

A Journal of the Gesellschaft Deutscher Chemiker A Deutscher Chemiker GDCh International Edition www.angewandte.org

Accepted Article

Title: Pd-Senphos Catalyzed trans-Selective Cyanoboration of 1,3-Enynes

Authors: Yuanzhe Zhang, Bo Li, and Shih-Yuan Liu

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Angew. Chem. Int. Ed. 10.1002/anie.202005882

Link to VoR: https://doi.org/10.1002/anie.202005882

WILEY-VCH

COMMUNICATION

Pd-Senphos Catalyzed *trans*-Selective Cyanoboration of 1,3-Enynes

Yuanzhe Zhang^[a], Bo Li^[a], and Shih-Yuan Liu*^[a]

[a] Y. Zhang, Dr. B. Li, Prof. Dr. S.-Y. Liu Department of Chemistry, Boston College Chestnut Hill, MA 02467-3860 (USA) E-mail: shihyuan.liu@bc.edu

Supporting information for this article is given via a link at the end of the document.

Abstract: The first *trans*-selective cyanoboration reaction of an alkyne, specifically a 1,3-enyne, is described. The reported palladium-catalyzed cyanoboration of 1,3-enynes is site-, regio-, and diastereoselective, and is uniquely enabled by the 1,4-azaborine-based Senphos ligand structure. Tetra-substituted alkenyl nitriles are obtained providing useful boron-dienenitrile building blocks that can be further functionalized. The utility of our method has been demonstrated with the synthesis of Satigrel, an anti-platelet aggregating agent

The alkenyl nitrile motif plays an important role in the field of polymers,¹ pharmaceutics,² and agrochemistry.³ Thus, versatile and stereoselective synthetic approaches to substituted alkenyl nitriles has attracted significant attention. To date, a number of methods have been reported that involve alkyne X-CN difunctionalization (X = B, 4 C, 5 N, 6 O, 7 halogen, $^{5d, 8}$ Ge, 9 S, 10 Se, 10e Si¹¹ and Sn¹²). The difunctionalization approach is attractive because the additionally installed functional group X provides a handle for possible structural diversification. Among the difunctionalization methods, the cyanoboration of alkynes⁴ is particularly appealing due to the rich functionalization chemistry of organoboron derivatives.¹³ Suginome reported the first intraand intermolecular cyanoboration of alkynes catalyzed by Pd and Ni complexes (Scheme 1, top).⁴ The working mechanistic hypothesis suggests initial oxidative addition of the B-CN bond to the metal followed by *cis*-selective β -migratory insertion into the alkyne and C-C reductive elimination, furnishing the ciscyanoboration product.¹⁴ The trans-selective X-CN

Scheme 1. Cyanoboration of alkynes.

difunctionalization of alkynes has significantly less precedent. ^{5b-d.} ^{10b,12} For example, no *trans*-selective cyanoboration reaction of an alkyne has been reported to date. Herein we describe the *trans*cyanoboration of 1,3-enynes catalyzed by a Pd complex supported by a 1,4-azaborine-based biaryl phosphine (Senphos) ligand (Scheme 1, bottom). Highly substituted alkenyl nitriles, including tetra-substituted derivatives are obtained in a site-, regio- and diastereoselective fashion, providing boron-dienenitrile building blocks that cannot be readily accessed by other synthetic methods.

Our laboratory has been investigating BN/CC isosterism¹⁵ (substitution of a CC bond unit with a BN bond unit) as a strategy to create structural, and as a consequence, functional diversity. To date, BN/CC isosterism has been successfully applied to create new properties and functions in biomedical research,¹⁶ materials science,¹⁷ and organic synthesis.¹⁸ Somewhat surprisingly, the application of BN/CC isosterism to the ligand space has attracted less attention.¹⁹ To this end, we recently reported a ligand family based on the biaryl 1,4-azaborine scaffold.²⁰ Electronic structure elucidation revealed a strong borataalkene character (Scheme 2) which renders the C(3) carbon significantly more nucleophilic/electron rich than the corresponding carbonaceous arene. The access to the new ligand space from BN/CC isosterism has resulted in new reaction selectivity, specifically the trans-selective hydroboration of 1,3enynes.²¹ In our continued efforts to expand the utility of Senphostype ligands in metal-catalyzed transformations we are addressing in this work the outstanding problem of trans-selective cyanoboration reaction.

Scheme 2. Electronic structure of 1,4-azaborines.

DFT calculations for the reported *trans*-hydroboration reaction predict a reaction pathway that involves an outer-sphere oxidative addition with catecholborane that is then followed by hydride transfer and reductive elimination (Scheme 3).²² We envisioned that chlorocatecholborane (CI-BCat) could serve as a potential boron source capable of facilitating the outersphere oxidative

COMMUNICATION

addition step and that a cyanide anion²³ (instead of a hydride) would attack the resulting Pd complex to furnish the cyanoboration product.

Scheme 3. Mechanism of the trans-hydroboration of 1, 3-enynes predicted by DFT calculations

Thus, with CI-BCat as the boron source,²⁴ copper(I) cyanide as the cyanide source,²⁵ Pd complex **3** as the precatalyst, and envne 1a as the initial substrate, we evaluated the effects of the ligand structure on the cyanoboration reactivity and selectivity. As can be seen from Table 1, the absence of a supporting ligand does not lead to an efficient productive reaction (entry 1). The presence of monodentate phosphine ligands promotes the product formation, albeit in low yield (entries 2 and 3). On the other hand, the bidentate phosphine ligand dppe is completely ineffective (entry 4). Gratifyingly, the use of Senphos-type ligands results in a substantial increase in the product yield while also achieving greater than 95:5 trans addition selectivity (entries 5-9). The substituent R at the C(3) position of the ligand has a profound influence on the product yield but not on the diastereoselectivity. For example, when L1, which bears the methyl group at the C(3)position, is used as the ligand, the reaction gives the product in superior yield (Table 1, entry 5) compared to those with bigger R substituents (entries 6-8). Switching the boron substituent from the o-dicyclohexyl-phosphinophenyl to o-diphenyl-phosphinophenyl group results in diminished reactivity for the model

Table 1. Pd-catalyzed trans-cyanoboration as a function of the ligand structure

L5

vs. a calibrated internal standard after quenching with dan. dan: 1,8-diaminonaphthalene, COD: cyclooctadiene, o-DCB: orthodichlobenzene substrate 1a (Table 1, entry 5 vs. 9). Lastly, we determined that CC-L1, the carbonaceous analogue of the best performing Senphos ligand, is inferior to L1 with regard to reaction efficiency and selectivity (entry 10 vs. entry 5), highlighting the importance of the unique electronic structure of the 1,4-azaborine motif in promoting the reaction.²⁶

Under optimized reaction conditions, various alkyl/terminal (E)-1,3-envnes 1 were subjected to the trans-selective cyanoboration followed by quench with 1,8-diaminonaphthalene (dan)²⁷ or pinacol (pin), and the results are summarized in Table 2. High trans-selectivity was observed consistently with an array of electronically (e.g., entries 4d-4j) and sterically different (e.g., entries 4c and 4k) substituents on the alkene. In addition to arenes, the R¹ position also tolerates heteroarenes (entries 4I and 4m) and alkyl groups (entries 4n-4r). Functional groups such as aryl-halide (entries 4g-4i), alkyl chloride (entry 4o), esters (entries 4j and 4r), methoxy (entry 4d), and alcohol (with pre-treatment

Table 2. Pd-catalyzed trans-cyanoboration of alkyl/terminal 1,3-enynes (R² = alkyl/H)^a

^a Yields of isolated isomerically pure trans product (average of 2 runs), based on 1. The diastereomic ratio in parenthesis (*trans.cis*) was determined by ¹H NMR of the crude material after addition of 1,8-diaminonaphthalene or pinacol. ^b Isomerization occured at the highlighted position. E/Z ratio of the crude material is 5:1. Yield is of isola isomer. c L5 was used instead of L1. d The substrate was first pre-treated with HBCat before subjecting it to the reaction conditions. e 10 mol% catalyst loading, 90 °C, 40 min reaction time

2

CC-L1

COMMUNICATION

with H-BCat; entry **4q**) are also tolerated. When the steric demand of the R² substituent is increased from Me to Et, a slight decrease in diastereoselectivity was observed (**4s** vs. **4a**). For the furyl substrate **1I**, **L5** was a superior ligand compared to **L1** with regard to reaction selectivity.²⁸ The terminal enyne substrate **1t** required higher catalyst loading at a lower reaction temperature and reaction time (entry **4t**). The bond connectivity and stereochemistry of two *trans*-cyanoboration products, **4b** and **4j**-**B(pin)** was confirmed by single crystal X-ray diffraction analysis (Table 2).

For aryl (*E*)-1,3-enynes ($\mathbb{R}^2 = \operatorname{Ar}$) **2**, we determined that **L5** was a superior ligand compared to **L1**.²⁹ The diastereoselectivity of the reaction for diaryl 1,3-enynes ($\mathbb{R}^1 = \operatorname{Ar}$, $\mathbb{R}^2 = \operatorname{Ar}$) substrates **2a-d** is dependent on the electronic nature of the \mathbb{R}^2 substituent, with electron-deficient \mathbb{R}^2 groups resulting in higher *trans*-cyanoboration selectivity (entry **5c** and **5d** vs. **5b** and **5a**). On the other hand, for monoaryl 1,3-enynes ($\mathbb{R}^2 = \operatorname{Ar}$, $\mathbb{R}^1 \neq \operatorname{Ar}$) the observed *trans*-cyanoboration selectivity remains excellent (>94:6) regardless of the electronic nature of the \mathbb{R}^2 substituent (entries **5e-i**). Good diastereoselectivity was also observed for the alkenyl silane and alkenyl chloride substrates **2h** and **2i**, albeit with diminished yields. We have obtained the X-ray crystal structure of product **5g**, thus unambiguously establishing connectivity and diastereoselectivity.

Table 3. Pd-catalyzed trans-cyanoboration of aryl 1,3-enynes ($R^2 = Ar$)^a

^a Yields of isolated isomerically pure *trans* product (average of 2 runs), based on 2. The diastereomeric ratio in parenthesis (*trans.cis*) was determined by ¹H NMR of the crude material after addition of 1,8-diaminonaphthalene. ^b 15 mol% catalyst loading, 1.2 equiv. CuCN, 1.6 equiv. BCatCl, 90 °C, 25 min.

Vicinal boron-substituted alkenylnitrile derivatives are versatile synthetic building blocks. For example, Scheme 4 illustrates that cyanoboration product 4a undergoes hydrolysis (to form boronic acid derivative 6a) and subsequent Pd-catalyzed Suzuki-Miyaura coupling with bromobenzene or 4-B(dan)-bromobenzene to furnish 6b and 6c in 86% and 85% yield, respectively, with complete retention of olefin stereochemistry. Furthermore,

fluorination of **6a** with Selectfluor³⁰ produces a novel (*E*)-2-nitrilefluorodiene motif **6d**. We also determined that our borylated dienylnitriles can be hydrogenated regioselectively. For example, when diene **5g** is subjected to Pd/C catalyzed hydrogenation, tetra-substituted borylated alkenylnitrile **6e** is obtained after transesterification with pinacol (eq 1).

Scheme 4. Functionalization of cyanoboration products.

Finally, we applied our *trans*-selective cyanoboration reaction to the synthesis of Satigrel **7**, an anti-platelet aggregating agent that contains a tetra-substituted acrylonitrile core.³¹ With a stereoselective method for the construction of tetra-substituted acrylonitrile now at our disposal, we reasoned that Satigrel could be synthesized from **5e** in a straight forward fashion (Scheme 5). We commenced first with the transesterification of **5e** followed by Suzuki-Miyaura coupling to produce a variety of bis-aryl substituted dienenitriles **8a-c** in a stereospecific manner. The bis-4-methoxy-phenyl derivative **8a** was then subjected to oxidation³² to yield the carboxylic acid **9a**. Finally, catalytic hydrogenation³³

Scheme 5. Synthesis of Satigrel.

COMMUNICATION

selectively reduced the more accessible alkene to furnish Satigrel. The synthesis described in Scheme 5 offers a modular and stereoselective synthetic approach toward bis-aryl substituted dienenitriles, taking advantage of the versatile boron functional handle.

In summary, we have developed the first trans-selective cyanoboration reaction of an alkyne. The described palladiumcatalyzed cyanoboration of 1,3-enynes is site-, regio-, and diastereoselective, and we have determined that our 1,4azaborine-based Senphos ligand structure is uniquely suited to support the Pd catalysis. The described method provides access to the important tetra-substituted alkenyl nitrile motif in a straightforward fashion, and we demonstrated the utility of our method with the synthesis of Satigrel. Future efforts will be stereoselective directed developing additional at difunctionalization reactions of alkynes employing the Senphos ligand framework.

Acknowledgements

Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R01GM094541 and by Boston College start-up funds.

Keywords: trans-cyanoboration • azaborine • enyne

- [1] J. F. Brazdil, Acrylonitrile in *Ullmann's Encyclopedia of Industrial Chemistry*, Wiley-VCH, Weinheim, **2012**.
- a) F. F. Fleming, *Nat. Prod. Rep.* **1999**, *16*, 597-606; b) F. F. Fleming, L.
 Yao, P. C. Ravikumar, L. Funk, B. C. Shook, *J. Med. Chem.* **2010**, *53*, 7902-7917.
- [3] M. Van Boven, N. Blaton, M. Cokelaere, P. Daenens, J. Agric. Food. Chem. 1993, 41, 1605-1607.
- [4] a) M. Suginome, A. Yamamoto, M. Murakami, J. Am. Chem. Soc. 2003, 125, 6358-6359; b) M. Suginome, A. Yamamoto, M. Murakami, Angew. Chem. 2005, 117, 2432-2434; Angew. Chem. Int. Ed. 2005, 44, 2380-2382; c) M. Suginome, A. Yamamoto, M. Murakami, J. Organomet. Chem. 2005, 690, 5300-5308; d) T. Ohmura, T. Awano, M. Suginome, H. Yorimitsu, K. Oshima, Synlett 2008, 423-427.
- a) B. Liu, Y. Wang, Y. Chen, Q. Wu, J. Zhao, J. Sun, Org. Lett. 2018, 20, [5] 3465-3468; b) H. Murayama, K. Nagao, H. Ohmiya, M. Sawamura, Org. Lett. 2016, 18, 1706-1709; c) Y.-T. He, L.-H. Li, Q. Wang, W. Wu, Y.-M. Liang, Org. Lett. 2016, 18, 5158-5161; d) N. Sakata, K. Sasakura, G. Matsushita, K. Okamoto, K. Ohe, Org. Lett. 2017, 19, 3422-3425; e) S. Arai, T. Sato, Y. Koike, M. Hayashi, A. Nishida, Angew. Chem. 2009, 121, 4598-4601; Angew. Chem. Int. Ed. 2009, 48, 4528-4531; f) S. Arai, Y. Koike, A. Nishida, Adv. Synth. Catal. 2010, 352, 893-900; g) S. Arai, T. Sato, A. Nishida, Adv. Synth. Catal. 2009, 351, 1897-1904; h) T. Igarashi, S. Arai, A. Nishida, J. Org. Chem. 2013, 78, 4366-4372. For reviews, see: i) P.-H. Chen, B. A. Billett, T. Tsukamoto, G. Dong, ACS Catal. 2017, 7, 1340-1360; j) Q. Wen, P. Lu, Y. Wang, RSC Adv. 2014, 4, 47806-47826; k) X. Kou, J. Fan, X. Tong, Z. Shen, Chin. J. Org. Chem. 2013, 33, 1407-1422; I) M. Tobisu, N. Chatani, Chem. Soc. Rev. 2008, 37, 300-307
- a) L. Chen, S. Cao, J. Zhang, Z. Wang, *Tetrahedron Lett.* 2019, 60, 1678-1681, b) Z.-Y. Liao, P.-Y. Liao, T.-C. Chien, *Chem. Commun.* 2016, 52, 14404-14407; c) G. Qiu, X. Qiu, J. Liu, J. Wu, *Adv. Synth. Catal.* 2013, 355, 2441-2446.
- [7] a) X. Wang, A. Studer, J. Am. Chem. Soc. 2016, 138, 2977-2980; b) Y. Zhu, Z. Shen, Adv. Synth. Catal. 2017, 359, 3515-3519.
- [8] a) P. Moreau, A. Commeyras, J. Chem. Soc., Chem. Commun. 1985, 817-818; b) M. Murai, R. Hatano, S. Kitabata, K. Ohe, Chem. Commun. 2011, 47, 2375-2377; c) A. G. Barrado, A. Zielinski, R. Goddard, M. Alcarazo, Angew. Chem. 2017, 129, 13586-13590; Angew. Chem. Int. Ed. 2017, 56, 13401-13405; e) N. V. Lukashev, A. V. Kazantsev, A. A. Borisenko, I. P. Beletskaya, Tetrahedron 2001, 57, 10309-10317.
- [9] N. Chatani, N. Horiuchi, T. Hanafusa, J. Org. Chem. 1990, 55, 3393-3395.

- [10] a) I. Kamiya, J. Kawakami, S. Yano, A. Nomoto, A. Ogawa, *Organometallics* **2006**, *25*, 3562-3564; b) S. Higashimae, D. Kurata, S. I. Kawaguchi, S. Kodama, M. Sonoda, A. Nomoto, A. Ogawa, *J. Org. Chem.* **2018**, *83*, 5267-5273; c) Y. T. Lee, S. Y. Choi, Y. K. Chung, *Tetrahedron Lett.* **2007**, *48*, 5673-5677; d) M. Bürger, M. N. Loch, P. G. Jones, . B. Werz, *Chem. Sci.* **2020**, 11, 1912-1917; e) T. Ozaki, A. Nomoto, I. Kamiya, J. Kawakami, A. Ogawa, *Bull. Chem. Soc. Jpn.* **2011**, *84*, 155-163.
- [11] a) N. Chatani, T. Hanafusa, J. Chem. Soc., Chem. Commun. 1985, 838-839; b) N. Chatani, T. Takeyasu, N. Horiuchi, T. Hanafusa, J. Org. Chem. 1988, 53, 3539-3548; c) M. Suginome, H. Kinugasa, Y. Ito Tetrahedron Lett. 1994, 35, 8635-8638.
- [12] Y. Obora, A. S. Baleta, M. Tokunaga, Y. Tsuji, J. Organomet. Chem. 2002, 660, 173-177.
- [13] a) J. W. B. Fyfe, A. J. B. Watson, *Chem.* **2017**, 3, 31-55; b) G. Pattison, *Org. Biomol. Chem.* **2019**, *17*, 5651-5660; c) X. Yang, S. J. Kalita, S. Maheshuni, Y.-Y. Huang, *Chem. Rev.* **2019**, *392*, 35-48.
- [14] M. Suginome, A. Yamamoto, T. Sasaki, M. Murakami, Organometallics 2006, 25, 2911-2913.
- [15] a) Z. Liu, T. B. Marder, Angew. Chem. 2007, 120, 248-250; Angew. Chem. Int. Ed. 2008, 47, 242-244; b) M. J. D. Bosdet, W. E. Piers, Can. J. Chem. 2009, 87, 8-29; c) P. G. Campbell, A. J. Marwitz, S.-Y. Liu, Angew. Chem. 2012, 124, 6178-6197; Angew. Chem. Int. Ed. 2012, 51, 6074-6092; d) Z. X. Giustra, S.-Y. Liu, J. Am. Chem. Soc. 2018, 140, 1184-1194; e) c. R. McConnell, S.-Y. Liu, Chem. Soc. Rev. 2019, 48, 3436-3453.
- [16] a) D. H. Knack, J. L. Marshall, G. P. Harlow, A. Dudzik, M. Szaleniec, S.-Y. Liu, J. Heider, Angew. Chem. 2013, 125, 2660-2662; Angew. Chem. Int. Ed. 2013, 52, 2599-2601; b) H. Lee, M. Fischer, B. K. Shoichet, S.-Y. Liu, J. Am. Chem. Soc. 2016, 138, 12021-12024; c) P. Zhao, D. O. Nettleton, R. G. Karki, F. J. Zecri, S.-Y. Liu, ChemMedChem 2017, 12, 358-361; d) K. Boknevitz, J. S. Italia, B. Li, A. Chatterjee, S.-Y. Liu, Chem. Sci. 2019, 10, 4994-4998; e) Y. Liu, S.-Y. Liu, Org. Biomol. Chem. 2019, 17, 7002-7006.
- [17] a) X.-Y. Wang, J.-Y. Wang, J. Pei, *Chem. Eur. J.* 2015, *21*, 3528-3539;
 b) Z. Liu, J. S. A. Ishibashi, C. Darrigan, A. Dargelos, A. Chrostowska, B. Li, M. Vasiliu, D. A. Dixon, S.-Y. Liu, *J. Am. Chem. Soc.* 2017, *139*, 6082-6085.
- [18] a) A. W. Baggett, M. Vasiliu, B. Li, D. A. Dixon, S.-Y. Liu, J. Am. Chem. Soc. 2015, 137, 5536-5541; b) A. N. Brown, B. Li, S.-Y. Liu, J. Am. Chem. Soc. 2015, 137, 8932-8935; c) R. J. Burford, B. Li, M. Vasiliu, D. A. Dixon, S.-Y. Liu, Angew. Chem. 2015, 127, 7934-7938; Angew. Chem. Int. Ed. 2015, 54, 7823-7827; d) Z. X. Giustra, X. Yang, M. Chen, H. F. Bettinger, S.-Y. Liu, Angew. Chem. 2019, 131, 19094-19098; Angew. Chem. Int. Ed. 2019, 58, 18918-18922.
- a) J. A. Bailey, M. F. Haddow, P. G. Pringle, *Chem. Commun.* 2014, *50*, 1432-1434; b) A. D. Gorman, J. A. Bailey, N. Fey, T. A. Young, H. A. Sparkes, P. G. Pringle, *Angew. Chem.* 2018, *130*, 16028-16032; *Angew. Chem. Int. Ed.* 2018, *57*, 15802-15806.
- [20] S. Xu, F. Haeffner, B. Li, L. N. Zakharov, S.-Y. Liu, Angew. Chem. 2014, 126, 6913-6917; Angew. Chem. Int. Ed. 2014, 53, 6795-6799.
- [21] S. Xu, Y. Zhang, B. Li, S.-Y. Liu, J. Am. Chem. Soc. 2016, 138, 14566-14569.
- [22] Y. Yang, J. Jiang, H. Yu, J. Shi, Chem. Eur. J. 2018, 24, 178-186.
- [23] a) G. P. Ellis, T. M. Romney-Alexander, *Chem. Rev.* **1987**, *87*, 779-794;
 b) T. Sakamoto, K. Ohsawa, *J. Chem. Soc., Perkin Trans.* **1 1999**, 2323-2326.
- [24] The use of CI-BCat is essential for the reaction. For example, the use of CI-B(pin) under otherwise identical reaction conditions led to an intractable mixture.
- [25] To the best of our knowledge, NC-BCat is an unknown compound. CuCN may react with CI-BCat to form NC-BCat *in situ* during the cyanoboration reaction. Independent treatment of CuCN with CI-BCat at room temperature results in slow formation of a new boron-containing species with a ¹¹B NMR chemical shift of 22 ppm in CDCl₃. For the synthesis of the related 2-cyano-2,3-dihydro-1,3-dimethyl-1H-1,3,2benzodiazabolole, see reference 14.
- [26] Under the optimized conditions, about 1% of chloroboration of substrate 1a was observed in 78:22 *trans:cis* ratio.
- [27] H. Noguchi, K. Hojo, M. Suginome, J. Am. Chem. Soc. 2007, 129, 758-759.
- [28] When the reaction was performed with L1 as the ligand, the product 4I was obtained in 81% yield 94:6 (*trans/cis*) ratio.
- [29] When the reaction was performed with 2f as the substrate and L1 as the ligand, the product 5f was obtained in 46% yield with (91:9) *trans/cis* ratio.
- [30] T. Furuya, T. Ritter, Org. Lett. 2009, 11, 2860-2863.

COMMUNICATION

- [31] a) T. Fujimori, K. Harada, T. Saeki, M. Kogushi, K. Akasaka, Y. Yamagishi, I. Yamatsu, Arzneim.Forsch. 1987, 37, 1143-1148; b) S. Hoshi, M. Goto, N. Koyama, K. Nomoto, H. Tanaka, J. Biol. Chem. 2000, 275, 883-889; c) T. Nakajima, I. Kitajima, H. Shin, H. W. Matsumoto, Y. Soejima, I. Maruyama, Biochem. Biophys. Res. Commun. 1994, 203, 1181-1187; d) T. Fujimori, K. Harada, T. Saeki, M. Kogushi, K. Katayama, M. Satoh, Cardiovascular Drug Reviews 1991, 9, 264-284.
- [32] a) Y. Moazami, T. V. Gulledge, S. M. Laster, J. G. Pierce, *Bioorg. Med. Chem. Lett.* **2015**, *25*, 3091-3094; b) Q. Huang, J. D. Pennington, H. J. Williams, A. I. Scott, *Synth. Commun.* **2006**, *36*, 2577-2585; c) E. Dalcanale, F. Montanari, *J. Org. Chem.* **1986**, *51*, 567-569.
 [33] G. Majetich, J. Yu, *Can. J. Chem.* **2012**, *90*, 75-84.

5

COMMUNICATION

Entry for the Table of Contents

A *trans*-selective alkyne cyanoboration reaction debuts! A Pd complex supported by an 1,4-azaborine-derived phosphine ligand is uniquely capable in transforming 1,3-enynes into tetra-substituted borylated dienenitriles with high site-, regio- and *trans*-diastereoselectivity.