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Assembly of 1,3-Dihydro-2H-3-benzazepin-2-one Conjugates via Ugi 
Four-Component Reaction and Palladium-Catalyzed Hydroamidation1
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Abstract: The Ugi four-component reaction (U-4CR) of a number
of 2-aminophenols was carried out with 2-alknylbenzaldehydes,
benzyl isocyanide, and 2-chloro-5-nitrobenzoic acid in MeOH un-
der microwave heating (MW, 80 °C, 20 min). The reaction mixture
was then directly treated with aqueous K2CO3 (MW, 100 °C, 10
min) to promote an intramolecular nucleophilic aromatic substitu-
tion (SNAr), resulting in the formation of highly functionalized
dibenz[b,f][1,4]oxazepin-11(10H)-ones. The N-benzyl amide and
arylalkynyl moieties, derived from benzyl isocyanide and 2-alky-
nylbenzaldehydes, allow for further assembly of 1,3-dihydro-2H-3-
benzazepin-2-one scaffold via an intramolecular 7-endo-dig hy-
droamidation catalyzed by 10 mol% Pd(PhCN)2Cl2 (THF, 60 °C, 24
h, 61–74%). This new post-Ugi annulation enables an expeditious
access to the C–N bond-linked conjugates of two benzannulated
seven-membered-ring heterocycles.
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Alkynes are a family of organic compounds both of bio-
logical significance and diverse synthetic applications.2,3

Under transition-metal catalysis, alkynes undergo a vari-
ety of addition reactions4 among which the intramolecular
hydroamidation (IMHAD) process has been used for the
synthesis of the nitrogen-containing heterocycles.5–7 In
our previous studies on microwave-assisted generation of
heterocyclic skeletal diversity starting from 2-aminophe-
nols,8 we have developed synthetic methodologies fea-
turing intramolecular O-alkylation (SN2),9a O-arylation
(SNAr),9b N-arylation (amidation),9a–9c and Heck reac-
tion9d as the post-Ugi transformations.10 A microwave-
assisted intramolecular direct arylation catalyzed by pal-
ladium has also been established for the synthesis of novel
fused hetereocycles.11 The high efficiency of our method-
ologies is illustrated by the one-pot construction of the
cleft scaffolds of dibenz[b,f][1,4]oxazepin-11(10H)-ones
(1) and dibenz[b,f][1,4]oxazepine-11(10H)-carboxamides
(2) as shown in Figure 1. Moreover, the compounds 1
(Ar1 = 2-BrC6H4) could be transformed into the helical
conjugates 3 with 2-oxindole by the palladium-catalyzed
intramolecular amidation under controlled microwave
heating.9b We report here on synthesis of the C–N-bond-

linked conjugates 4 with 1,3-dihydro-2H-3-benazepin-2-
one7,12 via a novel U-4CR–SNAr–IMHAD sequence.13,14

2-Aminophenols 5 are the readily available and inexpen-
sive starting materials for our microwave-assisted synthe-
sis of heterocyclic scaffolds.9,11,15 In Scheme 1, we used
six 2-aminophenols 5 for the Ugi four-component reac-
tion with 2-alknylbenzaldehydes 6,13,16 2-chloro-5-nitro-
benzoic acid 7, and benzyl isocyanide 8.

The reaction was carried out in MeOH at 80 °C in closed
vials under microwave heating for 20 minutes to form the
acyclic product 9. The latter was then treated with 1.2
equivalents of aqueous K2CO3 at 100 °C for another 10
minutes to promote the intramolecular nucleophilic aro-
matic substitution between the phenolic OH and the 4-
nitrophenyl chloride moieties. The resultant products
10a–g possess the 6,7,6-fused tricyclic skeleton and have
a cleft molecular shape as characterized by an X-ray struc-
tural analysis in our previous work.9b Table 1 summarizes
the structures and one-pot synthesis yields of 10a–g.17

The results indicate that the microwave-assisted one-pot
U-4CR–SNAr sequence tolerates diverse substitution pat-
terns on 2-aminophenols 5 and affords the highly func-
tionalized products 10a–g in 57–81% overall yields.

Figure 1 Structures of dibenz[b,f][1,4]oxazepin-11(10H)-ones (1),
dibenz[b,f][1,4]oxazepine-11(10H)-carboxamides (2), and the C–N
bond-linked conjugates 3 and 4 with 2-oxindole and 1,3-dihydro-2H-
3-benzazepin-2-one
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Mitchell and co-workers7b screened reaction conditions
for the intramolecular hydroamidation of 11 (R1 = Me,
R2 = n-Bu) and found that a hydroxide base such as KOH
in DMF (60 °C, 16 h) could, albeit not efficiently, pro-
mote the formation of 12 (Scheme 2). KOt-Bu gave com-
plete conversion but it also promoted carbocyclization
through the amide enolate species. Metal reagents such as

Cu(OTf)2, AgOTf, and ZnCl2 together with KOH failed to
improve both the conversion of 11 and the yield of 12.

When Ph(PPh3)2(OAc)2 (5 mol%) and KOH or NaOEt (2
equiv) were used, the product 12 (R1 = Me, R2 = n-Bu)
was obtained in 80–82% yield. For the primary amide 11
(R1 = H), NaH and higher temperature at 80 °C were used
while longer reaction time (48 h) was required for cycliza-
tion of the anilide 11 (R1 = Ph). We tried Mitchell’s reac-
tion conditions for IMHAD of 10a but it failed (Scheme 2
and entry 1 of Table 2). The alkoxide base, KOt-Bu, did
not work as well (entry 2, Table 2). These results suggest
that the bulky 6,7,6-fused tricyclic skeleton in 10a renders
formation of 13a much more difficult. After a systematic
examination over the reaction parameters, we found that a
base is not necessary for IMHAD of 10a. Polar and non-
polar solvents such as DMF, DMSO, and toluene were in-
ferior (entries 3, 4, and 8–10 in Table 2). THF and CH2Cl2

were the suitable solvents and gave similar results (entries
6 and 7, Table 2). Temperature at 60 °C in THF afforded
the best yield of 71% when 10 mol% of Pd(PhCN)2Cl2

were used (entry 5, Table 2). 

Scheme 2 Screening of reaction conditions for IMHAD

The IMHAD of 10a was catalyzed by PdCl2 at 60 °C in
THF (62% yield after 40 h) but this catalyst was inactive
at 150 °C under microwave heating, indicating that
Pd(PhCN)2Cl2 is more robust than PdCl2 (entries 5 and 6
vs. entries 13 and 14). We found that the phosphine com-
plexes of palladium(II) lost catalytic activity in THF with
thermal (60 °C) and microwave (150 °C) heating (entries
11, 12, and 15). AgOTf and Cu(OTf)2 were examined in
THF and formation of 13a was confirmed only for AgOTf
at 150 °C (entries 16–18, Table 2).

Next, we applied the conditions in entry 5 of Table 2 to the
IMHAD of other substrates (Scheme 3). The results are
summarized in Table 3. In general, the novel conjugates
13a–g could be obtained in 61–74% yields regardless the
bulky (R3 = t-Bu, Ph) or reactive (R3 = Cl) substituents

Scheme 1 Synthesis of dibenz[b,f][1,4]oxazepin-11(10H)-ones
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Table 1 One-Pot Synthesis of Dibenz[b,f][1,4]oxazepin-11(10H)-
ones 10a–g via Microwave-Assisted U-4CR and Post Intramolecular 
SNAra

Entry Product R1 R2 R3 R4 Yield 
(%)

mp 
(°C)

1 10a H H H n-Pr 69 96–98

2 10b H Me H n-Pr 80 118–120

3 10c H H t-Bu n-Pr 78 149–151

4 10d H H Cl n-Pr 57 184–186

5 10e Me H Me n-Pr 73 188–190

6 10f H H Ph n-Pr 81 191–193

7 10g H H H (CH2)4CO2Me 71 128–130

a The one-pot synthesis was carried out by heating a MeOH solution 
of 5–8 at 80 °C for 20 min and the U-4CR mixture, after adding 1.2 
equiv of aq K2CO3, at 100 °C for 10 min. All reactions were per-
formed on a technical microwave reactor in a closed pressurized vial 
with the temperature measured by an IR sensor.
b Recrystallized from CH2Cl2–hexane.
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(entries 3, 4, and 6 in Table 3). Moreover, our nonbasic
conditions tolerates the base-labile methyl ester in 13g
(entry 7, Table 3). As seen in the 2-oxindole conjugates of
3,4-dihydro-3-oxo-2H-1,4-benzoxazines9a and dibenz[b,f]-
[1,4]oxazepin-11(10H)-ones,9b the conjugates 13 also
show atropisomerism in solution. Peak broadening was
generally observed in their 1H NMR and 13C NMR spectra
taken at 80 °C in DMSO-d6. Formation of the seven-mem-
bered ring in compounds 13 is evident by disappearance
of the IR absorptions at ca. 3400 and 3320 cm–1

[C(O)N(Bn)H] and ca. 2230 cm–1 (C≡C). The N–H signal

of 10 in the 1H NMR spectra (for example, a triplet at d =
6.35 ppm for 10c) was not found after cyclization to 13,
instead, whose vinyl proton was observed (for example, a
broad singlet at d = 6.27 ppm for 13c). However, the six-
membered-ring product formed by the 6-exo-dig pathway

Table 2 Screening of Reaction Conditions for Intramolecular Hydroamidation of 13a

Entry Catalyst (10 mol%) Base Solvent Temp (°C) Time (h) Yield (%)a

1 Pd(PhCN)2Cl2 KOH (1 equiv) DMF 60 18 –b

2 none KOt-Bu (1 equiv) DMF 60 18 trace

3 Pd(PhCN)2Cl2 none DMF 60 24 –b

4 Pd(PhCN)2Cl2 none DMSO 110 18 –b

5 Pd(PhCN)2Cl2 none THF 60 24 71

6 Pd(PhCN)2Cl2 none THF 150 (MW) 0.5 35

7 Pd(PhCN)2Cl2 none CH2Cl2 120 (MW) 0.33 + 0.5 30

8 Pd(PhCN)2Cl2 none DMF 150 (MW) 0.5 –b

9 Pd(PhCN)2Cl2 none DMSO 150 (MW) 0.5 –b

10 Pd(PhCN)2Cl2 none PhMe 150 (MW) 0.5 –b

11 Pd(PPh3)2Cl2 none THF 60 18 –b

12 Pd(PPh3)2Cl2 none THF 150 (MW) 0.5 –b

13 PdCl2 none THF 60 40 62

14 PdCl2 none THF 150 (MW) 0.5 –b

15 Pd(OAc)2 + dppf (1:1) none THF 150 (MW) 0.5 –b

16 AgOTf none THF 60 24 –b

17 AgOTf none THF 150 (MW) 0.5 <35c

18 Cu(OTf)2 none THF 60 22 –b

a Isolated yield.
b No reaction was noted by TLC analysis.
c A substantial amount of SM remained and the conversion was poor as compared to entry 6 using Pd(PhCN)2Cl2.

Scheme 3 Synthesis of 1,3-dihydro-2H-3-benzazepin-2-ones 13a–g
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Table 3 Synthesis of 1,3-Dihydro-2H-3-benzazepin-2-ones 13a–
g18 via Palladium-Catalyzed Intramolecular Hydroamidation

Entry Product R1 R2 R3 R4 Yield 
(%)a

mp (°C)b

1 13a H H H n-Pr 71 230–231

2 13b H Me H n-Pr 67 199–201

3 13c H H t-Bu n-Pr 61 223–225

4 13d H H Cl n-Pr 68 234–236

5 13e Me H Me n-Pr 72 247–249

6 13f H H Ph n-Pr 66 238–240

7 13g H H H (CH2)4CO2Me 74 123–125

a Isolated yield.
b Recrystallized from CH2Cl2–hexane.
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was not detected in accordance with the observation in the
reaction of the simple substrates 11.7b

In summary, we have developed a novel sequence for syn-
thesis of the conjugates of 1,3-dihydro-2H-3-benzazepin-
2-ones with dibenz[b,f][1,4]oxazepine-11(10H)-ones by
taking advantage of the one-pot microwave-assisted U-
4CR–SNAr protocol9b and the palladium-catalyzed in-
tramolecular hydroamidation of arylalkynes.7 The current
work expands the scope of our studies on skeletal diversi-
ty of the C–N-bond-linked conjugates of various benzan-
nulated heterocycles.9a–9c These helical molecules show
atropisomerism and their flexible molecular architectures
may be of interest for chemical genetics studies.19

Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett.
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