiments when in log-phase of growth. Test samples were first dissolved in dimethyl sulfoxide (DMSO). The following were the final drug concentrations routinely used for screening: 100, 20, 4, and 0.8 µg/mL, but for active agents additional dilutions were prepared for subsequent testing so that an accurate EC₅₀ value could be achieved. As the test samples were being prepared, an aliquot of the T cell line, H9, was infected with HIV-1 (IIIB isolate) while another aliquot was mock-infected with complete medium. The mock-infected was used for toxicity determinations (IC₅₀). The stock virus used for

these studies typically had a TCID₅₀ value of 10^4 Infectious Units/mL. The appropriate amount of virus for a multiplicity of infection (moi) between 0.1 and 0.01 Infectious Units/cell was added to the first aliquot of H9 cells. The other aliquot of H9 cells only received culture medium and then was incubated under identical conditions as the HIV-infected H9 cells. After a 4 hour incubation at 37 °C and 5% CO₂, both cell populations were washed three times with fresh medium and then added to the appropriate wells of a 24-well plate containing the various concentrations of the test drug or culture medium (positive infected control/negative drug control). In addition, AZT was also assayed during each experiment as a positive drug control. The plates were incubated at 37 °C and 5% CO₂ for 4 days. Cell-free supernatants were collected on Day 4 for use in our in-house p24 antigen ELISA assay. P24 antigen is a core protein of HIV and therefore is an indirect measure of virus present in the supernatants. Toxicity was determined by performing cell counts by a Coulter Counter on the mock-infected H9 cells which had either received culture medium (no toxicity) or test sample or AZT.

(Received in USA 8 August 1997; accepted 9 September 1997)