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ABSTRACT: An electrochemical sulfonylation of alkynes with
sodium sulfinates was achieved for the first time at room
temperature. Employing this electrolysis strategy, the reaction
occurs efficiently under transition-metal-free, external oxidant-free,
and base-free conditions and furnishes diverse alkynyl sulfones in
satisfactory yield with broad functional group tolerance.

Sulfones, one of the important organosulfur compounds, are
frequently found in natural products,1 pharmaceuticals,2

and drug candidates.3 Among them, alkynyl sulfones are
valuable synthetic intermediates in cycloadditions,4 conjugated
additions,5 cross-coupling reactions,6 and others;7 meanwhile,
many alkynyl sulfone molecules exhibit remarkable biological
activities. Thus several classical synthetic methods, including
the oxidation of alkynyl sulfides,8 oxidation−elimination of
selenides,9 and dehydrohalogenation of vinyl sulfones,10 have
been well established for the preparation of these alkynyl
sulfones. However, these protocols generally require predeco-
rated substrates or multiple synthetic steps.
Nowadays, C−S coupling reactions have become a reliable

and direct approach to produce alkynyl sulfones. For example,
the reactions of alkyl halides or acetylenic acids with sodium
sulfinates or sulfonyl hydrazides afforded alkynyl sulfone
compounds, which typically use transition-metal catalysts and
excess oxidants.11 In addition, several difunctionalizations of
alkynes with sodium sulfonates have been known. In 2014,
Lipshutz et al.12 reported a reaction between arylalkynes and
sodium arylsulfinates, providing β-ketosulfones in nanomicelles
(Scheme 1a). Jiang13 and Liu14 developed a mild iodosulfo-
nylation reaction of alkynes with sodium sulfinates promoted
by stoichiometric N-iodosuccinimide (NIS) or I2, respectively
(Scheme 1b). In contrast, iodoalkenyl sulfides were isolated
from the reaction of alkynes and sodium sulfinates in the
presence of excess I2 and PPh3, which was discovered by Lu
and coworkers (Scheme 1c).15 In 2016, Kuhakarn and
coworkers described an iodine-catalyzed sulfonylation of
arylacetylenes with sodium sulfinates using stoichiometric
tert-butyl hydroperoxide (TBHP) as the oxidant (Scheme
1d).16 However, electron-deficient arylacetylenes and arylsulfi-
nates were proved to be ineffective substrates. Despite these
advances, the development of a direct approach to access
alkynyl sulfones from terminal alkynes and sodium sulfinates
under mild conditions is still strongly desired. To date, organic
electrosynthesis, as an environmentally friendly method, has
recently been applied to cross-coupling reactions.17 Very

recently, an elegant electrochemical approach for the
sulfonylation of arylalkynes with arylsulfinates was reported
by Tang and Huang (Scheme 1e).18 Whereas this report
reflects an external oxidant-free sulfonylation, it requires a
reference electrode, an external base, and high reaction
temperature. Therefore, we would like to find a very simple
electrochemical synthetic protocol to produce alkynyl sulfones
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Scheme 1. Coupling Reaction of Alkynes

Letterpubs.acs.org/OrgLett

© XXXX American Chemical Society
A

https://dx.doi.org/10.1021/acs.orglett.0c02341
Org. Lett. XXXX, XXX, XXX−XXX

D
ow

nl
oa

de
d 

vi
a 

C
O

R
N

E
L

L
 U

N
IV

 o
n 

A
ug

us
t 2

0,
 2

02
0 

at
 0

4:
02

:2
5 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xiangtai+Meng"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hehua+Xu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xiaoji+Cao"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xu-Min+Cai"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jinyue+Luo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Fei+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Shenlin+Huang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.orglett.0c02341&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c02341?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c02341?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c02341?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c02341?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c02341?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c02341?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.0c02341?fig=sch1&ref=pdf
pubs.acs.org/OrgLett?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acs.orglett.0c02341?ref=pdf
https://pubs.acs.org/OrgLett?ref=pdf
https://pubs.acs.org/OrgLett?ref=pdf


under a design philosophy that is free of metal, external
oxidant, and base and has a broad substrate scope.
Herein we report an electrochemically enabled direct

sulfonylation of alkynes with sodium sulfinates as the sulfonyl
reagent (Scheme 1f). This electrochemical synthesis19 occurs
in an undivided cell under constant current conditions at room
temperature. Our method offers efficient access to diverse
alkynyl sulfones without any oxidizing reagents, bases, or
transition metals. Moreover, sodium sulfinates, which are
commercially available, bench-stable, and easily handled, are
regarded as a sustainable sulfonyl source for the direct coupling
reaction.
Initially, phenylacetylene 1a and sodium p-toluenesulfinate

2a were chosen as the model substrates to optimize the
sulfonylation in an undivided cell, as shown in Table 1.

Gratifyingly, the desired acetylenic sulfone 3aa was indeed
isolated in 93% yield with two platinum electrodes under 10
mA current electrolysis at room temperature using KI as the
electyrolyte and MeCN/H2O as the solvent (Table 1, entry 1).
A significant decrease in yields was observed when we replaced
the platinum electrode with graphite or a nickel electrode
(Table 1, entries 2−4). Other iodide salts, such as
tetrabutylammonium iodide (TBAI) and NaI, were then
examined as the electrolyte. Unfortunately, a lower reaction
efficiency was observed (Table 1, entries 5 and 6). No reaction
was observed with n-Bu4NBF4 as the supporting electrolyte
(Table 1, entry 7), suggesting that the iodide could also be a
redox mediator in this transformation. Only a trace amount of
3aa could be obtained when the reaction was conducted in
anhydrous CH3CN (Table 1, entry 8), indicating that H2O was
necessary, as it might participate in the reaction process and
also increase the solubility of the salts. The sulfonylation did
not occur when DMSO or MeOH was used instead of CH3CN
(Table 1, entries 9 and 10). Changing the current was found to
reduce the reaction performance (Table 1, entries 11 and 12).
With the optimized electrochemical sulfonylation conditions

in hand, we then investigated the scope of terminal alkynes
(Scheme 2). When terminal phenylacetylenes 1 was reacted

with sodium p-toluenesulfinate 2a, the reaction showed broad
compatibility with various substituents on the benzene ring
(3aa−oa). A range of functional groups, including alkyl (3ba−
da), methoxyl (3ea and 3fa), halogen (3ga−ja), aldehyde
(3ka), ester (3la), nitrile (3ma), nitro (3na), silane (3oa), and
ketone (3pa), were all left intact under the reaction conditions.
In general, terminal phenylacetylenes bearing electron-
donating groups were more efficient than those bearing
electron-withdrawing groups, and ortho-, meta-, and para-
position patterns had little effect on the reaction performance.
Notably, natural product estrone could be converted into 3pa
with the developed protocol. Finally, 2-ethynylthiophene 1q
could also be an appropriate candidate, furnishing the
corresponding alkynyl sulfone 3qa in good yield.
Next, we tested a variety of sodium sulfinates under our

conditions (Scheme 3). Sodium benzenesulfinate 2b and
sodium p-(tert-butyl)benzenesulfinate 2c were found to be
effective for the conversion of phenylacetylene 1a to alkynyl
sulfones 3ab and 3ac. The reaction of sodium 2,4,6-
trimethylbenzenesulfinate 2d with 1a afforded the sulfonyla-
tion product 3ad in a lower yield, likely as a result of the
increased steric effect. Sodium arenesulfinates bearing halogens
(F, Cl, Br), trifluoromethyl (CF3), and nitrile (CN) were all
tolerated in this sulfonylation reaction, affording 3ae−ai in
moderate to good yields. Besides arylsulfinates, it was

Table 1. Reaction Optimizationa

entry variation from standard conditions yieldb

1 none 93%
2 graphite as the cathode 22%
3 graphite as the anode 74%
4 C (+) | Ni (−) instead of Pt (+) | Pt (−) 48%
5 TBAI instead of KI 52%
6 NaI instead of TBAI 36%
7 n-Bu4NBF4 instead of KI 0
8 without H2O trace
9 DMSO instead of CH3CN 0
10 MeOH instead of CH3CN 0
11 5 mA, 10 h 60%
12 15 mA, 4 h 73%

aStandard conditions: 1a (0.3 mmol), 2a (3.0 equiv), KI (1 equiv),
H2O (0.1 mL), and MeCN (10.0 mL), undivided cell, 10 mA, rt, 7 h.
bHPLC yields were determined with naphthalene as the internal
standard.

Scheme 2. Scope of Terminal Alkynesa,b

aStandard conditions: 1 (0.3 mmol), 2a (3.0 equiv), KI (1 equiv),
H2O (0.1 mL), and MeCN (10.0 mL), 10 mA, rt, 7 h. bIsolated yield.
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interesting to discover that sodium ethanesulfinate 2j was also
a suitable substrate, leading to acetylenic alkylsulfone 3aj,
which cannot be prepared using a previous electrochemical
approach.18

To shed light on the reaction mechanism of this electro-
chemical sulfonylation, several control experiments were
carried out (Scheme 4). First, when 2.0 equiv of 2,2,6,6-
tetramethyl-1-piperidinoxy (TEMPO) or 2,6-di-tert-butyl-p-
toluenol (BHT) was added to the reaction of 1a and 2a under
the standard conditions, the desired product 3aa could not be
detected (Scheme 4a), indicating that the sulfonylation might
involve a radical pathway. Consequently, phenylethynyl iodide
was prepared and subsequently treated with 2a under the
standard conditions, and no reaction was observed (Scheme
4b). This result suggests that phenylethynyl iodide is not
involved in this reaction. As expected, only (E)-β-iodo
vinylsulfone 4aa was isolated from the reaction of 1a and 2a
in the presence of stoichiometric I2 without electricity (Scheme
4c), which is consistent with Liu’s work14 (Scheme 1c). In
contrast, with electrolysis of the same reaction mixture,
acetylenic sulfone 3aa was furnished in high yield (Scheme
4d). These results indicate that electrolysis is still required after
the generation of I2. Finally, 4aa was converted to 3aa in 89%
isolated yield under the standard conditions (Scheme 4e),
thereby suggesting that it might be an intermediate in this
transformation.
On the basis of the previously described experiments and

cyclic voltammetric (CV) results (see the Supporting
Information), a plausible pathway for this sulfonylation is
proposed in Scheme 5. Initially, molecular iodine is formed
from the anodic oxidation of iodide anion,19g which is
confirmed by two oxidation peaks of KI at 1.10 and 1.65 V
vs Ag/AgCl (I− to I3

− to I2, red curve, Figure S1). At the same
time, sodium sulfinate 2a does not undergo anodic oxidation
(blue curve, Figure S1). Afterward, the in situ-generated I2
reacts with sodium sulfinate 2 to afford sulfonyl iodide 5,
which readily undergoes homolytic cleavage to produce the

sulfur-centered sulfonyl radical A. The subsequent addition of
A to alkyne 1 affords vinyl radical B, which is then oxidized at
the anode, giving vinyl cation C.20 The desired product 3 is
finally obtained by a deprotonation of intermediate C or D.
Simultaneously, the cathodic reduction of H2O produces
hydrogen gas and a hydroxide ion.
In conclusion, we have reported an electrochemically direct

coupling of terminal alkynes and sodium aryl or alkyl sulfinates
at room temperature for the first time. The reaction was
performed under mild reaction conditions and does not
require any exogenous oxidants, bases, or transition metals. In
addition, a range of valuable alkynyl sulfones can be
constructed using this eco-friendly protocol, and this protocol
tolerated many functional groups.

Scheme 3. Scope of Sodium Sulfinatesa,b

aStandard conditions: 1a (0.3 mmol), 2 (3.0 equiv), KI (1 equiv),
H2O (0.1 mL), and MeCN (10.0 mL), 10 mA, rt, 7 h. bIsolated yield.

Scheme 4. Control Experiments

Scheme 5. Possible Mechanism
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