Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

3-Acrylamide-4-aryloxyindoles: Synthesis, biological evaluation and metabolic stability of potent and selective EP₃ receptor antagonists

Nian Zhou^a, Wayne Zeller^a, Jun Zhang^a, Emmanuel Onua^a, Alex S. Kiselyov^a, Jose Ramirez^b, Guðrún Palsdottir^b, Guðrún Halldorsdottir^b, Þorkell Andrésson^b, Mark E. Gurney^b, Jasbir Singh^{a,*}

^a Medicinal Chemistry Department, deCODE Chemistry, 2501 Davey Road, Woodridge, IL 60517, USA ^b deCODE Genetics, Inc., Reykjavik, Iceland

ARTICLE INFO

Article history: Received 2 October 2008 Revised 20 December 2008 Accepted 31 December 2008 Available online 8 January 2009

Keywords: Prostanoid receptor antagonists EP₃ receptor antagonists Peri-substituted indoles Acylsulfonamide

ABSTRACT

A series of potent and selective EP₃ receptor antagonists are described. Utilizing a pharmacophore model developed for the EP₃ receptor, a series of 3,4-disubstituted indoles were found to be efficient ligands for this target. These compounds showed high selectivity over IP, FP and other EP receptors. An optimized molecule **7c** featured a sound profile and potency in the functional rat and human platelet aggregation assays.

© 2009 Elsevier Ltd. All rights reserved.

The prostanoids constitute a family of endogenous signaling ligands arising from phospholipase A₂-mediated release of arachadonic acid followed by its further transformation through a series of synthases. The prostanoid family includes prostaglandins D₂, E₂, F_{2α}, I₂ and thromboxane A₂. These ligands preferentially binds the series of G-coupled protein receptors DP₁ and CRTH(DP₂), EP₁ through EP₄, FP, IP and TP, respectively.^{1,2} Activation of these receptors controls biological homeostasis.³ Of these, the EP₃ receptor has been shown to play key roles in sodium and water reabsorption in kidney tubules,⁴ smooth muscle contraction of the GI tract,³ acid secretion,⁵ uterine contraction during fertilization and implantation,⁶ fever generation⁷ and hyperalgesia.⁸ Eight isoforms of the human EP₃ receptor have been detailed (EP₃₁ through EP_{3VI}, EP_{3e} and EP_{3f}) which are distinguished through unique cytoplasmic C-terminus ends ranging from 6 to 66 amino acids in length.⁹

Recently, we have identified DNA variants of the gene encoding for the EP₃ receptor that confer a significantly increased risk for development of peripheral arterial disease (PAD).¹⁰ Utilizing EP₃ KO mice, it has been shown that the stimulatory effects of PGE₂ on a platelet aggregation are exerted specifically through the EP₃ receptor.^{11a} Based on this evidence we reasoned that the development of potent and selective EP₃ antagonists may provide a novel therapeutic entry into the treatment of PAD through modulation of platelet aggregation. A subsequent report from the Fabre lab demonstrated that inflammation/rupturing of the existing plaque releases PGE_2 locally and promotes vicinal platelet aggregation through the platelet EP_3 receptor.^{11b}

A series of reports from the Merck–Frosst labs¹² have documented the synthesis, biological activity and selectivity of three different series of *ortho*-substituted cinnamyl and dihydrocinnamyl derivatives as highly potent and selective human EP₃ receptor antagonists.

In a preceding paper in this series we described a series of 3thioaryl ether (**A**) and 3-sulfonylaryl indoles (**B**) which were potent and selective antagonists of the EP₃ receptor (Fig. 1).¹³ In order to further expand the diversity of the EP₃ receptor antagonists and to improve their physico-chemical and pharmacokinetic properties we investigated other chemotypes.¹⁴ Several fused bicyclo[4.3.0]

Figure 1. 3,4-Disubstituted indole analogs.

^{*} Corresponding author. Tel.: +1 630 783 4915; fax: +1 630 783 4646. *E-mail address:* jsingh@decode.com (J. Singh).

aromatic scaffolds afforded the proper spatial arrangement for the pharmacophoric entities in the targeted molecules. Of these scaffolds we inquired whether the acidic and lipophilic appendages of the previously disclosed 3,4-disubstituted indoles could be interchanged off of the indole ring and retain the EP₃ binding affinity experience. A priori, this exchange seem reasonable expecting the acidic and lipophilic appendages would project from indole core at a similar dihedral angle and thus the EP₃ receptor could be occupied with a compound of similar topology. In the current disclosure, we outline the synthesis and the biological evaluation of 3,4-disubstituted indole analogs **C**.

The target 3-acrylsulfonamide-4-aryloxy indole analogs, reported in Table 1, were synthesized from 4-bromo-1-methyl indole **2** (Scheme 1). The 4-aryloxy group was introduced by Ullmann-type diaryl ether formation using Cul/*N*,*N*-dimethylglycine as a catalyst.¹⁵ Formylation¹⁶ of **3** with DMF/POCl₃ afforded the corresponding 4-formyl-3-aryloxy indoles **4** in 33–95% yield. Wittig–Horner reaction of **4** provided the 4-acryl ester-3-aryloxy indoles **5**. Esters **5** were saponified to afford free acids **6** in 40–90% yield after extraction under acidic conditions. EDCI-mediated coupling of compounds **6** with the appropriate sulfonamide at room temperature resulted in the corresponding acylsulfonamides **7–9** (20–60% yield).

Table 1

IC50 for hEP3 receptor binding affinity for selected compounds

Compound	Ar ¹	Ar ²	EP ₃ receptor binding (nM)			
			Normal buffer	10% human serum ^a	Fold-shift in 10% human serum ^b	
7a	4,5-Dichlorothiophene	2-Naphthyl	4.6	89.6	19.4	
7b	3,4-Difluorophenyl	2-Naphthyl	7.4	15.9	2.1	
7c	2,4,5-Trifluorophenyl	2-Naphthyl	9.2	280	3.1	
7d	4-Fluorophenyl	2-Naphthyl	9.4	182.3	19.4	
7e	2-Chlorophenyl	2-Naphthyl	18.4	1682	91.3	
7f	3-Chlorophenyl	2-Naphthyl	15.7	35.0	2.2	
7g	3,4-Dichlorophenyl	2-Naphthyl	11.8	92.9	7.8	
7h	2,4-Dichlorophenyl	2-Naphthyl	54.1	1542	28.5	
7i	3,5-Dichlorophenyl	2-Naphthyl	8.7	321.3	37.0	
7i	2,4-Difluorophenyl	2-Naphthyl	3.5	115.3	32.7	
7k	2,5-Difluorophenyl	2-Naphthyl	6.5	156.7	24.3	
71	2,6-Difluorophenyl	2-Naphthyl	5.9	709.6	120.6	
7m	3,5-Difluorophenyl	2-Naphthyl	44.9	156.7	3.5	
7n	3-Fluorophenyl	2-Naphthyl	17.5	115.5	6.6	
70	2-Fluorophenyl	2-Naphthyl	11.9	646.4	54.3	
7p	4-Chlorophenyl	2-Naphthyl	21.9	1100	50.2	
7a	4-Methoxyphenyl	2-Naphthyl	100.8	PD	_	
7r	Pentafluorophenyl	2-Naphthyl	5.1	PD	_	
8a	3,4-Difluorophenyl	3,4-Dichlorophenyl	12.4	50.8	4.1	
8b	3,4-Difluorophenyl	2,4-Dichlorophenyl	11.8	23.7	2.0	
8c	3,4-Difluorophenyl	4-Chlorophenyl	27.3	776.2	28.4	
8d	3,4-Difluorophenyl	3,4-Difluorophenyl	4.7	195.9	41.9	
8e	3,4-Difluorophenyl	2,4-Difluorophenyl	18.5	PD	-	
8f	3,4-Difluorophenyl	3-Chloro-4-fluorophenyl	26.9	81.5	3.0	
8g	3,4-Difluorophenyl	4-Chloro-3-fluorophenyl	23.4	612.4	26.3	
8h	3,4-Difluorophenyl	4-Chloro-2-fluorophenyl	7.2	124.0	17.2	
8i	3,4-Difluorophenyl	2-Chloro-4-fluorophenyl	13.8	145.8	10.5	
8j	3,4-Difluorophenyl	3-Methoxyphenyl	4.4	PD	-	
8k	3,4-Difluorophenyl	6-Quinolinyl	1.9	129.8	68.7	
81	3,4-Difluorophenyl	2-Quinoxalinyl	6.1	216.5	35.3	
9a	2,4,5-Trifluorophenyl	3,4-Dichlorophenyl	2.6	45.2	17.1	
9b	2,4,5-Trifluorophenyl	2,4-Dichlorophenyl	3.2	16.7	5.2	
9c	2,4,5-Trifluorophenyl	4-Chlorophenyl	3.0	392.9	131.7	
9d	2,4,5-Trifluorophenyl	3,4-Difluorophenyl	3.8	209.5	55.0	
9e	2,4,5-Trifluorophenyl	2,4-Difluorophenyl	84.8	PD	PD	
9f	2,4,5-Trifluorophenyl	3-Chloro-4-fluorophenyl	9.7	61.1	6.3	
9g	2,4,5-Trifluorophenyl	4-Chloro-3-fluorophenyl	6.7	53.9	8.0	
9h	2,4,5-Trifluorophenyl	4-Chloro-2-fluorophenyl	4.4	155.7	35.6	
9i	2,4,5-Trifluorophenyl	2-Chloro-4-fluorophenyl	18.1	316.3	17.5	
9j	2,4,5-Trifluorophenyl	3-Methoxyphenyl	5.1	PD	PD	
9k	2,4,5-Trifluorophenyl	6-Quinolinyl	8.5	167.8	19.8	
91	2,4,5-Trifluorophenyl	2-Quinoxalinyl	7.2	128.2	17.7	

^a PD = partial displacement of $[^{3}H]$ -PGE₂ in the radioligand assay at 20 μ M (highest concentration).

^b Fold-shift value is ratio of IC_{50} in the presence and absence of human serum.

Scheme 1. Reagents and conditions: (i) NaH, CH₃I, DMF, rt, 3 h, 100%; (ii) Ar²–OH, Cul, *N*,*N*-dimethylglycine HCl salt, Cs₂CO₃, dioxane, 105 °C, 2–3 d; (iii) DMF, POCl₃, 50 °C, 1 h, then aq NaOH, 33–95% from **2**; (iv) NaH, triethyl phosphonoacetate, THF, rt, 10 min then compound **4**, THF, 60 °C, 16 h; (v) aq, NaOH, THF, MeOH, 50 °C, 3 h, 40–90% from **4**; (vi) Ar¹–SO₂–NH₂, DMAP, EDCl, CH₂Cl₂, rt, 16 h, 20–60%.

The SAR data and diversity of Ar^{1}/Ar^{2} groups from the previously reported 1,7- and 3,4-peri-substituted indole series^{13,17} served as starting point for evaluating SAR for the current series. An analog with the best Ar^{1}/Ar^{2} group from series **A** ($Ar^{1} = 4,5$ -dichloro-2-thiophene, $Ar^{2} = naphthyl$)¹³ was prepared providing analog **7a**. Compound **7a** exhibited essentially identical activity in the hEP₃ radioligand binding assay in normal buffer ($IC_{50} = 4.6$ nM) versus the corresponding compound from series **A** ($IC_{50} = 9.7$ nM). This data strongly supported our hypothesis that the acidic and lipophilic appendages could be interchanged between the 3,4-peri-disubstitued indole series **A** and **C** with retention of hEP₃ binding affinity.

To optimize the Ar¹ (acylsulfonamide) group for the current series we elected to retain the 2-naphthyl substituent (Ar²). Our previous studies have consistently shown that the derivatives endowed with this moiety were potent and isoform selective EP₃ antagonists.^{13,17} Results from the human EP₃ receptor binding¹³ in both normal buffer and in the presence of 10% human serum¹⁸ are given in Table 1 (**7a–r**). Gratifyingly, except for the $Ar^1 = 4$ -MeO- C_6H_4 , all derivatives displayed EP₃ receptor activity in the low nM range. Except for **7c**, *ortho*-substituted Ar¹ groups showed significant plasma protein binding in the presence of human serum. SAR studies suggested that in this series binding affinity in the absence or presence of plasma proteins (IC_{50}) followed the increase of the electron deficiency¹⁹ for the Ar¹. For example, comparison of data for the pair of molecules 7d/7p, 7b/7g and 7j/7h, suggested that fluorine substituent(s) were generally favored over chlorine group(s). Based on this initial set of SAR data, we prioritized compounds 7b and 7c that demonstrated superior EP₃ binding affinity and low plasma protein binding as prototypes for further investigation. In addition, we expected the fluorine substituted phenyl derivatives to provide overall better physico-chemical properties. Thus, the next round of SAR was conducted with the Ar¹ = 3,4-difluorophenyl (8a-1) and 2,4,5-trifluorophenyl (9a-1).

In order to enhance both solubility and formulability of the targeted compounds, we introduced heterocyclic substituents with basic nitrogen(s) (e.g., quinolinyls **8k** and **9k** and quinoxalinyls **8l** and **9l**). Although these molecules afforded single digit nM potency in the normal buffer binding assay, they suffered from the significant plasma protein binding.

A number of potent molecules from the SAR studies exhibited sound selectivity against a panel of prostanoid receptors (generally >100- to 5000-fold) (Table 2).

Table 3 provides a summary of metabolic stability for the prioritized analogs in liver microsomes. Good metabolic stability was Table 2

Selectivity of the selected compounds for hEP3 versus other prostanoid receptors

Compound		Prostanoid panel binding (μM)					
	hEP ₃	EP1	EP ₂	EP_4	IP	FP	
7b	0.0074	1.42	12.5	12.5	1.88	3.59	
8a	0.0124	>10	4.2	20.4	ND	2.4	
8b	0.0096	3.86	9.6	14.6	ND	1.97	
8f	0.0269	ND	>10	>10	4.1	1.82	
8h	0.0072	>10	>10	>10	>10	3.19	
9a	0.0026	5.32	7.68	13.0	ND	4.64	
9b	0.0032	ND	9.3	>10	ND	3.57	
9f	0.0097	>10	>10	>10	ND	3.16	
9g	0.0061	1.37	10	10	ND	2.23	

 $IC_{50} \ (\mu M)$ values reported are from receptor binding assays with displacement of the respective radioligand.

ND = value not determined.

Table 3

In vitro metabolic stability of selected 3-acrylamide-4-aryloxy indoles in the microsomal assays

Compound		Microsome metabolic stability ^a					
	Human	Rat	Mouse	Dog	Monkey		
7b	63.6	24.6	62	69.7	59		
7c	91.2	32.0	ND	90.4	ND		
7f	79.0	33.3	ND	80.6	ND		
8a	58.8	14.9	ND	ND	ND		
8b	74.7	30.6	69	104	53.8		
8f	91.5	32	ND	ND	ND		
8h	113	40	ND	ND	ND		
9b	74.7	39.1	ND	ND	ND		

 $^{\rm a}$ Each compound at 5 μM was incubated with liver microsomes representing 0.8 mg/mL protein concentration and the percent parent remaining at 30 min, as determined by LC–MS/MS, is reported.

observed for the pair **7b**/**7c** and compound **8b** in all species examined with the exception of rat.

Both compounds **7b** and **7c** (Table 3), were subsequently evaluated in a functional rat platelet aggregation assay. The molecules exhibited an EC₅₀ value of 12.8 and 11.6 nM, respectively, which compares favorably, with potency of previously reported compounds.^{13,20} Compound **7c** also exhibited an EC₅₀ value of 8.1 nM in a human platelet aggregation inhibition assay.

Selected compounds were evaluated in a functional cell-based assays with CHO-KI cells transfected with the EP_{3II} receptor to con-

Figure 2. Dose–response of compound (8b) on CHO-K1 cells transfected with hEP_{3D} receptor in normal buffer.

Table 4 Mouse iv exposure screen

·······					
Compound	Average plasma concentration (ng/mL)	Average brain concentration (ng/g)	Ratio plasma/ brain		
7b 7c	3420 1518	55.7 29.1	61.4 52.2		

Compounds were dosed in NMRI mice, n = 3 per compound, at 2 mg/kg in 10% solutol/PBS formulation. Samples were analyzed at 15 min.

firm EP₃ receptor antagonism.^{21,22} A representative dose–response curve is shown in Figure 2 for compound **8b** (EC₅₀ = 26.1 nM).

SAR studies and initial follow-up evaluation of the synthesized 3,4-disubstituted indoles prioritized the compounds **7b** and **7c** for further studies. Both of these compounds gave relatively low brain exposures while still showing relatively high plasma levels at 15 min post dose, plasma concentration of compounds (**7b**, 6.6 μ M and **7c**, 2.8 μ M). These data favored our intended therapeutic use as anti-thrombotic agents (Table 4).

The data presented here supported our hypothesis that indole derived analogs representing peri-substitution pattern as represented by series **A**, **B** and **C** provides a sound approach to potent and isoform selective hEP₃ antagonists. For the 3-acrylamide-4-aryloxyindole series, an optimized compound (**7c**) was selected as both potent and selective hEP₃ receptor antagonist with sound functional activity in platelet aggregation studies.

References and notes

- Abramovitz, M.; Adam, A.; Boie, Y.; Godbout, C.; Lamontagne, S.; Rochette, C.; Sawyer, N.; Tremblay, N. M.; Belley, M.; Gallant, M.; Dufresne, C.; Gareau, Y.; Ruel, R.; Juteau, H.; Labelle, M. *Biochim. Biophys. Acta* **2000**, *1483*, 285.
- Kiryiama, A.; Ushukubi, K.; Kobayashi, T.; Hirata, M.; Sugimoto, Y.; Narumiya, S. Br. J. Pharmacol. 1997, 122, 217.
- Watson, S. Arkinstall, Prostanoids in the G Protein-Linked Receptor Factsbook; Academic Press, 1994. p 239.
- 4. Garcia-Perez, A.; Smith, W. L. J. Clin. Invest. 1984, 74, 63.
- Chen, M. C. Y.; Amirian, D. A.; Toomey, M.; Sanders, M. J.; Soll, A. H. Gastroenterology 1988, 94, 1121.

- Krall, J. F.; Barrett, J. D.; Jamgotchian, N.; Korenman, S. G. J. Endocrinol. 1984, 102, 329.
- Ushikubi, F.; Segi, E.; Sugimoto, Y.; Murata, T.; Matsuoka, T.; Kobayashi, T.; Hizaki, H.; Tuboi, K.; Katsuyama, M.; Ichikawa, A.; Tanaka, T.; Yoshida, N.; Narumiya, S. *Nature* **1998**, 395, 281.
- 8. Xin, L.; Geller, E. B.; Bastepe, M.; Raffa, R. B.; Mao, G. F.; Ashby, B.; Adler, M. W. J. Therm. Biol. 2000, 25, 77.
- 9. Bilson, H. A.; Mitchell, D. L.; Ashby, B. FEBS Lett. 2004, 572, 271.
- Gudmundsson, G.; Matthiasson, S. E.; Arason, H.; Johannsson, H.; Runarsson, F.; Bjarnason, H.; Helgadottir, K.; Thorisdottir, S.; Ingadottir, G.; Lindpaintner, K.; Sainz, J.; Gudnason, V.; Frigge, M. L.; Kong, A.; Gulcher, J. R.; Stefansson, K. Am. J. Hum. Genet. 2002, 70, 586.
- (a) Fabre, J.; Nguyen, M.; Athirakul, K.; Coggins, K.; McNeish, J. D.; Austin, S.; Parise, L. K.; FitzGerald, G. A.; Coffman, T. M.; Koller, B. H. J. Clin. Invest. 2001, 107, 603; (b) Gross, S.; Tilly, P.; Hentsch, D.; Vonesch, J.-L.; Fabre, J.-E. J. Exp. Med. 2007, 204, 311.
- (a) Gallant, M.; Belley, M.; Carriere, M.-C.; Chateauneuf, A.; Denis, D.; Lachance, N.; Lamontagne, S.; Metters, K. M.; Sawyer, N.; Slipetz, D.; Truchon, J. F.; Labelle, M. Bioorg. Med. Chem. Lett. 2003, 13, 3813; (b) Gallant, M.; Carriere, M.-C.; Chateauneuf, A.; Denis, D.; Gareau, Y.; Godbout, C.; Greig, G.; Juteau, H.; Lachance, N.; Lamontagne, S.; Metters, K. M.; Rochette, C.; Ruel, R.; Slipetz, D.; Sawyer, N.; Tremblay, N.; Labelle, M. Bioorg. Med. Chem. Lett. 2002, 12, 2583; (c) Juteau, H.; Gareau, Y.; Labelle, M.; Sturino, C. F.; Sawyer, N.; Tremblay, N.; Lamontagne, S.; Carriere, M.-C.; Denis, D.; Metters, K. M. Bioorg. Med. Chem. 2001, 9, 1977; (d) Juteau, H.; Gareau, Y.; Labelle, M.; Lamontagne, S.; Tremblay, N.; Carriere, M.-C.; Sawyer, N.; Denis, D.; Metters, K. M. Bioorg. Med. Chem. Lett. 2001, 11, 747.
- Zhou, N.; Zeller, W.; Keyvan, M.; Krohn, M.; Anderson, H.; Mishra, R.; Zhang, J.; Onua, E.; Ramirez, J.; Palsdottir, G.; Halldorsdottir, G.; Andresson, T.; Gurney, M.; Singh, J. *Bioorg. Med. Chem. Lett.* doi:10.1016/j.bmcl.2008.11.007.
- O'Connell, M.; Zeller, W.; Burgeson, J.; Mishra, R.; Ramirez, J.; Kiselyov, A.; Andresson, T.; Gurney, M.; Singh, J. Bioorg. Med. Chem. Lett. doi:10.1016/ j.bmcl.2008.12.027.
- 15. Ma, D.; Cai, Q. Org. Lett. 2003, 5, 3799.
- 16. Tyson, F. T.; Shaw, J. T. J. Am. Chem. Soc. 1952, 74, 2273.
- Singh, J.; Zeller, W.; Zhou, N.; Hategen, G.; Mishra, R.; Polozov, A.; Yu, P.; Onua, E.; Zhang, J.; Zembower, D.; Kiselyov, A.; Ramírez, J.; Sigthorsson, G.; Bjornsson, J.; Thorsteinnsdottir, M.; Andrésson, T.; Bjarnadottir, M.; Magnusson, O.; Stefansson, K.; Gurney, M. ACS Chem. Biol., accepted for publication.
- 18. Ref. 12c lists data which includes determinations of binding affinity to the EP₃ receptor in the presence of 0.05% HSA. This data indicates a propensity of these compounds to strongly bind to serum proteins. Hence, we found it imperative to routinely screen each strongly potent compound from the normal buffer assay in the presence of 10% human serum to provide useful information on the free fraction of the compound available for future in vivo examinations.
- 19. Previous studies have shown that strongly electron rich heteroaromatic Ar¹ substituents of these acylsulfonamides suffer from poorer binding affinity to the EP₃ receptor in normal buffer in addition to exhibiting a high propensity to suffer plasma protein binding. For an example, refer to structures **7g** and **8g** in Ref. 13.
- 20. Two of our lead compounds, labeled **7aa** and **8aa** in Ref. 13, exhibited EC_{50} in the rat platelet aggregation studies of 358 nM and 136 nM, respectively.
- 21. The hEP_{3II} (also known as hEP_{3D}) receptor isoform exhibited slightly higher affinity for PGE₂ and higher inhibitory efficiency compared to the other human EP₃ isoforms tested (data not shown). Therefore, hEP_{3II} was selected for both the primary binding screening assay and the functional cell-based assay.
- Stably transfected CHO-K1 cells expressing the hEP₃₁₁ receptor were plated into 96-well plates at a cell density of 10⁵ cells/well and cultured overnight at 37 °C, 5% CO2 in culture media supplemented with 10% FIBS, 2% PS and 1 mg/mL Geneticin. Cells were washed once with PBS and pre-incubated in fresh, serumantibiotic-free medium containing 1 mM IBMX (3-isobutyl-1and methylkanthine, Sigma) for 30 min at 37 °C. After pre-incubation, cells were incubated with PGE₂ (5×10^{-9} M) and FSK (5×10^{-6} M, Sigma), in absence or presence of the testing compound at the appropriate concentrations (doseresponse $10^{-4} - 10^{-13}$ M). Cells were then incubated for an additional 10 min at 37 °C. Reactions were terminated by aspiration of medium and addition of 200 µl of lysis buffer 1B (cAMP EIA System kit, Amersham). cAMP levels were determined using a commercially available cAMP EIA System kit (Amersham). Raw OD values, were transformed into amount of cAMP (fmol/well) using GraphPad Prism 3.02 for Windows (GraphPad Software). For EC₅₀ calculations in dose-response experiments, sigmoid non-linear regressions were performed.